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Abstract

Motivation: Model organisms play critical roles in biomedical research of human diseases and

drug development. An imperative task is to translate information/knowledge acquired from model

organisms to humans. In this study, we address a trans-species learning problem: predicting

human cell responses to diverse stimuli, based on the responses of rat cells treated with the same

stimuli.

Results: We hypothesized that rat and human cells share a common signal-encoding mechanism

but employ different proteins to transmit signals, and we developed a bimodal deep belief network

and a semi-restricted bimodal deep belief network to represent the common encoding mechanism

and perform trans-species learning. These ‘deep learning’ models include hierarchically organized

latent variables capable of capturing the statistical structures in the observed proteomic data in a

distributed fashion. The results show that the models significantly outperform two current state-

of-the-art classification algorithms. Our study demonstrated the potential of using deep hierarch-

ical models to simulate cellular signaling systems.

Availability and implementation: The software is available at the following URL: http://pubreview.

dbmi.pitt.edu/TransSpeciesDeepLearning/. The data are available through SBV IMPROVER web-

site, https://www.sbvimprover.com/challenge-2/overview, upon publication of the report by the

organizers.

Contact: xinghua@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to ethical issues, modal organisms such as rat and mouse have

been widely used as disease models in studying disease mechanisms

and drug actions (Brown, 2011; McGonigle and Ruggeri, 2014). For

example, mouse models have been used to study the disease mechan-

isms and treatment of type-2 diabetes (Omar et al., 2013). Since sig-

nificant differences exist between species in terms of genome,

cellular systems and physiology, the success of using model organ-

isms in biomedical research is hinged on the capability to translate/

transfer the knowledge learned from model organisms to humans.

For example, when using a rat disease model to screen drugs and in-

vestigate the action of drugs, rat cells inevitably exhibit different

molecular phenotypes, such as proteomic or transcriptomic

responses, when compared with corresponding human cells. Thus,

in order to investigate how the drugs act in human cells, it is critical

to translate the molecular phenotypes observed in rat cells into cor-

responding human responses.

Recent species-translation challenges organized by the Systems

Biology Verification combined with Industrial Methodology for

Process Verification in Research (SBV IMPROVER, 2013) provided

an opportunity for the research community to assess the methods

for trans-species learning in systems biology settings (Rhrissorrakrai

et al., 2015). One challenge task was to predict human cells’ prote-

omic responses to distinct stimuli based on the observed proteomic

response to the same stimuli in rat cells. More specifically, during

the training phase, participants were provided with data that

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3008

Bioinformatics, 31(18), 2015, 3008–3015

doi: 10.1093/bioinformatics/btv315

Advance Access Publication Date: 20 May 2015

Original Paper

http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/
http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/
https://www.sbvimprover.com/challenge-2/overview
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv315/-/DC1
http://www.oxfordjournals.org/


measured the phosphorylation states of a common set of signaling

proteins in primary cultured bronchial cells collected from rats and

humans treated with distinct stimuli (Poussin, 2014). In the testing

phase, the proteomic data of rat cells treated with unknown stimuli

were provided, and the task is to predict the proteomic responses of

human cells treated with the same stimuli (Fig. 1).

To address the trans-species learning task, a simplistic approach

is to train regression/classification models that use the phosphoryl-

ation data from rat cells as input features and treat the phosphoryl-

ation status of an individual protein from human cells (treated with

the same stimulus) as a target class. In this way, predicting the prote-

omic profile of human cells can be addressed as a series of

independent classification tasks or within a multi-label classification

framework (Jin et al., 2008; Tsoumakas and Katakis, 2007).

However, most contemporary multi-label classification methods

treat the target classes as independent or are incapable of learning

the covariance structure of classes, which apparently does not reflect

biological reality. In cellular signaling systems, signaling proteins

often form pathways in which the phosphorylation of one protein

will affect the phosphorylation state of others in a signaling cascade,

and cross-talk between pathways can also lead to coordinated phos-

phorylation of proteins in distinct pathways (Alberts et al., 2008).

Another shortcoming of formulating trans-species learning as a con-

ventional classification problem is that contemporary classifiers,

such as the support vector machine (Bishop, 2006) or regularized re-

gression/classification (Friedman et al., 2010), concentrate on deriv-

ing mathematical representations that separate the cases, whereas

the real goal of trans-species learning is to capture the common sig-

naling mechanisms employed by cells from both model organisms

and humans in response to a common stimuli. Indeed, the corner-

stone hypothesis underpinning trans-species learning is that there is

a common encoding mechanism shared by cells from different

species, but distinct signaling molecules are employed by different

species to transmit the signals responding to the same environmental

stimuli. Therefore, it is important to explore models that are com-

patible to the above hypothesis.

Recent advances in deep hierarchical models, commonly referred

to as ‘deep learning’ models (Bengio et al., 2012; Hinton et al.,

2006; Hinton and Salakhutdinov, 2006), provide an intriguing

opportunity to model the common encoding mechanism of cellular

signaling systems. These models represent the signals embedded in

observed data using multiple layers of hierarchically organized hid-

den variables, which can be used to simulate a cellular signaling sys-

tem because the latter is also organized as a hierarchical network

such that signaling proteins at different levels compositionally

encode signals with different degrees of complexity. For example,

activation of the epidermal growth factor receptor (EGFR) will lead

to a broad change of cellular functions including the activation of

multiple signaling molecules such as Ras and MAP kinases (Alberts

et al., 2008), which in turn will activate different transcription fac-

tors, e.g. Erk-1 and c-Jun/c-Fos complex, with each responsible for

the transcription of a subset of genes responding to EGFR treatment.

The signals encoded by signaling molecules become increasingly

more specific, and they share compositional relationships.

Therefore, deep hierarchical models, e.g. the deep belief network

(DBN) (Hinton et al., 2006), are particularly suitable for modeling

cellular signaling systems.

In this paper, we present novel deep hierarchical models based

on the DBN model to represent a common encoding system that en-

codes the cellular response to different stimuli, which was developed

after the competition in order to overcome the shortcomings of the

conventional classification approaches we employed during compe-

tition. We applied the model to the data provided by the SBV

IMPROVER challenge and systematically investigated the perform-

ance. Our results indicate that, by learning better representations of

cellular signaling systems, deep hierarchical models perform signifi-

cantly better on the task of trans-species learning. More import-

antly, this study leads to a new direction of using deep networks to

model large ‘omics’ data to gain in depth knowledge of cellular sig-

naling systems under physiological and pathological conditions,

such as cancer.

2 Methods

In this study, we investigated using the DBN model (Hinton et al.,

2006) to represent the common encoding system of the signal trans-

duction systems of human and rat bronchial cells. A DBN contains

one visible layer and multiple hidden layers (Fig. 2A). An efficient

training algorithm was introduced by (Hinton et al., 2006; Hinton

and Salakhutdinov, 2006), which treats a DBN as a series of re-

stricted Boltzmann machines (RBM; Fig. 2B) stacked on top of each

other. For example, the visible layer v and the first hidden layer,

h(1), can be treated as a RBM, and the first and second hidden layers,

h (1) and h (2), form another RBM with h (1) as the ‘visible’ layer. The

inference of the hidden node states and learning of model param-

eters are first performed by learning the RBM stacks bottom-up,

which is followed by a global optimization of generative parameters

using the back-propagation algorithm. In certain cases, edges be-

tween visible variables can be added in a RBM to capture the rela-

tionship of the visible variables, which leads to a semi-restricted

RBM (Fig. 2C). In the following sub-sections, we will first introduce

the models and their inference algorithms.

2.1 Restricted Boltzmann Machines (RBMs)
A RBM is an undirected probabilistic graphical model consisting of

a layer of stochastic visible binary variables (represented as nodes in

the graph) v 2 f0; 1gD and a layer of stochastic hidden binary

Fig. 1. Trans-species learning task specification. The objective of the SBV

challenge was to predict the phosphorylation states of a set of proteins in

human cells treated with different stimuli, based on the observed phosphoryl-

ation states of the same set of proteins in rat cells treated with the same

stimuli. The blocks labled as “training” are matrices representing the

observed phosphorylation states of proteins under different treatment condi-

tions in human and rat cells. In test phase, the phosphorylation states of the

proteins in rat cells treated with a set of unknown stimuli are provided, and

the task is to predict the phosphorylation states of the human cells treated

with the same stimuli
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variables h 2 f0; 1gF. A RBM is a bipartite graph in which each vis-

ible node is connected to every hidden node (Fig. 2B) and vice versa.

The statistical structure embedded in the visible variables can be

captured by the hidden variables. The RBM model defines the joint

distribution of hidden and visible variables using a Boltzmann distri-

bution as follows:

Prðv;h; hÞ ¼ 1

ZðhÞ expð�Eðv;h; hÞÞ (1)

The energy function E of the state fv; hg of the RBM is defined as

follows:

Eðv; h; hÞ ¼ �a>v� b>h� v>Wh

¼ �
XD
i¼1

aivi �
XF

j¼1

bjhj �
XD
i¼1

XF

j¼1

vihjwij

(2)

where vi is the binary state of visible variable i; hj is the binary state

of hidden variable j; h ¼ fa; b;Wg are the model parameters. ai rep-

resents the bias for visible variable i and bj represents the bias for

hidden variable j. wij represents the weight between visible variable i

and hidden variable j.

The ‘partition function’, Z, is derived by summing over all pos-

sible states of visible and hidden variables:

ZðhÞ ¼
X

v;h
expð�Eðv; h; hÞÞ (3)

The marginal distribution of visible variables is

Prðv; hÞ ¼
X

h
Prðv; h; hÞ ¼ 1

ZðhÞ
X

h
expð�Eðv; h; hÞÞ (4)

2.2 Learning parameters of the RBM model
Learning parameters of a RBM model can be achieved by updating

the weight matrix and biases using a gradient descend algorithm

(delta methods; Hinton and Salakhutdinov, 2006).

wtþ1 ¼ wt þ Dw (5)

DWij ¼ �
@logPrðvÞ
@Wij

¼ �ð< vihj>data� < vihj>modelÞ (6)

where � is the learning rate; < vihj>data is the expected product of

the observed data and inferred hidden variables conditioning on

observed variables; < vihj>model is the expected product of the

model-predicted v and h. One approach to derive < vihj>model is to

obtain samples of v and h from a model-defined distribution using

Markov chain Monte Carlo (MCMC) methods and then average the

product of the samples, which may take a long time to converge.

Representing the < vihj>model derived MCMC chain after conver-

gence as < vihj>1, one updates the model parameter wij as follows:

DWij ¼ �ð< vihj>data� < vihj>1Þ (7)

To calculate < vihj>1, one can alternatively sample the states of

hidden variables given visible variables and then sample the states of

visible variables given hidden variables (Salakhutdinov et al., 2007)

based on the following equations.

Prðhj ¼ 1jvÞ ¼ rðbj þ
Xn

i¼1
WijviÞ (8)

Prðvi ¼ 1jhÞ ¼ rðai þ
Xm

j¼1
WijhjÞ (9)

where rðxÞ is the logistic function 1=ð1þ expð�xÞÞ.

The convergence of a MCMC chain may take a long time. Thus,

to make RBM learning more efficient, we adopted a learning algo-

rithm called contrastive divergence (CD) (Welling and Hinton,

2002). Instead of running a MCMC chain for a very large number

of steps, CD learning just runs the chain for a small number n of

steps and minimizes the divergence between Kullback–Leibler diver-

gence KLðp0jj p1Þ and KLðpnjjp1Þ to approximate < vihj>model

(Carreira-Perpinan and Hinton, 2005).

Therefore, the updating algorithm for a parameter of a RBM can

be rewritten as follows:

DWij ¼ �ð< vihj>data� < vihj>modelÞ

¼ �ð< vihj>Prðhjv;wÞ� < vihj>nÞ
(10)

Dai ¼ �ð< vi>data� < vi>nÞ (11)

Dbj ¼ �ð< hj>data� < hj>nÞ (12)

The pseudocode for training a RBM is as follows:

Repeat for t iterations:

1) Infer state of hidden units hj0 given visible units

v0 Prðhj0jv0Þ

Prðhj0 ¼ 1jv0Þ ¼ rðbj
t þ
Xn

i¼1
Wij

tvi0Þ ¼ < hj0 >

2) Gibbs Sampling < hj0 >! binary matrix hj0

3) Infer state of visible units vi1 given hidden units

h0 Prðvi1jh0Þ

Prðvi1 ¼ 1jh0Þ ¼ rðai
t þ
Xm

j¼1
Wij

t < hj0 >Þ ¼ < vi1 >

4) Infer state of hidden units hj1 given visible units

v1 Prðhj1jv1Þ

Prðhj1 ¼ 1jv1Þ ¼ rðbj
t þ
Xn

i¼1
Wij

t < vi1 >Þ ¼< hj1 >

5) Update parameters (weight between visible i and hid-

den j, bias of visible and bias of hidden)

Wij
tþ1 ¼Wij

t þ �ð< vi0
Thj0 > � < vi1

Thj1 >Þ

¼ Wij
t þ �ð< vi0>

T < hj0 > � < vi1>
T < hj1 >Þ

ai
tþ1 ¼ ai

t þ �ð< vi0 > � < vi1 >Þ

bj
tþ1 ¼ bj

t þ �ð< hj0 > � < hj1 >Þ

2.3 Learning a Deep Belief Network
Unlike a RBM, which captures the statistical structure of data using a

single layer of hidden nodes, a DBN strives to capture the statistical

structure using multiple layers in a distributed manner, such that each

layer captures the structure of different degrees of abstraction.

Training a DBN involves learning two sets of parameters: (i) a set of

recognition weight parameters for the upward propagation of infor-

mation from the visible layer to the hidden layers, and (ii) a set of gen-

erative weight parameters that can be used to generate data

corresponding to the visible layer. The learning of recognition weights

can be achieved by treating a DBN as a stack of RBMs and progres-

sively performing training in a bottom-up fashion (Hinton et al.,

2006; Hinton and Salakhutdinov, 2006). For example, one can treat

the visible layer v and the first hidden layer h(1) as a RBM, and then

we can treat hidden layer h(1) as a visible layer and form a RBM with

the hidden layer h(2). Following the stack-wise learning of RBMs

weight parameters and instantiation of hidden variables in the top
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layer, learning the generative weights across all layers can be achieved

by a backpropagation algorithm as in training standard neural net-

works. The pseudo-code for training a 4-layered DBN is as follows:

Input: Binary data matrix

Output: recognition and generative weights

1. Randomly initialize parameters

2. Train RBM for layer 1

3. Train RBM for layer 2

4. Train RBM for layer 3

5. Train RBM for layer 4

6. Backpropagation

2.4 Bimodal DBN (bDBN)
A traditional DBN assumes that data are from one common distri-

bution, and the task is to use distributed hidden layers to capture the

structure of this distribution. However, our task of transferring

the knowledge learned from rat cells to human cells deviates from

the traditional assumption in that humans and rats may use different

pathways and signaling molecules to encode the response to a com-

mon stimulus. Thus our task is to learn a common encoding system

that governs two distributions, which may each have its own mode,

hence a bimodal problem. Inspired by the bimodal deep Boltzmann

machine model and multimodal deep learning (Liang, 2015; Ngiam,

2011; Srivastava and Salakhutdinov, 2012), which uses a multi-lay-

ered deep network to model the joint distribution of images and

associated text, we designed a modified variant of bimodal DBN

(bDBN) to capture the joint distribution of rat and human prote-

omic data. Our hypothesis is that rat and human cells share a com-

mon encoding system that respond to a common stimulus, but

utilize different proteins to carry out the response to the stimulus.

Thus, we can use the hidden layers to represent the common encod-

ing system, which regulates distinct human protein phosphorylation

and rat phosphorylation responses.

2.4.1 Training

Traditional bimodal models dealing with significantly different in-

put modalities such as audio and video (Fig. 3A) (Ngiam, 2011;

Srivastava and Salakhutdinov, 2012) usually require one or more

separate hidden layers to first capture the statistical structure of

each type of data and then model their joint distribution with com-

mon high level hidden layers. However, in our setting, although rat

and human proteomic data have their own modalities, they are not

drastically different. Therefore, instead of using two separate hidden

layers, we devised a modified bimodal DBN, in which a rat training

case and a human training case treated with a common stimulus are

merged into a joint input vector for the bDBN and connected to a

common hidden layer h(1) (Fig. 3B). In this model, the training pro-

cedure is the same as training a conventional DBN using the algo-

rithm described in Section 2.3, but the prediction is carried out in a

bimodal manner. Under this setting, the hidden layers are forced to

encode the information that can be used to generate both rat and

human data, i.e. the hidden layers behave as a common encoder.

2.4.2 Prediction

When using a trained bDBN to predict human cell response to a spe-

cific stimulus based on the observed rat cell response to the same

stimulus, we only used the rat data to update the states of nodes in

the first hidden layer, Pr
�

hð1Þjvrat

�
, with doubled edge weights

(2�W(1)
Rat) from rat variables to hidden variables (red edges in Fig.

4). Then the upper hidden layers were updated using the same

method as in a conventional DBN using the recognition weights.

When the top hidden layer h(4) was updated using rat data, the

bDBN propagated the information derived from rat data down-

wards to h(1) using generative weights as in a feed forward neural

network to predict the human data (Fig. 4A). We finally predicted

the human cell response Pr
�

vhumanjhð1Þ
�

with weights only from hid-

den variables in h(1) to human visible variables.

2.5 Semi-restricted bimodal deep belief network

(sbDBN)
Since signaling proteins in a phosphorylation cascade have regula-

tory relationships among themselves, we further modified the

bottom Boltzmann machine, consisting of h(1) and v, into a semi-re-

stricted Boltzmann (Taylor and Hinton, 2009), in which edges

between proteins from a common species are allowed (Fig. 3C). In

this model, the hidden variables in h(1) capture the statistical struc-

ture of the ‘activated regulatory edges’ between signaling proteins,

instead of ‘activated protein nodes’. In this model, each human

Fig. 3. Training DBN models. (A) A diagram of a conventional bimodal DBN.

The green and orange nodes represent different input modalities, e.g. audio

and video inputs, and each type is first modeled with a separate hidden layer,

and the joint distribution is modeled with a common higher layer hidden

nodes. (B) A 4-layered bimodal DBN for modeling rat and human proteomic

data. The blue and red nodes represent human and rat phosphoproteins re-

spectively. The bottom layer consists of observed variables. Upward arrows

represent recognition weights and downward arrows represent generative

weights. C) A sbDBN. Additional edges between proteins from the same spe-

cies are added

Fig. 2. Graph representation of the Deep Belief Network and related models.

(A) The graph representation of a 4-layered deep belief network. The double

circles represent visible variables, and the single circles represent hidden

variables. (B) The graph representation of a restricted Boltzmann machine.

(C) The graph representation of a semi-restricted Boltzmann machine in

which visible variables are connected
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protein was connected to other human proteins, and the same rule

was applied to each rat protein. However, we didn’t allow inter-

actions between human proteins and rat proteins. The interaction

between proteins, which is represented as I, was added into the

negative phase shown below:

Prðvi ¼ 1jhÞ ¼ rðai þ
Xm

j¼1
Wijhj þ IiÞ (13)

Ii ¼
Xn

k6¼i
vk�pik (14)

where I is the influence of the phosphorylation states of other pro-

teins on that of the ith protein.

Dpik ¼ �ð< vivk>data� < vivk>modelÞ where k 6¼ i (15)

2.6 Performance evaluation
We adopted the evaluation metrics that were used to evaluate and

compare the performance of submitted models in the SBV

IMPROVER challenge, which include AUROC (area under receiver

operator characteristic; Bradley, 1997), AUPRC (area under the pre-

cision-recall curve; Davis and Goadrich, 2006; Goadrich et al.,

2004), Jaccard Similarity (Dombek et al., 2000), Matthews correl-

ation coefficient (Petersen et al., 2011), Spearman correlation (Brott

et al., 1989) and Pearson correlation (Adler and Parmryd, 2010), to

measure the accuracy of the prediction. In all metrics except for

Jaccard Similarity, the higher the score, the more accurate the model

is. We performed a series of cross-validation experiments, in which

we held out the three repeated experiments corresponding to one

stimulus of both rat and human cells, performed model training,

and test the performance using the held-out samples. All results dis-

cussed in the paper were derived from these cross-validation

experiments.

2.7 Model selection
When training a deep hierarchical model, often the first task is to de-

termine the structure of the model, i.e. the number of layers and the

number of hidden nodes per layer. However, currently there is no

well-established method for model selection when training deep

learning models. Therefore, we performed a series of cross-valid-

ation experiments to search for an ‘optimal’ structure for bimodal

and semi-restricted bimodal DBNs. We set the initial structure of

both bDBN and sbDBN to the following ranges: h(1): 30–50; h(2):

25–40; h(3): 20–30; and h(4): 20–25. We iteratively modified the

structure of the model by changing the number of hidden nodes

within a layer using a step size of 5 and explored all combinations in

the range stated above. In this case, the total number of models

tested is 120 (5*4*3*2) for both bDBN and sbDBN. Under each

particular setting, we performed a leave-one-out experiment to as-

sess the performance of a model. In such an experiment, we held out

both human and rat data treated by a common stimulus as the test

case, trained models with data treated by the rest of stimuli, and

then we predicted the states of human phosphoproteins using the

held-out rat data as illustrated in Figure 4. By doing this, we pre-

dicted human data treated by all stimuli, and we evaluated and com-

pared the performance using the AUROC of different models and

retained the model structure that led to the best performance. Note,

during leave-one-out training of a model with a given structure, the

parameters associated with each model can be different, and there-

fore the results reflect the fitness of the model with a particular

structure after averaging out the impact of individual parameters, an

approach closely related to Bayesian model selection (Bishop, 2006).

2.8 Baseline predictive models
As a comparison to bDBN and sbDBN, we formulated the task of

predicting human cell response based on rat cell response to a com-

mon stimulus as a classification problem, and we employed two cur-

rent state-of-the-art classification models, a support vector machine

(SVM) (Bishop, 2006) with a Gaussian kernel (Karatzoglou et al.,

2004) and an elastic-net regularized generalized linear model

(GLMNET) (Friedman et al., 2010) to predict human cell responses.

In this setting, we trained a classification model (SVM or

GLMNET) for one human protein using a vector of rat proteomic

data collected under a specific condition as input features (independ-

ent variables) and the human protein response under the same con-

dition as a binary class variable (dependent variables). We trained

one such classifier for each human protein class. We performed

leave-one-out cross-validation using SVM and GLMNET models re-

spectively. The results predicted by SVM and GLMNET were then

compared with the results predicted by DBN and sbDBN using the

metrics discussed in Section 2.6.

3 Results

3.1 The data
The protein phosphorylation response data in this study was pro-

vided by SBV IMPROVER (SBV IMPROVER, 2013). The data con-

tains the phosphorylation status of 16 proteins collected after

exposing rat and human cells to 26 different stimuli (Table 1). Each

stimulus was repeated 3 times. The SBV IMPROVER organizers

preprocessed the proteomic data into binary values to represent if a

protein was phosphorylated under a specific condition. We directly

utilized the binary input for our DBN models.

3.2 Model selection results
In order to identify the ‘optimal’ model structure that perform well,

we examined the performance of each model with a specific struc-

ture configuration stated in Section 2.7. For a given model, we per-

formed a leave-one-out cross validation experiment and calculated

the AUROC for the model. The average of the AUROCs for 120

bDBN models was 0.80, and the highest one is 0.86. The bDBN

structure yielding the best AUROC consisted of four hidden layers

with the following numbers of nodes 35, 30, 30 and 20, from h(1) to

Fig. 4. Prediction with bDBN and sbDBN models. (A) Prediction with bDBN.

(B) Prediction with sbDBN. When predicting human phosphoprotein states,

information derived from rat phosphoprotein states is propagated upward

using weights represented by red arrows and then propagated downwards

using the weights represented by blue arrows to predict human phosphopro-

tein states
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h(4) respectively. For sbDBN, the mean of the AUROCs for 120 can-

didate models is 0.86 and the highest one was 0.93. The number of

nodes for the four layers for the best sbDBN model was 30, 30, 30

and 20, from h(1) to h(4) respectively. A tentative explanation for the

different numbers in h(1) between bDBN and sbDBN is that the

edges between the visible variables in the sbDBN partially captured

the statistical structures of the visible variables, which reduced the

need for additional nodes in the layer h(1). In the following sections,

we report the results derived from bDBN and sbDBN with these

two specific structures with the highest AUROCs.

3.2.1 Hyper parameters used for model training

The weights were updated using a learning rate of 0.1, momentum

of 0.9 and a weight decay of 0.0002. The weights were initialized

with random values sampled from a standard normal distribution

multiplied by 0.1. Contrastive divergence learning was started with

n¼1 and increased in small steps during training.

3.3 Comparison among different models
Table 2 shows the comparisons between different predictive models

in terms of 6 evaluation metrics. We highlighted the best value for

each metric using bold face letters. When comparing bDBN with

SVN and GLMNET, the results show that bDBN performs better in

terms of AUROC and Spearman’s correlation, but underperformed

in terms of AUPRC, Jaccard similarity, and Pearson correlation.

This is potentially due to the fact that we performed model selection

mainly using AUROC as the criteria. Strikingly, with the addition of

protein-protein edges in the visible layer, the 4-layered sbDBN per-

forms much better than all other models measured in all metrics.

Based on the AUROC value, the performance of the 4-layered

sbDBN>4-layered bDBN> SVM>GLMNET. However, ranking

varies depending on the scoring method. It is known that models

pursuing optimal area under the ROC curve is not guaranteed to op-

timize the area under the Precision-Recall curve (Davis and

Goadrich, 2006). Indeed, we noted that the AUROC for the 4-lay-

ered DBN is better than the one for GLMNET. However, the

AUPRC for the 4-layered DBN is worse than the one for GLMNET

(Table 2; Fig. 5).

3.4 Biological interpretation of learned edges between

proteins in sbDBN
The best predictive power of the sbDBN reflects the importance of

capturing the correlation between signaling proteins. We then inves-

tigated whether the learned correlations between signaling proteins

are biologically sensible, although it should be noted that

Boltzmann machine models cannot infer causal relationships. For

each protein, we picked the top 3 strongest interaction edges for rat

and human respectively, and we organized the results as shown in

Figure 6. In this figure, if the interaction between a pair of proteins

exists in both rat and human data, the edge is colored green. If the

interaction is rat only, there is a blue line between the two proteins.

If the interaction is human only, there is a red line between the two

proteins. The results indicate that, while some common correlations

are shared between rat and human cells, different covariance struc-

ture exists in different proteomic data.

Due to the fact that signal transduction in live cells are dynamic

events, it is difficult to thoroughly evaluate the accuracy of inferred

interactions even through further experimentations. Conventional

evaluation metrics such as sensitivity and specificity are difficult to

assess in this study. Since it is possible that the signal transduction

between a pair of proteins known to have a regulatory relationship

may not be present under the experimental conditions of this study,

accurately assessing sensitivity is challenging; similarly, since there

are seldom reports or databases stating that signal transduction

never occurred between a pair of proteins, it is challenging to assess

if the lack of an edge between a pair of proteins in our model really

represents a true negative outcome. As such, conventional metrics

such as AUROC cannot be applied in our evaluation. However, we

noted that we were able to assess with reasonable confidence the

positive predictive value (PPV) of the model, i.e. the percentage of

the predicted signal transduction interactions that is known in litera-

ture. We performed a comprehensive literature review and cited the

references supporting the predicted regulatory relationship and

known protein-protein interactions in Supplementary Tables. The

results indicate that most of the predicted regulatory relationships

Table 1. Proteins and stimuli involved in this study

Stimuli 5AZA, AMPHIREGULIN, BETAHISTINE, BISACODYL,

CHOLESTEROL, CLENBUTEROL, EGF, EGF8,

FLAST, FORSKOLIN, HIGHGLU, IFNG, IGFII, IL4,

MEPYRAMINE, NORETHINDRONE, ODN2006,

PDGFB, PMA, PROKINECITIN2, PROMETHAZINE,

SEROTONIN, SHH, TGFA, TNFA, WISP3, DME

Proteins AKT1, CREB1, FAK1, GSK3B, HSPB1, IKBA, KS6A1,

KS6B1, MK03, MK09, MK14K11, MP2K1, MP2K6,

PTN11, TF65, WNK1

Fig. 5. ROC and RPC curves of different models. (A) Performance results of

four models in terms of AUROC. (B) Performance results of four models in

terms of AUPRC

Table 2. Leave-one-out accuracy scores of models

AUPRC AUROC Jaccard.

Similarity

Matthews.

Correlation. Coefficient

Speaman.

Correlation

Pearson.

Correlation

4-layered bDBN 0.417 0.859 0.750 0.373 0.323 0.235

4-layered sbDBN 0.632 0.936 0.531 0.616 0.391 0.460

SVM 0.493 0.724 0.692 0.411 0.231 0.392

GLMNET 0.444 0.709 0.717 0.374 0.194 0.282
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are supported by the literature or have evidence of physical inter-

actions between the proteins. Thus, the results support the notion

that the sbDBN correctly captured the correlation (thereby signal

transduction or cross talks) between phosphoproteins.

4 Discussion

In this study, we investigated the utility of novel deep hierarchical

models in a trans-species learning setting. To our knowledge, this is

the first report using deep hierarchical models to address this type of

problem. Our results indicate that, by learning to represent a com-

mon encoding system for both rat and human cells, the deep learn-

ing models outperform contemporary state-of-the-art classifiers in

this trans-species learning task.

The empirical success of deep hierarchical models may be attrib-

uted to the following advantages. First, the DBN is capable of learn-

ing novel representations of the data that are salient to the task at

hand. The DBN models are more compatible to the biological sys-

tems that generate the observed data. The hidden variables at the

different layers of the DBN models can capture information with

different degrees of abstraction, thus allowing the models to capture

a more complex covariance structure of the observed variables. It is

possible that hidden nodes at lower layers, e.g. h(1), directly capture

the covariance of the observed protein phosphorylation states,

whereas the higher layers can capture the crosstalk between signal-

ing pathways that only occur in response to specific stimuli. Thus,

shallow models that only concentrate on the covariance at the level

of observed variables, such as SVM and elastic network, would have

difficulties capturing such a high-level covariance structure of the

data. It is now well appreciated that feature-learning methods, such

as DBN, tend to outperform feature selection methods in complex

domains, such as image classification and speech recognition

(Bengio et al., 2012; Hinton et al., 2006; Hinton and Salakhutdinov,

2006). Second, DBN strives to learn the common encoding system

for both human and rat data, and it naturally performs multi-label

classification by taking into account the covariance of the class vari-

ables. However, a conventional classifier, such as a SVM, can only

predict one human protein as the class variable in an independent

manner, thus failing to capture the covariance of class variables and

yielding inferior performance.

The sbDBN model developed in this study provides a novel ap-

proach capable of simultaneously learning interactions and predict-

ing the state of phosphoproteins. Interestingly, the model assigns

differential weights to the edges between phosphoproteins when

comparing those from rat and human cells, which potentially indi-

cates that different parts of signaling pathways are preferentially uti-

lized in a species-specific manner. However, this hypothesis still

needs to be experimentally tested in a relatively larger dataset.

Deep hierarchical models are particularly suited for modeling

cellular signaling systems, because signaling molecules in cells are

organized as a hierarchical network and information in the system is

compositionally encoded. Our results indicate that DBNs were cap-

able of capturing the complex information embedded in proteomic

data. Interestingly, in contrast to the training of deep learning mod-

els in a machine learning setting such as object recognition in image

analysis where usually a large number of training cases is required,

our results show that the DBN models performed very well given a

moderate size of training cases. This indicates that biological data

tend to have strong signals that can be captured by DBNs with rela-

tive ease. Our study demonstrates the feasibility of using deep hier-

archical models to simulate cellular signaling systems in general, and

we foresee that deep hierarchical models will be widely used in sys-

tems biology. For example, one can use deep hierarchical models to

study how cells encode the signals regulating gene expression, to de-

tect which signaling pathway is perturbed in a specific pathological

condition, e.g. cancer. Finally, models like our bDBN and sbDBN

provide a novel approach to simultaneously model multiple types of

‘omics’ data in an ‘integromics’ fashion.
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