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Abstract

Atomistic molecular simulations are a powerful way to make quantitative predictions, but the 

accuracy of these predictions depends entirely on the quality of the forcefield employed. While 

experimental measurements of fundamental physical properties offer a straightforward approach 

for evaluating forcefield quality, the bulk of this information has been tied up in formats that are 

not machine-readable. Compiling benchmark datasets of physical properties from non-machine-

readable sources requires substantial human effort and is prone to the accumulation of human 

errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we 

examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data 

archive of physicochemical measurements, which aggregates thousands of experimental 

measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a 

proof of concept, we present a detailed benchmark of the generalized Amber small molecule 

forcefield (GAFF) using the AM1-BCC charge model against experimental measurements 

(specifically bulk liquid densities and static dielectric constants at ambient pressure) automatically 

extracted from the archive, and discuss the extent of data available for use in larger scale (or 

continuously performed) benchmarks. The results of even this limited initial benchmark highlight 
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a general problem with fixed-charge forcefields in the representation low dielectric environments 

such as those seen in binding cavities or biological membranes.

1 Introduction

Recent advances in hardware and software for molecular dynamics simulation now permit 

routine access to atomistic simulations at the 100 ns timescale and beyond.1 Leveraging 

these advances in combination with consumer GPU clusters, distributed computing, or 

custom hardware has brought microsecond and millisecond simulation timescales within 

reach of many laboratories. These dramatic advances in sampling, however, have revealed 

deficiencies in forcefields as a critical barrier to enabling truly predictive simulations of 

physical properties of biomolecular systems.

Protein and water forcefields have been the subject of numerous benchmarks2–4 and 

enhancements,5–7 with key outcomes including the ability to fold fast-folding proteins,8–10 

improved fidelity of water thermodynamic properties,11 and improved prediction of NMR 

observables. Although small molecule forcefields have also been the subject of 

benchmarks12–14 and improvements,15 such work has typically focused on small 

perturbations to specific functional groups. For example, a recent study found that modified 

hydroxyl nonbonded parameters led to improved prediction of static dielectric constants and 

hydration free energies.15 There are also outstanding questions of generalizability of these 

targeted perturbations; it is uncertain whether changes to the parameters for a specific 

chemical moiety will be compatible with seemingly unrelated improvements to other 

groups. Addressing these questions requires establishing community agreement upon shared 

benchmarks that can be easily replicated among laboratories to test proposed forcefield 

enhancements and expanded as the body of experimental data grows.

A key barrier to establishing reproducible and extensible forcefield accuracy benchmarks is 

that many experimental datasets are heterogeneous, paywalled, and unavailable in machine-

readable formats (although notable counterexamples exist, e.g., the PDB,16 Free-Solv,17 and 

the BMRB18). While this inconvenience is relatively minor for benchmarking forcefield 

accuracy for a single target system (e.g., water), it becomes prohibitive for studies spanning 

relevant chemical spaces, such as forcefields intended to describe a large variety of druglike 

small organic molecules.

In addition to inconvenience, the number and kind of human-induced errors that can corrupt 

hand-compiled benchmarks are legion. A United States Geological Survey (USGS) case 

study examining the reporting and use of literature values of the aqueous solubility (Sw) and 

octanol-water partition coefficients (Kow) for DDT and its persistent metabolite DDE 

provides remarkable insight into a variety of common errors.19 Secondary sources are often 

cited as primary sources—a phenomenon that occurred up to five levels deep in the case of 

DDT/DDE; citations for data are often incorrect, misattributed to unrelated publications, or 

omitted altogether; numerical data can be mistranscribed, transposed, or incorrectly 

converted among unit systems.19 In the case of DDT/DDE, these errors occur to such a 

degree that the authors note “strings of erroneous data compose as much as 41–73 percent of 
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the total data”.19 Given the number and importance of these measurements, the quality of 

physicochemical datasets of lesser importance may be suspect.

To ameliorate problems of data archival, the NIST Thermodynamics Research Center (TRC) 

has developed an IUPAC standard XML-based format—ThermoML20–22—for storing 

physicochemical measurements, uncertainties, and metadata. Manuscripts containing new 

experimental measurements submitted to several journals (J. Chem. Eng. Data, J. Chem. 

Thermodyn., Fluid Phase Equilib., Thermochemica Acta, and Int. J. Thermophys.) are 

guided through a data archival process that involves sanity checks, conversion to a standard 

machine-readable format, and archival at the TRC (http://trc.nist.gov/ThermoML.html).

Here, we examine the ThermoML archive as a potential source for a reproducible, extensible 

accuracy benchmark of biomolecular forcefields. As a proof of concept, we concentrate on 

two important physical property measurements easily computable in many simulation codes

—neat liquid density and static dielectric constant measurements—with the goal of 

developing a standard benchmark for validating these properties in fixed-charge forcefields 

of drug-like molecules and biopolymer residue analogues. These two properties provide 

sensitive tests of forcefield accuracy that are nonetheless straightforward to calculate. Using 

these data, we evaluate the generalized Amber small molecule forcefield (GAFF)23,24 with 

the AM1-BCC charge model25,26 and identify systematic biases to aid further forcefield 

refinement.

2 Methods

2.1 ThermoML Archive retrieval and processing

A snapshot of the ThermoML Archive was obtained from the the NIST TRC on 8 Apr. 

2015. To explore the content of this archive, we created a Python (version 2.7.9) tool—

ThermoPyL (https://github.com/choderalab/ThermoPyL)—that formats the XML content 

into a spreadsheet-like format accessible via the Pandas (version 0.15.2) library. This tool 

also contains a preliminary version of scripts for maintaining an up-to-date version of the 

ThermoML archive. First, we obtained the XML schema (http://media.iupac.org/

namespaces/ThermoML/ThermoML.xsd) defining the layout of the data. This schema was 

converted into a Python object via PyXB 1.2.4 (http://pyxb.sourceforge.net/). Finally, this 

schema was used to extract the data into Pandas27 dataframes, and successive data filters 

described in Section 3.1 were applied to explore the composition of the data.

2.2 Simulation

To enable automated accuracy benchmarking of physicochemical properties of neat liquids 

such as mass density and static dielectric constant, we developed a semi-automated pipeline 

for preparing simulations, running them on a standard computer cluster using a portable 

simulation package, and analyzing the resulting data. All code for this procedure is available 

at https://github.com/choderalab/LiquidBenchmark. Below, we describe the operation of the 

various stages of this pipeline and their application to the benchmark reported here.

2.2.1 Preparation—Chemical names were parsed from the ThermoML extract and 

converted to both CAS and SMILES strings using cirpy (https://github.com/mcs07/CIRpy). 
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Smiles strings were converted into molecular structures using the OpenEye Python Toolkit 

version 2015-2-3,28 as wrapped in openmoltools.

Simulation boxes containing 1 000 molecules were constructed using PackMol version 

14-22529 wrapped in the Python automation library openmoltools (http://github.com/

choderalab/openmoltools/). In order to ensure stable automated equilibration, PackMol box 

volumes were chosen to accommodate twice volume of the enclosed atoms, with atomic 

radii estimated as 1.06 Å and 1.53 Å for hydrogens and nonhydrogens, respectively.

For this illustrative benchmark, we utilized the generalized Amber small molecule force-

field (GAFF)23,24 with the AM1-BCC charge model,25,26 which we shall refer to as the 

GAFF/AM1-BCC forcefield.

Canonical AM1-BCC25,26,30 charges were generated with the OpenEye Python Toolkit 

version 2015-2-3,28 using the oequacpac.OEAssignPartialCharges module with the 

OECharges AM1BCCSym option, which utilizes a conformational expansion procedure 

(using oeomega.OEOmega31) prior to charge fitting to minimize artifacts from 

intramolecular contacts. The OEOmega selected conformer was then processed using 

antechamber (with parmchk2) and tleap in AmberTools 1432 to produce Amber-format 

prmtop and inpcrd files, which were then read into OpenMM to perform molecular 

simulations using the simtk.openmm.app module.

The simulations reported here used libraries openmoltools 0.6.4, OpenMM 6.3,33 and 

MDTraj 1.3.34 Exact commands to install various dependencies can be found in section 

S1.1.

2.2.2 Equilibration and production—All simulations were performed using OpenMM 

6.3.33 Simulation boxes were first minimized using the L-BFGS algorithm35 using the 

LocalEnergyMinimizer default parameters and subsequently equilibrated for 107 steps with 

an equilibration timestep of 0.4 fs and a collision rate of 5 ps−1. Production simulations 

employed a Langevin Leapfrog integrator36 with collision rate 1 ps−1 and a 1 fs timestep, as 

we found that timesteps of 2 fs or greater led to a significant timestep dependence in 

computed equilibrium densities (Fig. S1).

Equilibration and production simulations utilized a Metropolis Monte Carlo barostat with a 

control pressure of 1 atm (101.325 kPa), utilizing molecular scaling and automated step size 

adjustment during equilibration, with volume moves attempted every 25 steps. The particle 

mesh Ewald (PME) method with conducting boundary conditions37 was used with a long-

range cutoff of 0.95 nm, and a long-range isotropic dispersion correction was employed to 

correct for the truncation of Lennard-Jones interactions outside the 0.95 nm cutoff. PME 

grid and spline parameters were automatically selected using the default settings in 

OpenMM 6.3 for the CUDA platform,33 which was operated in default mixed-precision 

mode. Instantaneous densities were stored every 250 fs, while trajectory snapshots were 

stored every 5 ps.

Automatic termination criteria: Production simulations were continued until automatic 

analysis showed standard errors in densities were less than 2×10−4 g/cm3. Automatic 
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analysis of the production simulation data was run every 1 ns of simulation time, and 

utilized the detectEquilibration method38 in the timeseries module of pymbar 2.139 to 

automatically discard the initial portion of the production simulation containing strong far-

from-equilibrium configurations. This procedure selects the equilibration endpoint Teq by 

maxi-mizing the number of effectively uncorrelated samples in the remainder of the 

production simulation, Neff = (T − Tequil)/g, with T the total simulation length. The statistical 

inefficiency g was determined by autocorrelation analysis using the fast adaptive statistical 

inefficiency computation method as implemented in the 

timeseries.computeStatisticalInefficiency method of pymbar 2.1 (where the algorithm is 

described in40). This approach is essentially the same as the fixed-width procedure described 

by eq. 7.12 of ref.,41 with n* equal to 4000 and the sequential testing correction (n−1 term) 

ignored due to the large value of n.

Statistical errors in estimated average density 〈ρ〉 were computed by the Markov chain 

standard error (MCSE)

(1)

where (ρ) is the sample standard deviation of the density and Neff is the number of 

effectively uncorrelated samples.

Using this adaptive protocol, we found starting trajectory lengths of 12000 (8000, 16000) 

density frames (250 fs each), discarded regions of 28 (0, 460) density frames, and statistical 

inefficiencies of 20 (15, 28) density frames; reported numbers indicate (median, (25% 

quartile, 75% quartile)).

2.3 Timings

The wall time required for a given simulation depends on the number of atoms in the 

simulation system (3 000–29 000 atoms), the GPU used (GTX 680 or GTX Titan), and the 

time required for automated termination. For butyl acrylate (21 000 atoms) on a GTX Titan, 

the wall-clock performance is approximately 80 ns/day. Using 80 ns/day with approximately 

3 ns of production simulation corresponds to 1 hour for the production segment of the 

simulation and 3 hours for the fixed equilibration portion of 107 steps.

2.3.1 Data analysis and statistical error estimation—Trajectory analysis was 

performed using OpenMM 6.333 and MDTraj 1.3.34

Mass density: Mass density ρ was computed via the relation,

(2)

where M is the total mass of all particles in the system and V is the instantaneous volume of 

the simulation box.
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Static dielectric constants: Static dielectric constants were calculated using the dipole 

fluctuation approach appropriate for PME with conducting (“tin-foil”) boundary 

conditions,11,42 with the total system box dipole μ computed from trajectory snapshots using 

MDTraj 1.3.34

(3)

where β ≡ 1/kBT is the inverse temperature.

Computation of expectations: Expectations were estimated by computing sample means 

over the production simulation after discarding the initial far-from-equilibrium portion to 

equilibration (as described in Automatic termination criteria above).

Statistical uncertainties: For density uncertainties, the Markov chain standard error 

(MCSE) was estimated using Eq. 1. For dielectric uncertainties, in order to avoid the 

complexities of computing and propagating correlated errors in Eq. 3, a bootstrap procedure 

was employed: the portion of the production simulation not discarded to equilibration was 

used as input to a circular block bootstrapping procedure43 with block sizes automatically 

selected to maximize the error.44

2.3.2 Code availability—All code to perform data analysis and create figures for this 

work, as well as all intermediate data (except configurational trajectories, due to their large 

size), is available at https://github.com/choderalab/LiquidBenchmark.

3 Results

3.1 Extracting neat liquid measurements from the NIST TRC ThermoML Archive

As described in Section 2.1, we retrieved a copy of the ThermoML Archive and performed a 

number of sequential filtering steps to produce an ThermoML extract relevant for 

benchmarking forcefields describing small organic molecules. As our aim is to explore neat 

liquid data with functional groups relevant to biopolymers and drug-like molecules, we 

applied the following ordered filters, starting with all data containing density or static 

dielectric constants:

1. The measured sample contains only a single component (e.g., no binary mixtures)

2. The molecule contains only druglike elements (defined here as H, N, C, O, S, P, F, 

Cl, Br)

3. The molecule has ≤ 10 non-hydrogen atoms

4. The measurement was performed in a biophysically relevant temperature range 

(270 ≤T [K] ≤ 330)

5. The measurement was performed at ambient pressure (100 ≤ P [kPa] ≤ 102)

6. Only measurements in liquid phase were retained
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7. The temperature and pressure were rounded to nearby values (as described below), 

averaging all measurements within each group of like conditions

8. Only conditions (molecule, temperature, pressure) for which both density and 

dielectric constants were available were retained

The temperature and pressure rounding step was motivated by common data reporting 

variations; for example, an experiment performed at the freezing temperature of water and 

ambient pressure might be entered as either 101.325 kPa or 100 kPa, with a temperature of 

either 273 K or 273.15 K. Therefore all pressures within the range [kPa] (100 ≤ P ≤ 102) 

were rounded to exactly 1 atm (101.325 kPa). Temperatures were rounded to one decimal 

place in K.

The application of these filters (Table 1) leaves 246 conditions—where a condition here 

indicates a (molecule, temperature, pressure) tuple—for which both density and dielectric 

data are available. The functional groups present in the resulting dataset are summarized in 

Table 2; see Section 2.1 for further description of the software pipeline used.

3.2 Benchmarking GAFF/AM1-BCC against the ThermoML Archive

3.2.1 Mass density—Mass densities of bulk liquids have been widely used for 

parameterizing and testing force-fields, particularly the Lennard-Jones parameters 

representing dispersive and repulsive interactions.46,47 We therefore used the present 

ThermoML extract as a benchmark of the GAFF/AM1-BCC forcefield (Fig. 1).

Overall accuracy: Overall, the densities show reasonable accuracy, with a root-mean 

square (RMS) relative error over all measurements of (3.0±0.1)%, especially encouraging 

given that this forcefield was not designed with the intention of modeling bulk liquid 

properties of organic molecules.23,24 This is reasonably consistent with previous studies 

reporting relative error of 4% on a different benchmark set.12

Temperature dependence: For a given compound, the signs of the errors typically do not 

change at different temperatures (Fig. 1, Fig. S4). Furthermore, the magnitudes of the error 

also remain largely constant (vertical lines in Fig. 1 B), although several exceptions do 

occur. It is possible that these systematic density offsets indicate correctable biases in 

forcefield parameters.

Outliers: The largest density errors occur for a number of oxygen-containing compounds: 

1,4-dioxane; 2,5,8-trioxanonane; 2-aminoethanol; dimethyl carbonate; formamide; and 

water (Fig. S4). The absolute error on these poor predictions is on the order of 0.05 g/cm3, 

which is substantially higher than the measurement error (≤ 0.008 g/cm3; see Fig. S2).

We note that our benchmark includes a GAFF/AM1-BCC model for water due to our desire 

to automate benchmarks against a forcefield capable of modeling a large variety of small 

molecular liquids. Water—an incredibly important solvent in biomolecular systems—is 

generally treated with a special-purpose model (such as TIP3P46 or TIP4P-Ew11) 

parameterized to fit a large quantity of thermophysical data. As expected, the GAFF/AM1-

BCC model performs poorly in reproducing liquid densities for this very special solvent. We 
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conclude that it remains highly advisable that the field continue to use specialized water 

models when possible.

3.2.2 Static dielectric constant

Overall accuracy: As a measure of the dielectric response, the static dielectric constant of 

neat liquids provides a critical benchmark of the accuracy of electrostatic treatment in 

forcefield models. Discussing the accuracy in terms of the ability of GAFF/AM1-BCC to 

reproduce the static dielectric constant is not necessarily meaningful because of the way that 

the solvent dielectric enters into the Coulomb potential between two point charges separated 

by a distance r,

(4)

It is evident that 1/ɛ is a much more meaningful quantity to compare than directly, as a 5% 

error in 1/ɛ will cause a 5% error in the Coulomb potential between two point charges 

(assuming a uniform dielectric), while a 5% error in ɛ will have a much more complex ɛ-

dependent effect on the Coulomb potential. We therefore compare simulations against 

measurements in our ThermoML extract on the 1/ɛ scale in Fig. 2.

GAFF/AM1-BCC systematically underestimates the dielectric constants of nonpolar 
liquids: Overall, we find the dielectric constants to be qualitatively reasonable, but with 

clear deviations from experiment, particularly for nonpolar liquids. This is not surprising 

given the complete neglect of electronic polarization which will be the dominant 

contribution for such liquids. In particular, GAFF/AM1-BCC systematically underestimates 

the dielectric constants for nonpolar liquids, with the predictions of ɛ ≈ 1.0 being 

substantially smaller than the measured ɛ ≈ 2. Because this deviation likely stems from the 

lack of an explicit treatment of electronic polarization, we used a simple empirical 

polarization model that computes the molecular electronic polarizability α as a sum of 

elemental atomic polarizability contributions.48

From the computed molecular electronic polarizability α, an additive correction to the 

simulation-derived static dielectric constant accounting for the missing electronic polariz-

ability can be computed11

(5)

A similar polarization correction was used in the development of the TIP4P-Ew water 

model, where it had a minor effect11 because almost all the high static dielectric constant for 

water comes from the configurational response of its strong dipole. However, the missing 

polarizability is a dominant contribution to the static dielectric constant of nonpolar organic 

molecules; in the case of water, the empirical atomic polarizability model predicts a 

dielectric correction (to ε) of 0.52, while 0.79 was used for the TIP4P-Ew model. Averaging 

this dielectric constant over all liquids in the present work leads to average polarizability 

corrections (to ε) of 0.74 ± 0.08. Taking the dataset as a whole, we find that the relative 
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error in uncorrected dielectric (to ε) is on the order of −0.34 ± 0.02, as compared to −0.25 ± 

0.02 for the corrected dielectric.

4 Discussion

4.1 Mass densities

Our simulations have indicated the presence of systematic density biases with magnitudes 

larger than the measurement error. Correcting these errors may be a low-hanging fruit for 

future forcefield refinements. As an example of the feasibility of improved accuracy in 

densities, a recent three-point water model was able to recapitulate water density with errors 

of less than 0.005 g/cm3 over the temperature range [280 K, 320 K].49 This improved 

accuracy in density prediction was obtained alongside accurate predictions of other 

experimental observables, including the static dielectric constant. We suspect that such 

accuracy might be obtainable for GAFF-like forcefields across some portion of chemical 

space. A key challenge for the field is to demarcate the fundamental limit of fixed-charge 

forcefields for predicting orthogonal classes of experimental observables. For example, is it 

possible to achieve a relative density error of 10−4 without sacrificing accuracy of other 

properties such as enthalpies of vaporization? In our opinion, the best way to answer such 

questions is to systematically build forcefields with the goal of predicting various properties 

to within their known experimental uncertainties, similar to what has been done for 

water.11,49

4.2 Dielectric constants in forcefield parameterization

A key feature of the static dielectric constant for a liquid is that, for forcefield purposes, it 

consists of two very different contributions, distinguished by the dependence on the fixed 

charges of the forcefield and dynamic motion of the molecule. One component, the 

electronic polarizability (which can be separately quantified through the high-frequency 

dielectric constant), arises from the almost-instantaneous electronic polarization in response 

to the external electric field. Electronic polarizability contributes a small component, 

generally around ε = 2, which can be dominant for non-polar liquids but is completely 

neglected by the non-polarizable forcefields in common use for biomolecular simulations.

The other component arises from the dynamical response of the molecule through 

reorientation or conformational relaxation via nuclear motion. For small polar liquids that 

lack significant internal degrees of freedom—such as water—reorientation of various 

molecular multipoles in response to the external electric field contributes the majority of the 

static dielectric constant. As a result, for polar liquids, we expect the parameterized atomic 

charges to play a major role in the static dielectric.

Recent forcefield development has seen a resurgence of papers fitting dielectric constants 

during forcefield parameterization.15,49 However, a number of authors have pointed out 

potential challenges in constructing self-consistent fixed-charge forcefields.50,51

Interestingly, recent work by Dill and coworkers50 observed that, for CCl4, reasonable 

choices of point charges are incapable of recapitulating the observed dielectric of ε = 2.2, 

instead producing dielectric constants in the range of 1.0 ≤ ε ≤ 1.05. This behavior is quite 
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general: fixed point charge forcefields will predict ε ≈ 1 for many nonpolar or symmetric 

molecules, but the measured dielectric constants are instead ε ≈ 2 (Fig. 3). While this 

behavior is well-known and results from missing physics of polarizability, we suspect it may 

have several profound consequences, which we discuss below.

Suppose, for example, that one attempts to fit forcefield parameters to match the static 

dielectric constants of CCl4, CHCl3, CH2Cl2, and CH3Cl. In moving from the tetrahedrally-

symmetric CCl4 to the asymmetric CHCl3, it suddenly becomes possible to achieve the 

observed dielectric constant of 4.8 by an appropriate choice of point charges. However, the 

model for CHCl3 uses fixed point charges to account for both the permanent dipole moment 

and the electronic polarizability, whereas the CCl4 model contains no treatment of 

polarizability. We hypothesize that this inconsistency in parameterization may lead to 

discontinuous jumps in physical properties in related molecular series, where symmetric 

molecules (e.g., benzene and CCl4) have qualitatively different properties than closely 

related asymmetric molecules (e.g., toluene and CHCl3).

How important is this effect? We expect it to be important wherever we encounter the 

transfer of a polar molecule (such as a peptide, native ligand, or a pharmaceutical small 

molecule) from a polar environment (such as the cytosol, interstitial fluid, or blood) into a 

non-polar environment (such as a biological membrane or non-polar binding site of an 

enzyme or receptor). Thus we expect this to be implicated in biological processes ranging 

from ligand binding to absorption and distribution within the body. To understand this 

conceptually, consider the transfer of a polar small-molecule transfer from the non-polar 

interior of a lipid bilayer to the aqueous and hence very polar cytosol.

As a real-world example, we imagine that the missing atomic polarizability could be 

important in accurate transfer free energies involving low-dielectric solvents, such as the 

small-molecule transfer free energy from octanol or cyclohexane to water. The Onsager 

model for solvation of a dipole μ of radius a gives us a way to estimate the magnitude of 

error introduced by making an error of ∆ in the static dielectric constant of a solvent. The 

free energy of dipole solvation is given by this model as

(6)

such that, for an error of ∆ε departing from the true static dielectric constant ε, we find the 

error in solvation is

(7)

For example, the solvation of water (a = 1.93 Å, μ = 2.2 D) in a low dielectric medium such 

as tetrachloromethane or benzene (ε ~ 2.2, but ∆ε = −1.2) gives an error of ∆∆G ~ −8 

kJ/mol (−2 kcal/mol).

Implications for transfer free energies—As another example, consider the transfer of 

small druglike molecules from a nonpolar solvent (such as cyclohexane) to water, a property 
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often measured to indicate the expected degree of lipophilicity of a compound. To estimate 

the magnitude of error expected, for each molecule in the FreeSolv database (as of 20 Feb 

2015),17,54 we estimated the expected error in computed transfer free energies should 

GAFF/AM1-BCC be used to model the nonpolar solvent cyclohexane using the Onsager 

model (Eq. 7). We took the cavity radius a to be half the maximum interatomic distance and 

calculated  using the provided mol2 coordinates and AM1-BCC charges. This 

calculation predicts a mean error of (−3.8 ± 0.3) kJ/mol [(−0.91 ± 0.07) kcal/mol] for the 

643 molecules (where the standard error is computed from bootstrapping over FreeSolv 

compound measurements), suggesting that the missing atomic polarizabilty unrepresentable 

by fixed point charge forcefields could contribute substantially to errors in predicted transfer 

and solvation properties of druglike molecules. In other words, the use of a fixed-charge 

physics may lead to errors of 3.8 kJ/mol in cyclohexane transfer free energies. We 

conjecture that this missing physics will be important in the upcoming (2015) SAMPL 

challenge,55 which will examine transfer free energies in several low dielectric media.

Utility in parameterization—Given their ease of measurement and direct connection to 

long-range electrostatic interactions, static dielectric constants have high potential utility as 

primary data for forcefield parameterization efforts. Although this will require the use of 

forcefields with explicit treatment of atomic polarizability, the inconsistency of fixed-charge 

models in low-dielectric media is sufficiently alarming to motivate further study of 

polarizable forcefields. In particular, continuum methods,56–58 point dipole methods,59,60 

and Drude methods61,62 have been maturing rapidly. Finding the optimal balance of 

accuracy and performance remains an open question; however, the use of experimentally-

parameterized direct polarization methods63 may provide polarizability physics at a cost not 

much greater than fixed charge forcefields. This is not to say that we suggest an immediate 

transition to polarizable force fields—the efficiency benefits and pervasiveness of fixed-

charge models are important. Furthermore, empirical corrections such as over-polarized 

charges50 and others51 may provide the ability to model some low-dielectric behaviors at the 

cost of some transferability.

4.3 ThermoML as a data source

The present work has focused on the neat liquid density and dielectric measurements present 

in the ThermoML Archive20,21,64 as a target for molecular dynamics forcefield validation. 

While liquid mass densities and static dielectric constants have already been widely used in 

forcefield work, several aspects of ThermoML make it a unique resource for the force-field 

community. First, the aggregation, support, and dissemination of ThermoML datasets 

through the ThermoML Archive is supported by NIST, whose mission makes these tasks a 

long-term priority. Second, the ThermoML Archive is actively growing through partnerships 

with several journals, and new experimental measurements published in these journals are 

critically examined by the TRC and included in the archive. Finally, the files in the Ther-

moML Archive are portable and machine readable via a formal XML schema, allowing 

facile access to hundreds of thousands of measurements. Numerous additional physical 

properties contained in ThermoML—including activity coefficients, diffusion constants, 

boiling-point temperatures, critical pressures and densities, coefficients of expansion, speed-

of-sound measurements, viscosities, excess molar enthalpies, heat capacities, and volumes—
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for neat phases and mixtures represent a rich dataset of high utility for forcefield validation 

and parameterization.

5 Conclusions

High quality, machine-readable datasets of physicochemical measurements will be required 

for the construction of next-generation small molecule forcefields. Here we have discussed 

the NIST/TRC ThermoML archive as a growing source of physicochemical measurements 

that may be useful for the forcefield community. From the NIST/TRC ThermoML archive, 

we selected a dataset of 246 ambient, neat liquid systems for which both densities and static 

dielectric constants are available. Using this dataset, we benchmarked GAFF/AM1-BCC, 

one of the most popular small molecule forcefields. We find systematic biases in densities 

and particularly static dielectric constants. Element-based empirical polarizabilty models are 

able to account for much of the systematic differences between GAFF/AM1-BCC and 

experiment. Non-polarizable forcefields may show unacceptable biases when predicting 

transfer and binding properties of non-polar environments such as binding cavities or 

membranes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of liquid densities between experiment and simulation
(a). Liquid density measurements extracted from ThermoML are compared against densities 

predicted using the GAFF/AM1-BCC small molecule fixed-charge forcefield. Color 

groupings represent identical chemical species, although the color map repeats itself due to 

the large (45) number of unique compounds. Plots of density versus temperature grouped by 

chemical species are available in Fig. S4. Simulation error bars represent one standard error 

of the mean, with the number of effective (uncorrelated) samples estimated using pymbar. 

Experimental error bars indicate the standard deviation between independently reported 
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measurements, when available, or author-reported standard deviations in ThermoML entries; 

for some measurements, neither uncertainty 14 estimate is available. See Fig. S2 for further 

discussion of error. (b). The same plot, but with the residual (predicted minus experiment) 

on the x axis. Note that the error bars are all smaller than the symbols.
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Figure 2. Measured (ThermoML) versus predicted (GAFF/AM1-BCC) inverse static dielectrics
(a). Simulation error bars represent one standard error of the mean. Experimental error bars 

indicate the larger of standard deviation between independently reported measurements and 

the authors reported standard deviations; for some measurements, neither uncertainty 

estimate is available. See Fig. S3 for further discussion of error. See Section 3.2.2 for 

explanation of why inverse dielectric constant (rather than dielectric constant) is plotted. For 

nonpolar liquids, it is clear that the forcefield predicts electrostatic interactions that are 

substantially biased by missing polarizability. Plots of dielectric constant versus temperature 

grouped by chemical species are available in Fig. S5.
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Figure 3. Typical experimental static dielectric constants of some nonpolar compounds
(a). Measured static dielectric constants of various nonpolar or symmetric molecules.52,53 

Fixed-charge forcefields give ε ≈ 1 for each species; for example, we calculated ε = 1.0030 

± 0.0002 for octane. (b). A congeneric series of chloro-substituted methanes have static 

dielectric constants between 2 and 13. Reported dielectric constants are at near-ambient 

temperatures.
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Table 1

Successive filtration of the ThermoML Archive. A set of successive filters were applied to all measurements 

in the ThermoML Archive that contained either mass density or static dielectric constant measurements. Each 

column reports the number of measurements remaining after successive application of the corresponding 

filtration step. The 246 final measurements correspond to 45 unique molecules measured at several 

temperature conditions.

Filter step

Number of measurements remaining

Mass density Static dielectric

1. Single Component 136212 1651

2. Druglike Elements 125953 1651

3. Heavy Atoms 71595 1569

4. Temperature 38821 964

5. Pressure 14103 461

6. Liquid state 14033 461

7. Aggregate T, P 3592 432

8. Density+Dielectric 246 246
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Table 2

Functional groups present in filtered dataset. The filtered ThermoML dataset contained 246 distinct (molecule, 

temperature, pressure) conditions, spanning 45 unique compounds. The functional groups represented in these 

compounds (as identified by the program checkmol v0.545) is summarized here.

Functional Group Occurrences

1,2-aminoalcohol 4

1,2-diol 3

alkene 3

aromatic compound 1

carbonic acid diester 2

carboxylic acid ester 4

dialkyl ether 7

heterocyclic compound 3

ketone 3

lactone 1

primary alcohol 19

primary aliphatic amine (alkylamine) 2

primary amine 2

secondary alcohol 4

secondary aliphatic amine (dialkylamine) 2

secondary aliphatic/aromatic amine (alkylarylamine) 1

secondary amine 3

sulfone 1

sulfoxide 1

tertiary aliphatic amine (trialkylamine) 3

tertiary amine 3
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