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Abstract

Summary: In next generation sequencing (NGS)-based genetic studies, researchers typically

perform genotype calling first and then apply standard genotype-based methods for association

testing. However, such a two-step approach ignores genotype calling uncertainty in the association

testing step and may incur power loss and/or inflated type-I error. In the recent literature, a few ro-

bust and efficient likelihood based methods including both likelihood ratio test (LRT) and score test

have been proposed to carry out association testing without intermediate genotype calling. These

methods take genotype calling uncertainty into account by directly incorporating genotype likeli-

hood function (GLF) of NGS data into association analysis. However, existing LRT methods are

computationally demanding or do not allow covariate adjustment; while existing score tests are

not applicable to markers with low minor allele frequency (MAF). We provide an LRT allowing

flexible covariate adjustment, develop a statistically more powerful score test and propose a

combination strategy (UNC combo) to leverage the advantages of both tests. We have carried out

extensive simulations to evaluate the performance of our proposed LRT and score test.

Simulations and real data analysis demonstrate the advantages of our proposed combination strat-

egy: it offers a satisfactory trade-off in terms of computational efficiency, applicability (accommo-

dating both common variants and variants with low MAF) and statistical power, particularly for the

analysis of quantitative trait where the power gain can be up to �60% when the causal variant is of

low frequency (MAF< 0.01).

Availability and implementation: UNC combo and the associated R files, including documentation,

examples, are available at http://www.unc.edu/�yunmli/UNCcombo/

Contact: yunli@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next generation sequencing (NGS) technologies have transformed

genomic studies since their appearance in 2005. In the past few

years, NGS technologies have extended genome-wide association

studies (GWAS) from common variants (minor allele frequency

[MAF]>0.05) to low frequency variants (MAF<0.05) and pro-

vided a powerful tool to identify less common genetic variants asso-

ciated with both Mendelian and complex traits (Auer et al., 2012;
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Bamshad et al., 2011; Goldstein et al., 2013; Haack et al., 2010;

Kiezun et al., 2012; Lange et al., 2014; Torgerson et al., 2012).

Most association testing methods are designed for genotypes, which

are not directly available from NGS data. Thus, to perform associ-

ation testing on NGS data, researchers typically perform genotype

calling first (Chen et al., 2012; Li et al., 2009, 2011; McKenna

et al., 2010; Mechanic et al., 2012; Wang et al., 2013). There are

multiple sources of non-negligible error in NGS data, such as base-

calling error and assembly or alignment error (Lee and Zhao, 2013;

Li et al., 2012; Nielsen et al., 2011), each of which can cause consid-

erable uncertainty in genotype calling. To take these various sources

of error into account, many existing genotype calling algorithms

adopt a probabilistic framework and generate genotype likelihood

functions (GLF). Currently, accurate genotype calling can be

achieved from GLF data either with high depth sequencing, or with

low depth sequencing if a large number of individuals are sequenced

(Kang et al., 2013; Li et al., 2009, 2010, 2011, 2012; Nielsen et al.,

2011; Pasaniuc et al., 2012; Yan et al., 2014; Zhi et al., 2012;

Zollner, 2012). However, genotype calling can incur a number of

problems, particularly when served as an intermediate step for asso-

ciation testing or inference in population genetics. First, uncertainty

in genotype calls is ultimately lost in subsequent inference, leading

to possible power loss. Second, for low coverage sequencing data,

multi-sample lineage disequilibrium (LD) aware methods can be

rather computationally intensive. Third, the dependence of

genotype calling on LD pattern may lead to potential bias in popula-

tion genetics inference (Li, 2011). Lastly, both uncertainty (particu-

larly differential uncertainty across varying values of phenotypic

traits) and inconsistencies in called genotypes may result in inflated

type-I error in association testing (Hong et al., 2012), particularly

when combined from multiple datasets of varying sequencing

depths.

In the literature, as an attractive alternative to the two-step test-

ing approach (i.e. genotype calling in the first step and association

testing based on called genotypes in the second step), computation-

ally efficient one-step methods have been proposed for association

analysis that directly model sequencing data for association testing

without the intermediate genotype calling step. These one-step

methods test association by incorporating GLF into the association

testing likelihood function and carrying out likelihood based associ-

ation inference (focusing primarily on testing) without explicitly

calling genotypes (Derkach et al., 2014; Kim et al., 2010, 2011; Li,

2011; Satten, 2013; Skotte et al., 2012). Among them, Kim et al.

(2010, 2011) and Li (2011) test allele frequency difference between

cases and controls via likelihood ratio test (LRT). However, LRT

requires numerical optimization under both the null and the alterna-

tive hypothesis and is therefore computationally demanding for

large-scale datasets. Furthermore, existing LRT methods are

designed only for binary traits and do not allow covariates adjust-

ment. Skotte et al. (2012) adopt a generalized linear model (GLM)

framework to accommodate both quantitative and binary traits and

to allow covariates with a motivation conceptually similar to the

one proposed for haplotype association testing (Schaid et al., 2002).

Skotte et al. (2012) sketch the possibility of an LRT, where they

envision a two-step approach that first estimates MAF based on a

partial likelihood without phenotype information and then plugs the

estimated MAF into the likelihood function to carry out association

testing. However, the maximum likelihood estimator (MLE) of

MAF in the two-step approach is not the oracle estimator (details to

follow) and thus may incur power loss in subsequent association

testing. Skotte et al. (2012) develop a computationally efficient score

test (abbreviated as SKA score test hereafter) within the GLM

framework; however, the information matrix used for the construc-

tion of the SKA score test ignores the correlation between the MAF

estimator and estimators for the regression parameters, likely caus-

ing the SKA score test statistically underpowered. Moreover, the

score test is generally not applicable when MAF is low (Satten,

2013; Skotte et al., 2012) because the minimal degree of variation in

log-likelihood function required for numerical stability of score test

statistic cannot be reached. Type-I error inflation was reported in

the original work for MAF under 0.01 (Skotte et al., 2012). For the

same reason, a variation of the SKA score test developed particularly

for accommodating publicly available control groups (Derkach

et al., 2014) also adopts 0.01 as MAF threshold.

In this paper, we first provide an LRT for association analysis of

NGS data (UNC LRT), which allows covariate adjustment and han-

dles both quantitative and binary phenotypic traits. In our LRT, the

statistically efficient MLE of MAF is obtained in one unified frame-

work that simultaneously estimates MAF and association param-

eters. Second, we improve upon the work of Skotte et al. (2012) by

considering the correlation between MAF estimator and regression

parameter estimators in the information matrix and develop a statis-

tically more powerful score test (UNC score test). Third, although

LRT and score test are asymptomatically equivalent, it is well

known that their performance can differ considerably in practice.

We evaluate the performance of our proposed LRT and score test by

simulations and propose a combination strategy to take advantage

of both tests (hereafter, referred to as UNC Combo). Extensive

simulations and real data based analysis are carried out to examine

the robustness, computational efficiency and statistical power of

SKA score test, UNC score test, UNC LRT and UNC Combo. Our

results suggest advantages of UNC combo in practice when genetic

architecture (in particular, MAF of associated or causal genetic

variant(s)) is unknown, particularly for quantitative traits. In our

simulations, we observe gains in power up to 60% with losses of

less than 8% across a wide range of scenarios considered, when

using UNC Combo. In our real data based simulations, UNC

Combo is able to identify all causal SNPs while other methods miss

at least one.

2 Methods

2.1 Joint likelihood function
Suppose that a total of n individuals are sequenced and m SNPs are

discovered. Further assume that all m SNPs are biallelic and auto-

somal. For the ith individual, let Di be the observed sequencing data

and Yi the quantitative or binary phenotypic trait of interest,

Xi ¼ fXij; j ¼ 1; . . . ; dg the vector of d covariates and Gik the unob-

served true genotype at the kth SNP. Our goal is to test whether the

kth SNP is associated with the trait of interest by performing single

marker association testing without explicit genotype calling.

Let pk denote MAF of the kthSNP. By Hardy-Weinberg equilib-

rium (HWE), f ðGikjpkÞ, the probability of Gik, follows a binomial

distribution Binomð2;pkÞ. For a quantitative or binary trait Yi, we

capture the dependence of Yi on Gik and Xi through a GLM in the

same way as in Skotte et al. (2012). Specifically, the probability

density function of Yi takes the following form:

f ðYijXi;Gik; a0; a1;b;/Þ ¼ exp
Yigi � bðgiÞ

að/Þ þ cðYi;/Þ
� �

(1)

where að�Þ; bð�Þ and cð�Þ are known functions; að�Þ; cð�Þ de-

pend on the distribution of Yi and bð�Þ corresponds to a particular

link function. gi is the linear predictor with

gi ¼ ga;bðXi;GikÞ ¼ a0 þ aT
1 Xi þ bGik. Here, a0 is the intercept, a1
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the vector of coefficients for covariates, b the effect of the

unobserved true genotype Gik and / the parameter in að�Þ; cð�Þ.
For example if Yi is quantitative and follows a normal distribution

given Gik and Xi; then / ¼ r2; að/Þ ¼ /; bðgÞ ¼ g2=2

and cðYi;/Þ ¼ �Y2
i =ð2/Þ � log ð2p/Þ=2:

The joint log-likelihood function of the parameters

fa ¼ ða0; a1Þ; b;/; pkg given O ¼ fYi;Di;Xi; i ¼ 1; . . . ; ng can be

written as:

lða; b;/;pkjOÞ ¼
Xn

i¼1

log

" X
Gik2ð0;1;2Þ

ff ðYijXi;Gik; a;b;/Þf ðDijGikÞf ðGik; pkÞg
#

(2)

where f ðDijGikÞ is the GLF from NGS data. To test whether the kth

SNP is associated with phenotypic trait of interest, the null hypoth-

esis is H0 : b ¼ 0. This can be done using likelihood based testing

methods such as an LRT or score test.

2.2 A powerful LRT statistic
Skotte et al. (2012) sketch the possibility of a two-step

LRT approach to test the H0 above: (step 1) pk is estimated

by maximizing a partial log-likelihood functionXn

i¼1

log

" X
Gik2ð0;1;2Þ

ff ðDijGikÞf ðGik; pkÞg
#

without taking any pheno-

type information into account; (step 2) estimator of pk from step 1,

p̂k, is plugged into Equation (2) where an LRT can be carried out.

However, step 1 ignores the correlation between Yi and Di and thus

p̂k obtained in step 1 is not the oracle estimator of pk under the al-

ternative hypothesis, which can consequently render the LRT in step

2 underpowered.

Here, we propose a statistically more powerful LRT (hereafter

referred to as UNC LRT) to test H0 : b ¼ 0 by maximizing the log-

likelihood function lða;b;/; pkjOÞ in Equation (2) in one single step.

Specifically, UNC LRT statistic is

TUNC LRT ¼ �2½lða�; b ¼ 0;/
�
;p
�

kjOÞ � lðâ; b̂; /̂; p̂kjOÞ� (3)

where fa�;/
�
; p
�

kg (MLEs of fa;/; pkg under the null) are obtained by

maximizing lða; b ¼ 0;/; pkjOÞ and fâ; b̂; /̂; p̂kg (MLEs of

fa; b;/; pkg under the alternative) by maximizing lða;b;/; pkjOÞ.
Existing optimization functionalities such as optim() function in R

can be used to maximize the log-likelihood functions above. The

TUNC LRT statistic asymptotically follows a v2 distribution with 1

degree of freedom.

2.3 Improved score test statistic (UNC score test)
The score test is appealing because parameters only need to be esti-

mated under H0. Under H0 : b ¼ 0,

lða; b ¼ 0;/;pkjOÞ

¼
Xn

i¼1

log

" X
Gik2ð0;1;2Þ

ff ðYijXi;Gik; a; b ¼ 0;/Þf ðDijGikÞf ðGik; pkÞg
#

¼
Xn

i¼1

log f ðYijXi; a;b ¼ 0;/Þþ
Xn

i¼1

log

" X
Gik2ð0;1;2Þ

ff ðDijGikÞf ðGik; pkÞg
#

(4)

Consequently, fa;/; pkg can be estimated separately: p
�

k (MLE of pk

under H0) can be estimated by only optimizing the second part of

the Equation (4); fa�;/
�
g (MLEs of fa;/g) can thus be easily obtained

by applying starndard GLM algorithms on the first part of Equation

(4). The time-consuming numerical optimization over the entire par-

ameter space is thus avoided. Our score test statistic (hereafter

referred to as UNC score test) takes the following form:

TUNC score ¼ STða�; b ¼ 0;/
�
; p
�

kÞI�1ða�; b ¼ 0;/
�
; p
�

kÞSða
�
; b ¼ 0;/

�
;p
�

kÞ
(5)

where Sða;b;/; pkÞ is the score function (the first-order derivative of

the log-likelihood function) and Sða�;b ¼ 0;/
�
;p
�

kÞ is its value eval-

uated at fa�;b ¼ 0;/
�
;p
�

kg (MLE under H0 : b ¼ 0). Iða; b;/;pkÞ is

the observed information matrix (the second derivative of

the log-likelihood function, mulitplied by –1) and Iða�; b ¼ 0;/
�
; p
�

kÞ
is its value evaluated at fa�;b ¼ 0;/

�
;p
�

kg. Skotte et al. (2012)

ignor the correlation between a
�
;b
�
;/
�

and p
�

k and SKA score test stat-

istic is:

TSKA score ¼ STða�; b ¼ 0;/
�
ÞI�1ða�; b ¼ 0;/

�
ÞSða�;b ¼ 0;/

�
Þ (6)

The information matrix in Equation (6) contains only the second

derivative with respect to a;b;/. It can be verified that

TUNC score�TSKA score: (7)

Thus SKA score test is therefore theoretically less powerful than

UNC score test. Details for the UNC score statistic and the proof of

inequality (7) can be found in supplementary materials.

As manifested in Equations (5) and (6), both the UNC and SKA

score test statistics involve the inverse of the information matrix

I�1ð�Þ. In practical settings, a very small pk would lead to little vari-

ation in the log-likelihood function, which may cause Ið�Þ to be ill-

conditioned. Consequently, I�1ð�Þ may become numerically unstable

which could result in inflated type-I error (Skotte et al., 2012). The

practical implication is that these score test statistics cannot be

blindly applied without MAF threshold (Derkach et al., 2014;

Skotte et al., 2012).

2.4 Combination strategy (UNC combo)
We propose a practical combination strategy (UNC combo) which

combines the strengths of the two UNC tests to achieve a good bal-

ance between computational efficiency, applicability (over the entire

MAF spectrum) and statistical power. Denote the MAF of a SNP by

p. UNC combo performs UNC score test when p > pthreshold and

UNC LRT when p�pthreshold. UNC combo enjoys the advantages of

UNC score test and UNC LRT in that: (i) it carries out UNC LRT

only for SNPs with p�pthreshold and is thus computationally more ef-

ficient than UNC LRT; and (ii) unlike UNC score test, which fails to

control type-I error for low frequency SNPs (details to follow), we

can apply UNC combo over the entire MAF spectrum. In practice, p

can be estimated by optimizing the second part of Equation (4) be-

fore UNC combo is applied.

3 Simulations

We perform extensive simulation studies under a range of settings to

evaluate the performance of SKA score test, UNC score test, UNC

LRT and UNC combo. We use COSI’s bestfit model to generate a

100-kb region that mimics LD pattern, local recombination rate and

population history of Europeans through a coalescent model

(Schaffner et al., 2005). Within the region, 45 000 chromosomes are

generated. We consider two baseline covariates: a binary covariate

X1 sampled from Bernoulli distribution with a success probability of

0.5 and a continuous covariate X2 sampled from standard normal

UNC Combo 2957
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distribution. Quantitative trait values are generated via a simple lin-

ear regression model:

Y ¼ a0 þ a1X1 þ a2X2 þ bGk þ e

where a0 ¼ 1; a1 ¼ 1; a2 ¼ 1 and e follows a standard normal distri-

bution. Binary trait values are generated via a logistic regression model:

log itðProbðY ¼ 1ÞÞ ¼ a0 þ a1X1 þ a2X2 þ bGk

where a0 ¼ �3:65 ðtrait with 2:5% prevalenceÞ; a1 ¼ 1 and

a2 ¼ 1. Under the null hypothesis, 10 000 replicates are generated to

evaluate Type-I errors. We evaluate type-I errors for three sample

sizes: 500, 1000 and 2000. Under the alternative hypothesis, we as-

sume one causal SNP and specify three MAFs for the causal SNP:

0.006, 0.011 (so that it is slightly above the MAF threshold) and

0.02. For each MAF, 1000 replicates each with sample size 1000 are

generated. Sequencing data are simulated using ShotGun (Kang

et al., 2013) with a per base pair error rate of 0.5%. Average

sequencing depths (d) are chosen to be 2X, 4X, 10X and 30X to

cover a wide range of depth scenarios.

3.1 Simulation results

We conduct our first series of simulation studies to evaluate SKA score

test, UNC score test and UNC LRT when only one SNP is tested.

Type-I errors across all scenarios of sample sizes and sequencing

depths are displayed in Tables 1, 2 and in Supplementary Tables S1–

S4 with significant threshold 1e�4. Intuitively, MAF threshold to

achieve controlled Type-I error may vary with sample size and/or

sequencing depth. Our simulations show that MAF threshold of 20=2

n would be conservative enough to control type-I errors across a wide

spectrum of scenarios. For example in Tables 1 and 2, type-I errors of

the two score tests are well controlled for all sequencing depths if

p̂ > pthreshold ¼ 0:01 (p̂ is the MAF estimate). The severity of

type-I error inflation varies by sequencing depth d and pthreshold: the

lower d and pthreshold are, the greater the inflation of type-I error is.

That is because a lower sequencing depth and a smaller p cause the

information matrix to be more ill-conditioned and result in a more nu-

merically unstable score test statistic (more details in the Section 5).

The calculation of UNC LRT statistic involves only the subtraction of

two log-likelihoods and is fairly stable even when variation in log-like-

lihoods is small. As can be seen, the type-I errors of the UNC LRT are

all controlled, even when all SNPs are included (pthreshold ¼ 0).

Supplementary Figures S1–S6 present the power results of single

SNP testing for quantitative and binary trait, with MAF of the

causal SNP taking three values: 0:006; 0:011 and 0:02. MAF

thresholds for score tests are chosen based on Tables 1 and 2 to as-

sure control of type-I errors (pthreshold ¼ 0:01). Powers of association

tests based on dosage after multi-sample LD aware calling are also

provided for comparison. For a quantitative trait, UNC LRT outper-

forms the two score tests by a large margin (up to �95%) when

p� pthreshold or p � pthreshold, which is expected since the causal

SNP(s) would be filtered out by a score test if p̂ < pthreshold. For a

binary trait, the powers of the score tests are maintained even if

p�pthreshold. This is because the causal allele is enriched among cases,

making p̂ > pthreshold. Overall, the performance of UNC score test is

always slightly better than or at least comparable to that of SKA

score test under various scenarios.

In practice, causal SNPs are unknown and we need to test all

SNPs in the genetic region(s) of interest. The second series of simula-

tion studies are therefore devoted to investigating the performance

of SKA score test, UNC score test and UNC LRT when multiple

SNPs are tested. The two score tests are carried out only for SNPs

satisfying p̂ > pthreshold. Meanwhile, UNC LRT is applied on all

SNPs. The type-I errors of these methods across all scenarios are dis-

played in Tables 3, 4 and in Supplementary Tables S5–S8 for quanti-

tative and binary traits, respectively. We use a Bonferroni correction

to control type-I errors. As can be seen, type-I errors of UNC LRT

are well controlled across the entire spectrum of sequencing depths

and sample sizes without MAF filtering. Therefore, UNC LRT is

generally more robust than the two score tests and more appropriate

for the entire MAF spectrum. Similar to the single SNP testing series,

the two score tests have controlled type-I errors when p̂ > pthreshold

¼ 0:02 for n ¼ 500, p̂ > pthreshold ¼ 0:01 for n ¼ 1000 and

p̂ > pthreshold ¼ 0:005 for n ¼ 2000.

Figure 1 and Supplementary Figures S7–S11 present the statis-

tical power in this second series of simulations. Similar to the single

SNP testing series: if pthreshold > pcausal (e.g. pcausal ¼ 0:006) for a

quantitative trait, UNC LRT is much more powerful than UNC

score test; when the trait is binary, the powers of the two UNC tests

are comparable. If pthreshold < pcausal, UNC score test is more power-

ful than UNC LRT under most scenarios for both quantitative and

binary traits. Finally, the power of UNC score test is usually slightly

better than or at least comparable to that of the SKA score test under

all scenarios (e.g. pcausal ¼ 0:006; d ¼ 2X for a binary trait). The

extent to which UNC score test improves over SKA score test

Table 1. Type-I errors of single SNP testing for quantitative trait

pthreshold/Depth(d) UNC Score

Test

SAK Score

Test

UNC

LRT

UNC

Combo

0/d¼ 2X 5.6e� 3 4.9e� 3 8.8e� 5

0/d¼ 4X 2.3e� 3 2.0e� 3 8.3e� 5

0/d¼ 10X 6.6e� 4 5.8e� 4 8.5e� 5

0/d¼ 30X 1.5e� 4 1.3e� 4 9.6e� 5

0.005/d¼ 2X 1.1e� 3 6.6e� 4

0.005/d¼ 4X 8.6e� 5 8.3e� 5

0.005/d¼ 10X 6.8e� 5 6.7e� 5

0.005/d¼ 30X 5.6e� 5 5.4e� 5

0.01/d¼ 2X 7.0e� 5 6.1e� 5 9.0e� 5

0.01/d¼ 4X 5.7e� 5 5.7e� 5 8.8e� 5

0.01/d¼ 10X 6.1e� 5 6.1e� 5 8.4e� 5

0.01/d¼ 30X 5.9e� 5 5.9e� 5 8.2e� 5

Note: Significant threshold is 1e� 4. Sample size n ¼ 1000.

Grey marks inflated type-I errors.

Table 2. Type-I errors of single SNP testing for binary trait

pthreshold/Depth(d) UNC score

test

SKA score

test

UNC

LRT

UNC

Combo

0/d¼ 2X 4.8e� 3 3.5e� 3 7.2e� 5

0/d¼ 4X 1.7e� 3 1.4e� 3 8.9e� 5

0/d¼ 10X 4.9e� 4 4.1e� 4 8.5e� 5

0/d¼ 30X 3.6e� 4 3.6e� 4 7.6e� 5

0.005/d¼ 2X 8.2e� 4 2.9e� 4

0.005/d¼ 4X 6.2e� 5 5.7e� 5

0.005/d¼ 10X 6.7e� 5 6.3e� 5

0.005/d¼ 30X 5.8e� 5 5.5e� 5

0.01/d¼ 2X 6.6e� 5 5.8e� 5 7.6e� 5

0.01/d¼ 4X 5.2e� 5 5.0e� 5 8.1e� 5

0.01/d¼ 10X 6.5e� 5 6.4e� 5 8.3e� 5

0.01/d¼ 30X 5.4e� 5 5.4e� 5 6.4e� 5

Note: Significant threshold is 1e� 4. Sample size n ¼ 1000.

Grey marks inflated type-I errors.
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depends on the nature of the underlying association. In Appendix F,

we demonstrate a scenario in which the UNC score test outperforms

SKA score test by up to �15% by letting the effect of causal SNP de-

pend on covariates.

Now, we focus on the performance of UNC Combo in both series

of simulations described above. As demonstrated in Tables 1–4 and

Supplementary Tables S1–S8, type-I errors of UNC combo are all well

controlled with pthreshold(20=2n). Statistical power results of UNC

combo are also presented in Figure 1 and Supplementary Figures S1–

S11. Note that UNC combo is most effective for quantitative traits: it

outperforms at least one of the two other UNC tests under all scen-

arios. By using UNC combo instead of the UNC score test, power

gain can be as high as �90% (d ¼ 30 and MAF ¼ 0:006 in single

SNP testing series [Supplementary Fig. S1]) and �70%

(d ¼ 30 and MAF ¼ 0:006 in multiple testing series [Fig. 1]) with

minimal loss (�8%) (d ¼ 4 and MAF ¼ 0:02 in the multiple test-

ing series [Supplementary Fig. S8]). For binary trait simulations, UNC

combo is uniformly the least powerful test, even when the causal

MAF is small. In fact, as aforementioned, case-control design makes p̂

much larger than p and thus causal SNPs with small p are less likely

to be filtered out and missed by score tests (discussions regarding

using controls only to estimate MAF can be found in the Section 5).

Therefore, the ability of UNC combo to include all SNPs becomes less

necessary for binary traits and the added noise becomes the dominat-

ing consequence. In summary, we recommend UNC combo with

pthreshold (20=2n) for quantitative traits and UNC score test with

pthreshold (20=2n) for binary traits.

Table 5 presents the comparison of computational costs of SKA

score test, the three UNC methods and dosage-based test when

sequencing depth d ¼ 4X. As displayed in Table 5, 33%�41% of

computation cost can be saved by adopting UNC combo instead of

UNC LRT. In practice, we usually have little prior knowledge re-

garding the MAFs of the causal SNPs and thus UNC combo can

achieve a reasonable trade-off between power and computational

burden for quantitative traits.

The average number of SNPs in one simulated genetic region is

�762 when d¼4X. “quanti” is abbreviation for quantitative.

4 Real data analysis

We apply our proposed methods to a targeted sequencing dataset

from the CoLaus study, where 1956 CoLaus subjects from

Lausanne (Switzerland) are sequenced at relatively high depth (me-

dium depth �27X) in the exons of 202 genes (Firmann et al., 2008;

Nelson et al., 2012). 7 genes on chromosome X are excluded from

drug related analysis. A total of 22 992 SNPs are discovered across the

195 autosomal genes among the 1956 subjects. Three SNPs

(G1;G2 and G3) on chromosomes 1, 6 and 8 are chosen to be casual

with pcausal ¼ 0:004; 0:01 and 0:15, respectively. Quantitative

trait is generated by

Y ¼ a0 þ a1X1 þ a2X2 þ b1G1 þ b2G2 þ b3G3 þ e

where X1;X2 and e are generated in the same way as in the simula-

tion study. a0 ¼ a1 ¼ a2 ¼ 1; b1 ¼ 1:8; b2 ¼ 1 and b3 ¼ 0:16.

Moreover, data of two different sequencing depths are simulated by

(i) choosing 1 out of every 5 short reads (“Divided by 5” where

6574 SNPs are detected); (ii) choosing 1 out of every 10 short reads

(“Divided by 10” where 4255 SNPs are detected). As in the simula-

tion study, we pick pthreshold ¼ 0:005 for score tests and UNC combo

when trait is quantitative. Bonferroni correction is adopted to con-

trol type-I error.

Manhattan plots of association test statistics based on SKA score

test, UNC score test, UNC LRT and UNC combo are displayed in

Supplementary Figure S12. As shown in Supplementary Figure S12,

the two score tests perform similarly and both outperform UNC

LRT when pcausal > pthreshold. On the other hand, UNC LRT can

identify causal SNPs with pcausal < pthreshold. As expected, UNC

combo combines the advantages of UNC score test and UNC LRT

and is more powerful than both under the realistic setting where

MAFs of the causal SNPs are unknown. Take “Divided by 5” as an

example: first, none of the methods result in any false positives; se-

cond, UNC score test identifies G2 (pcausal > pthreshold) while UNC

LRT fails to; on the other hand, UNC LRT successfully identified

G1 (pcausal < pthreshold); third, UNC combo successfully detects

both G1 and G2; finally, “Divided by 5” is more powerful than

“Divided by 10”, which is expected as statistical power for associ-

ation testing decreases with sequencing depth.

5 Discussion

Association testing using NGS data without genotype calling is an

appealing approach. This approach not only avoids the potentially

computationally intensive genotype calling step but also carries all

of the information from sequencing into association, in contrast to

Table 3. Type-I errors of multiple testing (multiple SNPs are

separately tested within each genomic region of interest) for

quantitative trait

pthreshold/Depth

(d)

UNC score

test

SKA score

test

UNC

LRT

UNC

Combo

0/d¼ 2X 0.972 0.958 0.046

0/d¼ 4X 0.775 0.735 0.042

0/d¼ 10X 0.408 0.347 0.021

0/d¼ 30X 0.213 0.204 0.013

0.005/d¼ 2X 0.522 0.363

0.005/d¼ 4X 0.063 0.060

0.005/d¼ 10X 0.034 0.033

0.005/d¼ 30X 0.028 0.027

0.01/d¼ 2X 0.061 0.060 0.064

0.01/d¼ 4X 0.044 0.043 0.050

0.01/d¼ 10X 0.027 0.026 0.028

0.01/d¼ 30X 0.019 0.018 0.020

Note: Significant threshold of is 0.05/(# of SNPs) in the targeted region.

Grey marks inflated type-I errors.

Table 4. Type-I errors of multiple testing (multiple SNPs are separ-

ately tested within each genomic region of interest) for binary trait

pthreshold/Depth

(d)

UNC score

test

SKA score

test

UNC

LRT

UNC

Combo

0/d¼ 2X 0.953 0.901 0.036

0/d¼ 4X 0.672 0.588 0.032

0/d¼ 10X 0.319 0.256 0.015

0/d¼ 30X 0.203 0.201 0.012

0.005/d¼ 2X 0.432 0.185

0.005/d¼ 4X 0.041 0.041

0.005/d¼ 10X 0.021 0.021

0.005/d¼ 30X 0.016 0.017

0.01/d¼ 2X 0.059 0.057 0.034

0.01/d¼ 4X 0.036 0.036 0.033

0.01/d¼ 10X 0.018 0.019 0.016

0.01/d¼ 30X 0.015 0.016 0.013

Note: Significant threshold of is 0.05/(# of SNPs) in the targeted region.

Grey marks inflated type-I errors.
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at least some information loss with an intermediate genotype calling

step. Population structure and other potential confounding factors

are almost inevitable in GWAS studies and need to be adjusted for.

In this article, we develop UNC score test and UNC LRT to allow

covariate adjustment in association testing based on GLFs. Both

UNC score test and UNC LRT directly incorporate the uncertainty

of the observed sequencing data into analysis by constructing likeli-

hood function based on GLFs and do not require explicit genotype

calling. Instead of a two step approach (Skotte et al., 2012), UNC

LRT produces MLE of MAF together with MLEs of regression par-

ameters in one step and thus is theoretically more powerful. The

UNC score test improves upon the previous work of Skotte et al.

(2012) by taking into account the correlation between regression

parameter estimators and MAF estimator.

Using simulations, we have demonstrated that UNC score test is

generally statistically more powerful than, or at least comparable to,

SKA score test. UNC score test is computationally faster than UNC

LRT because score test only involves the model under the null hy-

pothesis and does not require time-consuming optimization. On the

other hand, in practice, UNC LRT can be applied to SNPs over the

entire MAF spectrum while UNC score test can only be applied to

SNPs with MAFs greater than certain threshold (pthreshold) because

type-I errors of score tests are inflated without MAF filtering. We

therefore propose a combination strategy (UNC combo) to take ad-

vantage of the strengths of our two tests. As shown in simulation re-

sults for quantitative trait, UNC combo improves upon the two

UNC tests in three aspects: (i) it can be applied to all SNPs across

the entire MAF spectrum, a desirable feature inherited from UNC

LRT; (ii) it is computationally more efficient than UNC LRT, be-

cause LRT is calculated only for SNPs with MAF below pthreshold;

(iii) it manifests higher statistical power than at least one of the two

UNC tests. In the real data analysis, UNC combo outperforms both

Fig. 1. Powers of multiple testing for quantitative trait with pthreshold ¼ 0:01 . MAF¼ 0.006 and n¼1000

Table 5. Comparison of computational costs (time in seconds)

Depth (d) Trait SKA score test UNC score test UNC LRT UNC Combo Dosage

d¼ 4X quanti 32.1 32.5 365.6 214.1 13317.2

d¼ 4X binary 57.2 57.6 231.2 153.0 13315.6
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UNC LRT and UNC score test for simulated quantitative traits. For

the reasons above, we recommend UNC combo when the trait(s) of

interest is/are quantitative. For binary traits, UNC score test outper-

forms other methods and is thus recommended.

MAF and variation in log-likelihood function are two factors po-

tentially correlated with the inflation of type-I error of the score test.

We fit regression models to investigate the relationship among them.

We use the determinant of the information matrix as a measure of

variation in the log-likelihood function. A linear regression analysis

shows that UNC score test statistic is negatively associated with the

determinant of information matrix (P-value<2e�16). Moreover,

another linear regression indicates that the determinant of the infor-

mation matrix is positively associated with MAF (P-value<2e�16).

Consequently, the lower the MAF of a SNP, the more ill-conditioned

the information matrix becomes and the more likely to result in

inflated type-I error.

For a simulated binary trait, we also evaluate an alternative ap-

proach to filter out SNPs for the score tests: namely, estimating

MAFs using only controls and filtering SNPs based on control MAF

estimation. Simulation results show that this approach may lead to

inflated type-I error (e.g. type-I error is 0.265 for UNC score test

and 0.132 for SKA score test with pthreshold ¼ 0:01, d ¼ 2 and

n ¼ 1000). This is because MAFs of rare variants tent to be over-

estimated when only controls are used in estimation (Li and Leal,

2009; Liu and Leal, 2012; Yan and Li, 2014). For example, the

MAF estimate of ascertained singletons in controls would be double

of its true value (assuming equal numbers of cases and controls) if

only controls were used to estimate the MAF. These unwarrantedly

retained rare variants consequently lead to numerical instability and

eventually to inflated type-I errors.

In Appendix F, we introduce correlation between MAF estimator

and association parameter estimators by letting the effect of the

causal SNP depend on covariates. In real data, this can be observed

due to gene environment interactions. Under the scenario, UNC

score test outperforms SKA score test by up to �15%. In practice,

non-negligible correlation between MAF and association parameters

estimators can arise in various and unknown ways. It is thus desir-

able to have a theoretically more powerful score test (UNC score

test) to guard against such scenarios where correlation among MAF

and regression parameters is non-negligible.

The optimal MAF threshold depends on the genetic architecture

(number, MAFs and effect sizes of the causal SNPs), which is gener-

ally unknown. This threshold also depends on the sample size (n)

and sequencing depth. To err on the conservative side, we choose

pthreshold ¼ 20=2n as adopted in the literature (Derkach et al., 2014;

Skotte et al., 2012) and as supported by our own simulation results.

In the future, an optimal threshold might be derived by taking

sequencing depth into account. Moreover, differential sequencing

depths between cases and controls introduce additional biases, lead-

ing to inflated type-I error of SKA as shown in Derkach et al.

(2014). Future work is desired to study the impact of differential

sequencing depths on our proposed UNC tests. Lastly, while the cur-

rent work focuses on single variant association, extension to rare

variant association testing is highly warranted given the higher level

of uncertainty in genotype calling for rarer variants.
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