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Abstract

Background: Although early diagnosis and improved treatment can reduce breast cancer mortality, there still
appears to be a geographic differential in patient outcomes. This study aims to determine and quantify spatial
inequalities in intended adjuvant (radio-, chemo- and hormonal) therapy usage among women with screen-detected
breast cancer in Queensland, Australia.

Methods: Linked population-based datasets from BreastScreen Queensland and the Queensland Cancer Registry
during 1997 − 2008 for women aged 40 − 89 years were used. We adopted a Bayesian shared spatial component
model to evaluate the relative intended use of each adjuvant therapy across 478 areas as well as common spatial
patterns between treatments.

Results: Women living closer to a cancer treatment facility were more likely to intend to use adjuvant therapy. This
was particularly marked for radiotherapy when travel time to the closest radiation facility was 4+ h (OR=0.41, 95 %
CrI: [0.23, 0.74]) compared to <1 h. The shared spatial effect increased towards the centres with concentrations of
radiotherapy facilities, in north-east (Townsville) and south-east (Brisbane) regions of Queensland. Moreover, the
presence of residual shared spatial effects indicates that there are other unmeasured geographical barriers influencing
women’s treatment choices.

Conclusions: This highlights the need to identify the additional barriers that impact on treatment intentions among
women diagnosed with screen-detected breast cancer, particularly for those women living further away from cancer
treatment centers.

Keywords: Adjuvant therapies, Bayesian shared spatial-component model, Breast cancer, Mammography screening,
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Background
Breast cancer is the most commonly diagnosed cancer
among Australian women and the second most com-
mon cause of cancer-related death for Australian females
[1, 2]. Improved survival outcomes over time among
women diagnosed with breast cancer have been observed
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across the developed world, due to a combination of
earlier diagnosis through mammography screening along
with improved treatment [1–6]. However, patient care
pathways can vary substantially to those recommended by
clinical practice guidelines [7–11].
Typically, breast cancer treatment involves surgery, with

the option of one or more types of adjuvant therapy.
Adjuvant therapy is additional treatment that is com-
monly given before or after surgery for breast cancer and
is designed to improve disease-specific symptoms and
overall survival. Adjuvant therapy includes radiotherapy,

© 2015 Hsieh et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-015-2527-2-x&domain=pdf
mailto: james.mcgree@qut.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Hsieh et al. BMC Public Health  (2015) 15:1204 Page 2 of 17

which is targeted at specific tissue/s, or chemotherapy
and hormonal therapy which are systemic treatments that
impact on the whole body.
Clinical practice guidelines for the treatment of breast

cancer depend on a number of factors including histolog-
ical type, tumour stage, age of the patient, the informed
decisions of themedical staff and the personal decisions of
the patient herself [8, 12, 13]. These last two components
mean that even if two women have the same clinical and
demographic characteristics, their final treatment strategy
may be different.
One potential measure of distinction between women is

where they live, and hence the relative access to different
types of adjuvant treatment. In Queensland, until 2011,
radiotherapy was only available in the south-east corner,
where the majority of the population lives, and Townsville
in the north-east. Since radiation treatment requires daily
administration across consecutive weeks, longer distances
to these centers can form a utilization barrier. In con-
trast, chemotherapy can be administrated at more loca-
tions, including general practices and hospital outpatient
facilities, while hormonal therapy can be administrated
via ongoing self-administered oral medication or one off
surgical treatment.
A number of international studies have demonstrated

that the use of various types of adjuvant therapies varies by
rural location [7, 14, 15], age [16], race [17, 18] and access
to services [18, 19]. However what is not understood is
how these variables impact on women’s selection of dif-
ferent types of adjuvant treatment, and indeed whether
a woman chooses to have any adjuvant therapy at all.
Indeed, there may be some common spatially-structured
underlying factors that influence a woman’s decision to
have adjuvant therapy that represents possible unmea-
sured influences including travel or financial burden and
stress.
Following this hypothesis, we can use shared com-

ponent models within a Bayesian framework [20, 21]
to quantify and examine the spatial variations of the
unmeasured shared component across the state. The
Bayesian shared component model has been shown to
be a useful and valuable extension over individual anal-
ysis [22] in a spatial setting. Because information is bor-
rowed between responses, the model is able to provide
more statistically robust estimates of spatial inequalities
in the choice of adjuvant therapies, even when num-
bers of people diagnosed in specific geographical area
are small. Using the clinical and recommended treat-
ment data from the publicly funded and population-based
BreastScreen Queensland (BSQ) in Australia, a Bayesian
shared spatial component model [20–22] was adopted for
the multiple treatment responses. The aim was to identify
common (and treatment-specific) spatial patterns across
geographic areas and patients’ demographic and clinical

characteristics in the intended use of adjuvant therapies
(both separately and in combination) for women with
screen-detected breast cancer.

Methods
Study cohort
The state of Queensland in Australia hosts more than four
million people in an area of nearly two million square
kilometres, spreading from the populous southeast cor-
ner and coastal areas to remote outback regions. The
study cohort was obtained by linking data from BSQ and
the Queensland Cancer Registry (QCR). This includes
women who were diagnosed with invasive breast cancer
by BSQ mammography screening from 1 January 1997 to
31 December 2007 and followed-up to 31 December 2008.
While specific measurements of data quality for BSQ and
QCR data are not available, both data collections have sys-
tematic validation processes in place to ensure that the
collection and recording of information is as accurate as
possible.
BSQ is the only population-based public health breast

cancer screening service in Queensland that provides free
2-yearly screening mammograms to women aged 40 and
over. BSQ is part of the BreastScreen Australia Program
established in 1991 by the Australian Government and the
State and Territory governments. In 2007, over 202,000
women from all age were screened by BSQ with a partic-
ipation rate for the 50 − 69 target age group of 56 % over
the two year period 2006 − 2007 [1]. Approximately 29 %
of invasive breast cancers were diagnosed by screening
throughout the study period 1997 − 2007.
Data linkage was undertaken by BSQ staff using a deter-

ministic matching process with over 90 % matching com-
pleteness. Ethics approval was granted by the Human
Research Ethics Committee of Queensland University
of Technology (approval number: 1100000036). Access
to the data was provided by Queensland Health under
the Public Health Act 2005 (RD003676). Since only de-
identified data was provided by the data custodians and
subsequently used in these analyses, no patient consent
was obtained.
As treatment information was only available for breast

cancers diagnosed by screening, the analysis included only
BSQ mammographic screen detected invasive breast can-
cer (ICD-O-3 code = C50) for women diagnosed at ages
40 to 89 years with information about the intended treat-
ment strategy agreed on by the patient and doctor. There
was no specific exclusion criteria in relation to women
diagnosed with multiple invasive breast cancers, of whom
there were less than 0.1 % in the cohort. Cases were
excluded when age at diagnosis, geographic location or
treatment information was missing, if cancer was identi-
fied at autopsy or by death certificate only, or if subjects
had a survival time of less than one day.
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Data description
The primary outcome variable included in the analysis
was the intended use of breast cancer adjuvant therapy,
being one or more of radiotherapy, chemotherapy and
hormonal therapy. No information was available regard-
ing treatment uptake or completion. The information
about intended treatment is routinely collected within
BSQ, unlike most other BreastScreen services in other
Australian states. For patients who chose to be treated
in a public facility, the treatment information was col-
lected by BSQ staff via access to the decisions and rec-
ommendations made at multi-disciplinary team (MDT)
meetings through Queensland Oncology Online (QOOL)
or by consulting breast-care nurses in the relevant depart-
ments. For BSQ patients who elected to be treated at
a private treatment facility, a request was made from
the treating surgeon for the intended adjuvant therapy
details.
A total of 6,357 women diagnosed with screen-detected

invasive cancers with information about the intended
treatment procedure (including women who chose to not
have any treatment) were included in the study. Of these
women, 5,251 of them intended to receive at least one
type of adjuvant therapy and more than a third (37.9 %)
intended to use both radiotherapy and hormonal therapy,
making this the most common choice (Table 1). A further
11.6 % (n = 607) intended to use all 3 adjuvant therapies.
Demographic variables extracted were age group at

diagnosis (40 − 49, 50 − 59, 60 − 69 and 70 − 89
years), Indigenous status (Indigenous, non-Indigenous
and unknown), marital status at time of diagnosis
(married, never married, widowed/divorced/separated or
unknown) and occupation (blue collar, white collar, pro-
fessional, not in the labour force and unknown). Clini-
cal variables were tumour stage at diagnosis (localised,
advanced or unknown), type of invasive tumour (inva-
sive ductal, tubular, lobular classical, other and unknown),
whether the tumour was diagnosed at the woman’s first
mammographic screening episode (yes/no), and intended
surgical procedure, irrespective of adjuvant therapy,

Table 1 The count and percentage for the adjuvant therapy
combination among the study cohort

Type of treatment Na (pct)

Radiotherapy only 800 (15.241 %)

Chemotherapy only 205 (3.90 %)

Hormonal therapy only 899 (17.12 %)

Radiotherapy and chemotherapy 511 (9.73 %)

Radiotherapy and hormonal therapy 1990 (37.90 %)

Chemotherapy and hormonal therapy 239 (4.55 %)

All three therapies 607 (11.56 %)

aNumber of patients

(classified into breast-conserving surgery, mastectomy, no
surgery or unknown).
Patients’ demographic and geographic information,

along with tumour stage, were sourced from QCR, while
all other clinical information, intended treatment, and
screening information were sourced from BSQ. Both mar-
ital status and occupation are sourced through the QCR
via hospital notifications and death certificates. No addi-
tional data cleaning or verification for these variables is
conducted within the QCR.
Geographic location information was based on the 2006

version of the Australian Standard Geographical Clas-
sification using Statistical Local Areas (SLAs), of which
478 cover Queensland without gap or overlap. SLAs are
spatial entities that are deemed to be relatively homoge-
neous in terms of the socio-economic characteristics of
the populations they contain. SLAs are often based on the
incorporated bodies of local governments and councils,
which are responsible for infrastructure and service provi-
sion at the local and regional level. Each SLAwas classified
according to socio-economic status (SES) as measured
by the Index of Relative Socio-economic Advantage and
Disadvantage (IRSAD) [23]. This index was categorized
into quintiles, with 1 representing most disadvantaged to
5 being most advantaged. A cancer-specific remoteness
index was used (TRAvel to Cancer Treatment (TRACT))
which measured the road travelling time between each
women’s residential SLA to the closest radiation facility
in 2006 using Geographical Information System software
and a street network database [24]. The TRACT was cat-
egorised into <1, 1-<2, 2-<4, 4-<6 and 6 or more hours.
While there was some change in this measure over the
study period reflecting new facilities being commissioned,
it was decided to base distances on the 2006 data for
consistency with the area-level SES and to reduce model
complexity. Sensitivity analyses (not published) using dif-
ferent year selections showed little impact on the final
results.
The observed number of screen-detected invasive cases

was mapped to the 2006 SLA boundaries based on suburb
and postcode of residence (see Fig. 1). There are 61 SLAs
without patients.

Statistical model
For a Bayesian shared spatial component model, suppose
Yijk is the indicator (0/1) of treatment k, k = 1 (radiother-
apy), 2 (chemotherapy), 3 (hormonal therapy) for woman
j in SLA i, i = 1, 2, . . . , 478, that follows a Bernoulli
distribution, as:

Yijk ∼ Bernoulli(pijk), (1)

where pijk is the probability of the jth women in SLA i hav-
ing treatment k and is described with a logistic regression
model as:
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Observed number of cases
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Fig. 1 Observed number of screen-detected invasive breast cancer at each SLA across QLD, 1997–2007

logit(pijk) = αk + βkXij + uik + ηik , (2)

where αk is the treatment-specific intercept; βk is the
vector of regression coefficients for each treatment
(k) corresponding to the predictor variables Xij; and
uik and ηik represent spatially unstructured and struc-
tured random effects respectively, for the ith SLA and
treatment k.
In this shared component model, the spatially struc-

tured random effects (ηik) are partitioned into compo-
nents which are shared and specific for each treatment to
identify spatial patterns in the residual variation as:

ηi1 = δ1φi + si1
ηi2 = δ2φi + si2
ηi3 = δ3φi + si3, (3)

where the terms δk are the weight, or scaling parameters,
that quantify the relative contribution of the common spa-
tial component φi in each treatment [25]; φi the shared
spatial component is a latent variable with spatial struc-
ture that is shared among all adjuvant therapies and sik
are the treatment-specific spatial components. To ensure
identifiability, a standard constraint of requiring the prod-
uct of δk to be equal to 1 is applied [25, 26].

The prior distribution for the intercepts αk and regres-
sion coefficients βk were assigned a zero mean Gaussian
distribution with a Gamma(0.005, 0.5) hyperprior distri-
bution, parameterized in terms of the shape and inverse
scale parameters, for the precision (=1/variance). These
flat prior distributions were chosen with no knowledge
about the relationship between the response and predic-
tors. The unstructured random effects uik were described
by a multivariate Gaussian prior distribution [21] with
a precision matrix � ∼ Wishart(Q, 5) where Q is a
3 × 3 identity matrix to allow for correlation among the
treatments. The logarithms of the weights were assigned
Gaussian(0, 5.9) (precision=5.9) prior distributions [27],
and following the Besag et al. [28] framework the shared
and treatment-specific spatially structured components
were assigned intrinsic conditional autoregressive (CAR)
prior distributions with precision hyperprior distribu-
tions of Gamma(0.5, 0.005) [29, 30]. A sum-to-zero con-
straint was imposed on the random effects with intrinsic
CAR prior distributions and the neighbours of SLA i
were defined as the ones sharing a common geographical
boundary.
The odds ratio is the odds of a particular factor com-

pared with the odds of intended adjuvant therapies, with
a larger odds ratio indicating the factor associated with
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higher odds of choosing particular adjuvant therapies.
The shared effect odds ratio can be interpreted as the
relative strength of the unobserved spatially related fac-
tors associated with a breast cancer patient’s choice of
adjuvant therapy. These odds ratios can be presented
as a thematic map to highlight the relationship between
shared treatment effects and geographic location. A high
shared effect odds ratio exp(φi) indicates that women
living in SLA i are more likely to access treatment
facilities.

Bayesian inference
Bayesian inference of the shared spatial component
model was performed using Markov chain Monte Carlo
(MCMC) algorithms as implemented in WinBUGS v1.4.3
[31] and interfaced with R v2.14.1 [32]. The full cohort
Bayesian shared spatial component model was run with
2 chains for 17,500 iterations: 10,000 of the iterations
were discarded as burn-in and a thinning factor of three
was adopted, so that 5,000 iterations were retained for
inference. The sub-cohort models were run with 37,500
iterations and a thinning factor of 3 to facilitate conver-
gence for the smaller data samples, with the first 30,000
iterations discarded as burn-in.
Model convergence was examined using a range of diag-

nostics including the Gelman-Rubin statistics [33], trace
plots, density plots and autocorrelation plots.

Model evaluation
The Deviance Information Criterion (DIC) was used to
determine how well a model fits the data, with smaller
values indicating better model fit [34]. The DIC is calcu-
lated as the sum of the posterior mean of the deviance and
an estimate of the effective number of parameters (pD),
where smaller pD values indicate less complexity in the
fitted model.
Posterior predictive checks (PPC) [34] were used to

examine the adequacy of the model predictions compared
with the observed data. These determine the percentage
of the observed data within the 95 % credible interval of
the corresponding posterior predictive distribution. For
a given model, the posterior predictive distribution was
formed by simulating data from the likelihood, for a given
individual, based on a random selection of posterior sam-
ples. The estimated posterior odds ratio (here, posterior
medians) was considered to be substantively different
from the baseline if the 95 % credible interval (CrI) did not
include unity [35–37].
Figures of SLA level QLD maps, with a set of common

fixed cut-off values (<0.77, 0.91, 1.10, 1.30, 1.30+) [38],
were used to display the spatial odds ratio (exp(φi)) shared
by the three adjuvant therapies to assess the shared com-
ponent effect. In addition, maps of the treatment-specific
spatial effects (exp(u+s)) were also generated to assess the

spatial variation in each adjuvant therapy. Only the sum
of spatially structured s and unstructured random effect
u is well-identified by the data [39], so it is common to
map the sum of the spatially structured and unstructured
random effects in shared component models (e.g. Earnest
et al. [40]).
Maps of posterior probabilities that the spatial odds

ratios exceeded unity were generated using the threshold
rule proposed by Richardson et al. [41] to identify SLA
with probability higher than 0.8 (respectively lower than
0.2), which can be considered as having an excess odds
ratio (respectively a low odds ratio) with little uncertainty.
The relative weight or influence of the common spatial
effect between two therapies was measured as the ratio of
two corresponding weights, such as δ2/δ1, δ3/δ1 and δ3/δ2,
where δ1 is the weight for radiotherapy, δ2 is the weight for
chemotherapy and δ3 is the weight for hormonal therapy.
The box plots are computed using the posterior sam-

ples for the respective parameters and reflect the general
patterns in the estimated posterior median shared spatial
effect across the geographic category of travel time to can-
cer care facilities and socio-economic status. These plots
are compared with the Queensland average (i.e. above or
below the vertical red line of QLD average = 1) within
each geographic category, so should not be compared
against one another. The box plots are in log-scale and the
rectangular box within the box plot contains 50 % of the
estimates. Two percentage columns for each geographic
category were also included in the box plots. The left col-
umn represents the percentage of SLAs with less than
20 % posterior probabilities that the spatial odds ratios
exceeded unity. The right column presents the percentage
of SLAs with more than 80 % probabilities that the spatial
odds ratios exceeded unity.
Finally, two other assessments of model robustness were

made. First, the sensitivity of the model to the choice of
priors was evaluated by assessing the change in the pos-
terior parameter estimates to changes in the hyperparam-
eters of selected prior distributions. Secondly, the model
itself was challenged by proposing a range of alterations to
the baseline model and evaluating resultant changes in the
posterior parameter estimates with corresponding 95 %
CrI and model DIC values.

Model formulation
Seven alternative models were created based on the base-
line Bayesian shared spatial component model (A0) as
described by Eqs. 2 and 3. The full cohort data were
used to examine each of these alternative models as listed
below:

A1. The spatially unstructured random effect u for each
adjuvant therapy was assigned an independent
Gaussian prior distribution.
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A2. A second shared component was added and shared
between radiotherapy and chemotherapy.

A3. A second shared component was added and shared
between radiotherapy and hormonal therapy.

A4. A second shared component was added and shared
between chemotherapy and hormonal therapy.

A5. The spatially unstructured random effect u was
removed.

A6. The spatially structured random effect s was
removed.

A7. The approximates non-informative or flat priors of
zero mean Gaussian distribution with a constant
low precision of 0.0001 was assigned to the
intercept (αk) and regression coefficients (βk).

Results
In this section, the results of fitting the baseline model
A0 and the corresponding inferences are described in
detail. The results of the other models A1 to A7 are then
described and compared to the baseline results.

Baseline model results
The Bayesian shared spatial component model (previ-
ously described) leads to different posterior estimations
of the covariates effect depending on the intended treat-
ment (Table 2). For all treatments, there was a suggested
trend of decreased use with increasing travel time. This
was particularly marked for radiotherapy when travel time
to the closest radiation facility was above 4 h compared
to less than one h (OR = 0.41, 95 % CrI: [0.23,0.74]).
Intention to use radiotherapy or hormone therapy was
similar across socio-economic status, while the sugges-
tion of decreasing intention to use chemotherapy in more
disadvantaged areas was compromised by imprecise esti-
mates with wide credible intervals. As age increased there
was clear evidence of decreased use of chemotherapy
but increased use of hormonal therapy. There appeared
to be less use of radiotherapy with increasing age, but
only the oldest age group had substantively lower odds
(Table 2). Women diagnosed with advanced stage breast
cancer were more likely to intend to undertake radio-
therapy and chemotherapy and less likely to choose
hormonal therapy. For women with an unknown stage
tumour, the intention to use chemotherapy was substan-
tively higher than for localised tumour patients. Members
of the study cohort diagnosed with breast cancer in their
first attendance at mammography screening were gener-
ally substantively less likely to select any of the adjuvant
therapies than women who had attended previous mam-
mograms before their cancer diagnosis. The intended
choice of surgical procedure had an obvious influence
on the choice of adjuvant therapy, where patients choos-
ing to have mastectomy were substantively less likely to
have radiotherapy or hormonal therapy before or after

the surgery, but were substantively more likely to have
chemotherapy.
Table 2 also shows the estimated posterior median value

(and its uncertainty) of the relative influence, or level
of importance, of the shared component effect between
adjuvant therapies. The shared effect had the greatest rel-
ative influence (highest level of importance) to both radio-
therapy and hormonal therapy, and had least influence
(lowest level of importance) on chemotherapy.
There was a pattern of increasing shared component

effect toward regions of concentrated radiation facilities
in the north-east (Townsville) and south-east (Brisbane)
of Queensland (Fig. 2a). Plots of the posterior proba-
bility of excess shared effect are shown in Fig. 3. From
Fig. 4, there is an indication of geographic differences in
the posterior shared component effect. Not only do many
of the SLAs within less than 1 h travel time have larger
median values, but many of these have probabilities above
80 % of genuinely being above the Queensland average.
Likewise, the lower median values for many of the SLAs
in areas with more than six h of travel time was also
supported by the posterior probabilities suggesting the
majority have values below the Queensland average. Sim-
ilarly, for the socio-economic status there is an indication
ofmore affluent regions having higher values of the shared
component effect than the Queensland average. This was
also demonstrated by the SLA percentage columns as
more affluent areas hadmuch higher percentage of SLA in
the right hand column than the left hand column. There
was no obvious radiotherapy-specific and hormonal ther-
apy spatial effect pattern across Queensland as shown in
both Figs. 5 and 6 and both Figs. 7 and 8 respectively.
The chemotherapy-specific spatial effect plots (Figs. 9
and 10) shows that regions with higher spatial variation
appear to be around south-east of Queensland. Since the
95 % credible intervals include zero under the baseline
model A0, it can be argued that there is no substan-
tive correlation between adjuvant therapies described by
the treatment-specific unstructured random effects (see
Additional file 1: Table S1).
The analysis was repeated by cohort in each broad age

group at diagnosis and tumour stage categories to fur-
ther examine the variation in the shared component. The
analysis of each separate cohort was not adjusted for the
corresponding predictor variable; for instance, the model
analysis of the 40 − 49 age group cohort does not adjust
for age at diagnosis variable but is adjusted for all other
variables specified in the Data description section above.
When the study cohort was analysed by age group and
tumour stage at diagnosis (Table 3), radiotherapy and
hormonal therapy remained the most influential treat-
ments on the shared component in the 50 − 59 years
age group and chemotherapy was still the least influen-
tial. In the 70 − 89 years age group, all adjuvant therapies
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Table 2 Estimated posterior odds ratios of patient characteristics associated with the intended adjuvant therapies, and relative
weights between therapies

Median posterior odds ratios [95 % CrIa]

Factors N Radiotherapy Chemotherapy Hormonal Therapy

Road travelling time (TRACT)

< 1 h 4514 1.00 1.00 1.00

1− < 2 h 502 0.88 [0.56, 1.39] 0.74 [0.46, 1.19] 0.94 [0.68, 1.31]

2− < 4 h 750 0.66 [0.42, 1.04] 0.91 [0.58, 1.45] 0.97 [0.70, 1.35]

4− < 6 h 317 0.41 [0.23, 0.74] 0.44 [0.25, 0.81] 0.74 [0.49, 1.08]

6 or more h 274 0.41 [0.24, 0.73] 0.60 [0.34, 1.07] 0.71 [0.48, 1.04]

Socio-economic status (IRSAD)

Quintile 1 Most disadvantaged 817 0.94 [0.65, 1.36] 0.73 [0.50, 1.04] 1.01 [0.77, 1.32]

Quintile 2 1458 0.80 [0.56, 1.12] 0.86 [0.62, 1.19] 0.91 [0.71, 1.15]

Quintile 3 1762 1.03 [0.76, 1.39] 0.91 [0.69, 1.20] 1.01 [0.81, 1.26]

Quintile 4 1539 0.92 [0.68, 1.24] 0.93 [0.70, 1.22] 1.03 [0.83, 1.28]

Quintile 5 Most advantaged 781 1.00 1.00 1.00

Age at diagnosis (years)

40–49 933 1.07 [0.85, 1.34] 1.85 [1.51, 2.27] 0.83 [0.71, 0.98]

50–59 2064 1.00 1.00 1.00

60–69 2074 0.86 [0.72, 1.03] 0.50 [0.42, 0.60] 1.20 [1.06, 1.37]

70–89 1225 0.36 [0.29, 0.44] 0.12 [0.09, 0.16] 1.39 [1.18, 1.63]

Indigenous status

Non-Indigenous 5467 1.00 1.00 1.00

Indigenous 63 1.66 [0.83, 3.49] 1.16 [0.61, 2.17] 1.33 [0.89, 2.04]

Indigenous unknown 766 0.87 [0.69, 1.10] 0.40 [0.30, 0.53] 1.06 [0.89, 1.26]

Marital status

Married 4150 1.00 1.00 1.00

Never married 305 0.78 [0.57, 1.09] 0.79 [0.56, 1.10] 0.85 [0.68, 1.08]

Widowed/Divorced/Separated 1665 0.83 [0.71, 0.99] 0.95 [0.80, 1.14] 1.05 [0.92, 1.19]

Marital unknown 176 0.91 [0.59, 1.44] 1.05 [0.62, 1.73] 0.91 [0.67, 1.24]

Tumour stage

Localised (Stage I) 4081 1.00 1.00 1.00

Advanced (Stage II, III, IV) 2139 2.43 [2.03, 2.90] 11.21 [9.60, 13.05] 0.87 [0.77, 0.97]

Stage unknown 76 0.59 [0.32, 1.08] 2.83 [1.42, 5.42] 1.24 [0.84, 1.88]

Occupation

Blue collar 245 1.71 [1.18, 2.48] 1.03 [0.71, 1.48] 0.98 [0.76, 1.27]

White collar 907 1.48 [1.18, 1.87] 1.19 [0.96, 1.47] 1.11 [0.95, 1.31]

Professional 1061 1.49 [1.21, 1.84] 1.38 [1.13, 1.71] 1.09 [0.94, 1.28]

Not in the labour force 2631 1.00 1.00 1.00

Unknown 1452 1.28 [1.06, 1.55] 1.05 [0.85, 1.29] 1.27 [1.10, 1.47]

Invasive tumour type

Invasive ductal 4074 1.00 1.00 1.00

Tubular 167 0.48 [0.33, 0.71] 0.27 [0.12, 0.55] 0.91 [0.68, 1.21]

Lobular classical 506 0.95 [0.74, 1.22] 0.73 [0.56, 0.95] 1.72 [1.40, 2.12]

Other 434 0.73 [0.56, 0.96] 0.77 [0.57, 1.03] 0.94 [0.78, 1.15]

Unknown 1115 0.81 [0.67, 0.98] 0.69 [0.57, 0.84] 0.70 [0.61, 0.80]
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Table 2 Estimated posterior odds ratios of patient characteristics associated with the intended adjuvant therapies, and relative
weights between therapies (Continued)

First screen diagnosed

Yes 1508 0.81 [0.69, 0.96] 0.79 [0.66, 0.94] 0.72 [0.63, 0.82]

No 4788 1.00 1.00 1.00

Surgery

Breast-conserving surgery 4255 1.00 1.00 1.00

Mastectomy 2009 0.03 [0.02, 0.03] 1.63 [1.40, 1.91] 0.86 [0.76, 0.98]

No surgery 15 0.15 [0.04, 0.44] 2.26 [0.76, 6.61] 0.86 [0.49, 1.44]

Unknown 17 0.18 [0.06, 0.47] 1.70 [0.64, 4.71] 1.10 [0.66, 1.89]

Relative weight of shared component

Radiotherapy 1.00 — —

Chemotherapy 0.57 [0.36, 0.84] 1.00 —

Hormonal therapy 0.90 [0.68, 1.17] 1.59 [1.09, 2.47] 1.00

PPC 0.9993

aAbbreviations: CrI Credible interval, N Number of patients, TRACT Travel to cancer treatment, IRSAD Index of relative socio-economic advantage and disadvantage, PPC
Posterior predictive check

were equally influential on the shared component. The
analysis by cohort of localised tumour stage at diagnosis
showed a relative weight pattern similar to that found for
the 50 − 59 year old cohort, whereas the shared compo-
nent was equally influenced by any of the studied adjuvant
therapies in advanced tumour patients.
The trends for the shared component effect in each age

group and tumour stage (see Additional file 2: Figure S1–
S6) were all similar to the map shown in Fig. 2 which has

an increasing effect towards the north-east (Townsville)
and south-east (Brisbane) regions of Queensland. In gen-
eral, both road travelling time and socio-economic status
box plots for the posterior shared component effect pro-
portion in each sub-cohort model (age group and tumour
stage categories) have patterns similar to the plots in Fig. 4
(see Additional file 2: Figure S7–S8).
With respect to model checking, the model converged

with Gelman-Rubin statistics very close to unity for
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Fig. 2 Posterior odds ratio for the shared component effect among adjuvant therapies at SLA level, 1997–2008. Estimated posterior odds ratio for
the 478 SLA shared spatial effect to the intended adjuvant therapies among all study cohort across QLD. Map (a) with median value of the shared
spatial effect separated into quintiles (<0.77, 0.91, 1.10, 1.30, 1.30+) and a line plot (b) for the ranked SLA median shared spatial effect values with
95 % credible interval
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Fig. 3 Posterior probability of excess shared component effect among adjuvant therapies at SLA level, 1997–2008. Map (a) posterior probability of
excess shared component effect (less than 0.2, 0.2–0.8 and greater than 0.8) and a line plot (b) approximate number of ranked SLAs with excess
shared component effect in QLD

all parameters. Acceptable convergence was further
supported by the trace and autocorrelation plots. In addi-
tion, the posterior predictive checks (PPC) for the base-
line Bayesian model also gave values very close to unity
(Table 2), which confirmed that the model fitted the data
adequately.

Sensitivity analysis was performed to evaluate the
choice of the priors in the model. The precision param-
eters of α, β , s and φ were given Gamma(0.5, 0.5) and
Gamma(0.5, 0.05) hyperprior distributions, and a less
informative normal prior for log(δ), with a precision of
2.9, was also considered. The results were insensitive
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Fig. 5 Posterior odds ratio for the radiotherapy-specific spatial effect at SLA level, 1997–2008. Estimated posterior odds ratio for the 478 SLA
radiotherapy-specific spatial effect among all study cohort across QLD. Map (a) with median value of the radiotherapy-specific spatial effect
separated into quintiles (<0.77, 0.91, 1.10, 1.30, 1.30+) and a line plot (b) for the ranked SLA median radiotherapy-specific spatial effect values with
95 % credible interval

to the prior choice for all fixed effects, shared spa-
tial effects, and treatment-specific effects for all adju-
vant therapies, except for the hormonal therapy whose
treatment-specific spatial effect was slightly sensitive to
the choice of precision. This indicates that there is

sufficient information in the data sources to learn about
the fixed effects β , shared spatial component φ and the
treatment-specific spatial components s. The weight δ

for all the adjuvant therapies is insensitive to the less
informative δ prior (see Additional file 2: Figure S9).
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Fig. 6 Posterior probability of excess radiotherapy-specific spatial effect at SLA level, 1997–2008. Map (a) posterior probability of excess
radiotherapy-specific spatial effect (less than 0.2, 0.2–0.8 and greater than 0.8) and a line plot (b) approximate number of ranked SLAs with excess
radiotherapy-specific spatial effect in QLD
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Fig. 7 Posterior odds ratio for the hormonal-specific spatial effect at SLA level, 1997–2008. Estimated posterior odds ratio for the 478 SLA hormonal-
specific spatial effect among all study cohort across QLD. Map (a) with median value of the hormonal-specific spatial effect separated into quintiles
(<0.77, 0.91, 1.10, 1.30, 1.30+) and a line plot (b) for the ranked SLA median hormonal-specific spatial effect values with 95 % credible interval

However, the weight for hormonal therapy showed some
sensitivity to the hyperprior choice of the treatment-
specific spatial effects s. The less informative precision
distribution of Gamma(0.5, 0.5) for s caused the 95 % CrI
of the relative weight ratio between hormonal therapy

and chemotherapy (δ3/δ2) to change from substantive to
not substantive. The more informative precision prior will
force the s to be close to zero, which suggests that by
excluding s, the hormonal therapy treatment-specific spa-
tial variation was then forced into the shared component.
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Fig. 8 Posterior probability of excess hormonal-specific spatial effect at SLA level, 1997–2008. Map (a) posterior probability of excess
hormonal-specific spatial effect (less than 0.2, 0.2–0.8 and greater than 0.8) and a line plot (b) approximate number of ranked SLAs with excess
hormonal-specific spatial effect in QLD
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Fig. 9 Posterior odds ratio for the chemotherapy-specific spatial effect at SLA level, 1997–2008. Estimated posterior odds ratio for the 478 SLA
chemotherapy-specific spatial effect among all study cohort across QLD. Map (a) with median value of the chemotherapy-specific spatial effect
separated into quintiles (<0.77, 0.91, 1.10, 1.30, 1.30+) and a line plot (b) for the ranked SLA median chemotherapy-specific spatial effect values with
95 % credible interval

Other model results
All the alternative models (A1–A7) results were assessed
in the same way as the baseline model A0 to facilitate
comparison (see Additional file 1: Table S3–S9). Poste-
rior estimates of the covariate effects for each intended

treatment were mostly similar to the baseline model A0.
All of these alternative models (A1–A7) had similar sub-
stantial posterior estimates for part of the variable of
interest compared to the baseline model A0, such as
socio-economic status, age at diagnosis, Indigenous
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Fig. 10 Posterior probability of excess chemotherapy-specific spatial effect at SLA level, 1997–2008. Map (a) posterior probability of excess
chemotherapy-specific spatial effect (less than 0.2, 0.2–0.8 and greater than 0.8) and a line plot (b) approximate number of ranked SLAs with excess
chemotherapy-specific spatial effect in QLD
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Table 3 Relative weight of shared component between
adjuvant therapies for separate cohort model adjusted for all
other predictor variables

Median posterior relative weights [95 % CrIa]

Radiotherapy Chemotherapy Hormonal therapy

At age 40–49

Radiotherapy 1.00 — —

Chemotherapy 0.57 [0.31, 0.94] 1.00 —

Hormonal therapy 0.86 [0.57, 1.29] 1.51 [0.92, 2.66] 1.00

At age 50–59

Radiotherapy 1.00 — —

Chemotherapy 0.40 [0.23, 0.65] 1.00 —

Hormonal therapy 0.87 [0.63, 1.19] 2.16 [1.36, 3.63] 1.00

At age 60–69

Radiotherapy 1.00 — —

Chemotherapy 0.58 [0.31, 0.95] 1.00 —

Hormonal therapy 0.81 [0.58, 1.11] 1.39 [0.84, 2.62] 1.00

At age 70–89

Radiotherapy 1.00 — —

Chemotherapy 0.92 [0.48, 1.55] 1.00 —

Hormonal therapy 0.74 [0.50, 1.08] 0.80 [0.48, 1.55] 1.00

Localised tumour

Radiotherapy 1.00 — —

Chemotherapy 0.34 [0.18, 0.58] 1.00 —

Hormonal therapy 0.81 [0.61, 1.05] 2.42 [1.39, 4.47] 1.00

Advanced tumour

Radiotherapy 1.00 — —

Chemotherapy 0.86 [0.63, 1.18] 1.00 —

Hormonal therapy 0.86 [0.61, 1.17] 0.99 [0.72, 1.41] 1.00

aCredible interval

status, marital status, tumour stage, occupation, invasive
tumour type, first screen diagnosed and the intended sur-
gical procedure. Here we describe the key differences
between the alternative model results compared to the
baseline model A0.
Compared with the baseline model A0, fitting model

A1 (assigning independent Gaussian distribution to the
unstructured random effects ‘u’) resulted in no substan-
tial change to the posterior estimate of the fixed effects,
the relative weight between treatments, or the shared and
treatment-specific spatial components (see Additional
file 1: Table S3). The key difference was that this model
had poorer fit to the data with a substantively larger DIC
value compared to the baseline model A0 (see Additional
file 1: Table S2).
Of the three alternative models A2, A3 and A4 with a

second shared component allocated to two out of three
adjuvant therapies, all had similar posterior estimates to

the baselinemodel A0, with the second shared component
explaining only a very little amount of spatial variation
(see Additional file 1: Table S4–S6). The A3 model, with
the second shared component allocated to radiotherapy
and hormonal therapy, had the key difference that all the
relative weights for the first shared component had a 95 %
CrI that included unity, which is substantially different
to the baseline model A0. The fit of models A2 and A4
was poorer than the baseline model A0 with higher DIC
values, while model A3 had a similar DIC value to the
baseline model A0 (see Additional file 1: Table S2).
As for the model (A5) without a spatially unstructured

random effects term ‘u’, the comparison with the base-
line model A0 showed similar posterior estimates of the
regression coefficients of interest (see Additional file 1:
Table S7). However, the excess treatment-specific spatially
structured error term ‘s’ increased, which in turn inflated
the proportion of SLAs with excess odds ratios (com-
puted as exp(s) under this model). The increase was most
obvious for the hormonal therapy specific spatially struc-
tured random effect which had the proportion of SLAs
with excess odds ratios increase from 3 % in the baseline
model to 28 % in model A5. Model A5 had a substan-
tially lower DIC value of 18,254 than the baseline model
(DIC= 18,364), indicating better model fit (see Additional
file 1: Table S2).
Under model A6, without a spatially structured random

effects term ‘s’, the posterior estimates changed substan-
tially within the TRACT variable for the radiotherapy and
chemotherapy. Patients in the TRACT categories of more
than 2 h were substantially less likely to use radiotherapy
compared with those who only needed to travel within an
hour to a treatment facility (see Additional file 1: Table
S8). The intention to use chemotherapy was in general
substantially less in all TRACT categories compared to
those with less than an hour of travelling time, except the
2− < 4 h category had similar odds ratio to the refer-
ence category. One additional difference to the baseline
model A0 is that the most disadvantaged socio-economic
(Quintile 1) patients were substantially less likely to
intended to use chemotherapy than the most advantaged
(Quintile 5) patients. This alternative model also had the
shared component capture more spatial variation in the
absence of ‘s’ as compared to the baselinemodel, and there
was virtually no excess treatment-specific spatial variabil-
ity captured by the unstructured random effect ‘u’. Model
A6 did not fit the data better than the baseline model
with a substantially higher DIC value (see Additional file 1:
Table S2).
The use of approximate non-informative or flat pri-

ors with relatively small constant values for the precision
(Normal(0, 0.0001)) in model A7 gave substantively dif-
ferent results in the posterior estimate for the TRACT
variable across all adjuvant therapies as compared to the
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baseline model. In this alternative model, all three thera-
pies presented a decreasing trend of posterior odds ratios
with increasing road travelling time (TRACT), with radio-
therapy and hormonal therapy had substantially lower
odds ratios for those who had more than 2 h of trav-
elling time, and chemotherapy had substantively lower
odds ratios for patients with more than 4 h of travel-
ling time (see Additional file 1: Table S9). In addition, the
95 % CrI of relative weight between chemotherapy and
hormonal therapy had changed from substantial in the
baseline model to not substantial in model A7. This flat
prior model (A7) had a DIC value of 18,367 with pD= 422
that was not substantially different to the baseline model
(DIC = 18,364, pD= 417) (see Additional file 1: Table S2).

Discussion and conclusions
To the best of our knowledge, this is the first study to
examine the shared spatial disparities of women’s inten-
tion to use adjuvant therapy after being diagnosed with
screen-detected breast cancer using Bayesian spatial mod-
elling techniques. In this study we utilised a shared spatial-
components modelling strategy to quantify what factors
influence a woman’s intended adjuvant treatment for
screen-detected breast cancer in Queensland. The anal-
ysed results were concluded based on the baseline model
A0, unless otherwise specified. We found that the inten-
tion to use adjuvant therapy varied by geographical loca-
tion, with women living in regions having closer access to
a cancer treatment facility being more likely to intend to
use adjuvant therapy than those who lived further away.
A clear increased posterior median shared spatial effect
was observed towards the north-east (Townsville) and
south-east (Brisbane) regions of Queensland with little
uncertainty, supported by the posterior probability map.
Previous studies have shown that the breast cancer

treatment that a woman choose to undertake is influ-
enced by ease of access to treatment [7, 14, 15, 19]. Our
analysis, based on the intended treatment, found similar
geographic differentials. This suggests that womenmay be
making decisions regarding their treatment strategy based
on perceived barriers to treatment, not simply an inabil-
ity to take up their intended option. It is not clear whether
this reflects the decision making of women themselves,
or the recommendations made by their referring doctor,
and the lack of actual treatment information makes more
substantive interpretation impossible.
The use of a shared spatial component is one of the

appealing features of the model as it permits isolation of
clusters of areas of common variation for the three adju-
vant therapies. This latent variable which is shared among
all adjuvant therapies is spatially structured, following a
specific intrinsic conditional autoregressive (CAR) model.
This means that the shared component acts as a surro-
gate for some unobserved spatially structured factors that

may explain the geographical variations of the usage of
the three adjuvant therapies (radiotherapy, chemotherapy,
hormonal therapy) of interest. Given the strong associa-
tion with distance to tertiary hospitals, it appears that the
shared term reflects the ease of access to treatment facil-
ities. This could also reflect the several barriers or con-
siderations associated with undergoing treatment, such
as waiting time to treatments, burden of travel, being
away from home, lack of closeness to family and friends,
work and family demands, financial burden, feeling of
being a burden on others, cost-effectiveness of treatments
and patient’s medication-taking behaviour, as indicated
by previous studies [8, 12, 42, 43]. Thus the shared spa-
tial effect maps are consistent with an increasing ease of
access to adjuvant treatment facilities towards the north-
east (Townsville) and south-east (Brisbane) regions of
Queensland. In addition to the shared component, there
remain some potential sources of treatment-specific effect
for chemotherapy in the data. However, at present, it is
unclear what is causing this finding.
While the shared effect has a similar trend for the entire

study cohort as well as the age and tumour stage at diag-
nosis subgroups, the patterns of relative weight, or level
of importance, of the shared component between adju-
vant therapies were not all the same. The ease of access
to treatment facilities barrier seems to be more influential
in the sub-cohort of age 50 − 59 years or with localised
tumour stage than any other subgroups. No such differ-
ences in relative weight among adjuvant therapies were
detected for the higher risk cohorts of age 70 − 89 or
with advanced stage tumour. This could suggest that the
higher risk cohorts, with more urgent need to have treat-
ment, would be more likely to overcome common barriers
between adjuvant therapies. Meanwhile, the absence of
evidence of a difference in relative weight among adju-
vant therapies could also be due to a lack of signal in the
data since only sub-cohorts of patients are considered.
The recommendation for hormone therapy is not deter-
mined by tumour type, stage or surgery but by ER/PR
status, which is independent of age [44, 45]. As such, our
finding of a fairly similar influence of the shared spatial
effect between hormonal therapy and radiotherapy was
surprising. While it could be due to the effect of admin-
istering hormonal therapy via surgical treatment, rather
than ongoing self-administered oral medication, the abil-
ity to detect differences in relative weight among adjuvant
therapies may be compromised due to a lack of more
specific information about the intended treatment.
The relationship between patient characteristics and the

intended choice of adjuvant therapies is consistent with
most other international studies. The intended choice
of adjuvant therapies was not associated with socio-
economic status; this is similar to the British Columbia
study [46] which found no significant differences in the
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use of chemotherapy or hormonal therapy by popula-
tion size of local health authorities, while the use of
chemotherapy in the United States of America seems to be
influenced by socio-economic factors like poverty among
patients ages 65 − 69 years [18]. A more recent study by
Ursem et al. [47] also suggested that low income patients
may have low use of adjuvant endocrine therapy. The find-
ing of reduced likelihood of choosing radiotherapy with
increased travel time in this study supports other studies
in the United States of America [15, 16], which showed
that rural area patients were less likely to receive radio-
therapy following lumpectomy or mastectomy than their
urban counterparts. Both radiotherapy and chemotherapy
had a decreased likelihood of being chosen with increased
age at diagnosis, but this relationship was reversed for hor-
monal therapy. This relationship between a patient’s age
and the use of radiotherapy in Queensland is again consis-
tent with studies in the United States of America [15, 16]
that found increasing age was associated with decreased
likelihood of receiving post-mastectomy radiation or post-
lumpectomy radiation. Radiotherapy and chemotherapy
were also more likely to be the choice for advanced stage
tumour patients, but this cohort was less likely to consider
hormonal therapy. Some published evidence [13, 46, 48]
has shown that women living in remote areas tended to
favour mastectomy, which may impact on the selection of
adjuvant therapies to prevent the need to travel to a can-
cer treatment center that is far away. This phenomenon
is particularly strong for the selection of radiotherapy
and marginally influential for hormonal therapy, but the
selection of chemotherapy has an opposite relationship.
The alternative models (A1–A7) provided some dif-

ferent results as compared to the baseline model A0.
By using an independent Gaussian distribution on the
unstructured random effect ‘u’, the results from model A1
were not substantially different to those of the baseline
model, despite a poorer fit to the data (larger DIC value).
This suggests the use of a simple structure prior distri-
bution only on the unstructured random effects reduces
the model’s performance in fitting the data. For the three
alternative models A2, A3 and A4, the second shared
component explained only a very small amount of the
spatial variability. This spatial variability was likely to be
explained as part of the treatment-specific components in
the baseline model. This implies that the model does not
require an additional shared component.
A model without a spatially unstructured random

effects term ‘u’ (A5) and a model without a spatially
structured random effects term ‘s’ (A6) was examined.
Compared with the baseline model which included both
of these terms (A0), we found that model A5 gave sim-
ilar posterior estimates of the effects (regression coeffi-
cients) of interest, but the spatially structured error term
increased (presumably to accommodate the lack of the

unstructured error term), which in turn inflated the pro-
portion of SLAs with excess odds ratios (computed as
exp(s) under this model). This inflation is interesting,
since it implies that the single (spatial) error term is larger
than the two error terms in the baseline model. Hence this
model appears to draw out some of the partially spatial
information that is incorporated in the covariates under
the baseline model, in order to provide an equivalent fit to
the data. Since we do not feel that this behaviour is opti-
mal, and that including the spatially unstructured random
effect term had better theoretical grounds than excluding
it, we preferred to focus on the results of this A0 model
rather than the more speculative model A5. Under model
A6, the excess spatial information that was attributed to
the spatial random effects term in the baseline model
appeared to be attributed instead to the stronger spatial
covariates, in particular TRACT and the corresponding
shared component. Interestingly, under this model the
TRACT regression parameters indicated that all of the
treatment choices were affected by distance from the
treatment centre. This differs from the results of the base-
line model, which were that TRACT was a substantive
factor only in the choice of radiotherapy. Thus it seems
here that the lack of a specific spatial term in the model
induces greater spatial variation in the parameters that
have a strong spatial signal. This has interesting impli-
cations for spatial modelling in general to support the
inclusion of spatial random effect, and this case study in
particular. We have also investigated a seventh alternative
model (A7), which approximates non-informative or flat
priors by imposing a relatively small constant value for the
precisions for these prior distributions. This resulted in
substantially different results as compared to the baseline
model, where model A7 had a decreased odds ratios trend
in the TRACT variable with increasing travelling for all
the intended adjuvant therapies. The universal decreasing
trend of treatment choice with increasing travel time to
closest radiation facility for all adjuvant therapies may be
unrealistic at least for hormonal therapy. However, given
the limited data in the QLD context, this is difficult to
justify.
This study had several limitations resulting from using

routinely collected data. One limitation was the lack
of data on actual treatment received and/or completed.
The use of intended treatment data may not reflect
the actual treatment undertaken, or it may not have
been completed. Another limitation is that the treatment
data were restricted to screen-detected breast cancer
patients, rather than all breast cancer patients. Although
the treatment recommendations by Cancer Australia
[45] are not specific to the detection method, it is not
known whether women who access public mammography
screening would experience the same perceived barriers
to treatment as women who access either no screening
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or access screening through private providers. Finally,
the proposed Bayesian shared spatial component mod-
els have a complex structure with the inclusion of CAR
latent structures and multivariate priors. This complexity
has the drawback of increased computational demands, in
particular longer simulation time and careful assessment
of MCMC convergence. It is noted that the PPC is an eval-
uative diagnostic that, while informative as an indicator of
model fit, may tend to lead to optimistic conclusions since
the data used to validate the model are the same as those
used to fit the model.
The primary purpose of most population-based can-

cer registries is to collect information about the num-
ber and characteristics of incident cancers. As such,
the level of detail available in these registries about
subsequent management is often limited. Some studies
[9, 13, 49] have used data linkage to hospital admit-
ted patient data collections to access information about
surgical treatment. However, these data collections typi-
cally do not include information about adjuvant treatment
which can be administered in hospital outpatient and
other types of clinical practices. Therefore it is difficult
to gain an understanding of the geographic variation in
actual treatment uptake and completion. For this rea-
son, while there are limitations in using intended, rather
than actual treatment as the outcome variable, these data
advance our understanding of geographical variations in
intention.
The purpose of this study is to identify and quantify how

the shared component effect influences intended choice
between all three adjuvant therapies. It is not to assess
how the intended choice of each individual adjuvant ther-
apy was influenced by patient’s characteristics. Hence no
separate model was fitted for each adjuvant therapy and
compared to the Bayesian shared spatial model.
In conclusion, this study has identified several impor-

tant results. The choice of adjuvant therapy, particu-
larly radiotherapy, was generally strongly associated with
the distance to radiotherapy treatment facilities. Older
patients have substantively lower intention to use radio-
therapy and chemotherapy, instead preferring hormonal
therapy. In contrast, those with advanced cancers tend
to choose radiotherapy and chemotherapy, even though
the current treatment recommendations for advanced
breast cancer [45] also recommend hormonal therapy.
Moreover, even after adjusting for key demographic and
clinical factors, the presence of residual shared spatial
effects indicates that there are other unmeasured geo-
graphical barriers influencing women’s treatment choices.
This highlights the need to identify the additional barriers
that impact on treatment intentions among women diag-
nosed with screen-detected breast cancer, particularly for
those women living further away from cancer treatment
centers.
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