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Abstract

Motivation: Detection of allelic imbalances in ChIP-Seq reads is a powerful approach to identify

functional non-coding single nucleotide variants (SNVs), either polymorphisms or mutations,

which modulate the affinity of transcription factors for chromatin. We present ABC, a computa-

tional tool that identifies allele-specific binding of transcription factors from aligned ChIP-Seq reads

at heterozygous SNVs. ABC controls for potential false positives resulting from biases introduced

by the use of short sequencing reads in ChIP-Seq and can efficiently process a large number of het-

erozygous SNVs.

Results: ABC successfully identifies previously characterized functional SNVs, such as the

rs4784227 breast cancer risk associated SNP that modulates the affinity of FOXA1 for the

chromatin.

Availability and implementation: The code is open-source under an Artistic-2.0 license and ver-

sioned on GitHub (https://github.com/mlupien/ABC/). ABC is written in PERL and can be run on any

platform with both PERL (�5.18.1) and R (�3.1.1) installed. The script requires the PERL

Statistics::R module.

Contact: mlupien@uhnres.utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands

of single nucleotide variants (SNV) representing genomic loci associ-

ated with human traits and disease (Hindorff et al., 2009). The

causal variant(s) underlying each association are hard to identify be-

cause most of the associated loci fall outside of annotated genes

(Schaub et al., 2012). ChIP-Seq allows for the identification of tran-

scription factor (TF) binding sites across the genome (Furey, 2012).

Functional studies have shown that many trait/disease-associated

loci modulate the affinity of TFs for chromatin (Zhang et al., 2014).

Noncoding somatic mutations found in tumors can also modulate

TF binding to promote tumor growth and progression (Horn et al.,

2013; Huang et al., 2013). The generation of ChIP-seq data for TFs

in normal cells and tumors (Dunham et al., 2012; Ross-Innes et al.,

2012) provides an opportunity to directly assess the functional effect

of risk-variants and somatic mutations on TF binding. This creates a

need for a computational tool to systematically identify SNVs im-

parting an allelic imbalance in TF binding to the chromatin.

To eliminate alignment biases existing tools (Reddy et al., 2012;
Rozowsky et al., 2011; Younesy et al., 2014) incorporate the align-
ment of the ChIP-Seq reads to two separate genomes. The use of
two representative parental genomes assumes a diploid set of
chromosomes. Therefore, the applicability of these tools to cancer
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samples may be limited. Tumor samples harbor numerous chromo-
somal abnormalities and exhibit clonal heterogeneity, which implies
that some inherited SNVs and somatic mutations, in particular, are
unlikely to be present at an equal ratio within tumors. In addition,
assigning the alleles of multiple somatic SNVs to the correct haplo-
type in tumor samples may prove to be challenging. We addressed
this issue by designing the allele-specific binding from ChIP-Seq
(ABC) tool. Our approach does not require phased haploid genomes
and can readily serve to call allele-specific TF binding to the chroma-
tin from normal or cancer samples where genotype information is
available.

2 Methods

The number of ChIP-Seq reads is proportional to the binding inten-

sity of the profiled TF. Each ChIP-Seq read spanning a SNV will

contain the allele that was sequenced. A deviation from the expected

proportion of reads mapping to each allele of heterozygous SNVs in-

dicates an allelic imbalance in TF binding. The null expectation

within ChIP-Seq reads should be equal to the genomic allele ratio

(gAR) or the number of reads mapping to each allele in the genomic

DNA. Accounting for the gAR adequately controls for biases caused

by differences in copy number (CNVs and aneuploidy), clonal het-

erogeneity or mapping to a reference genome (Degner et al., 2009),

assuming similar read lengths, since these biases should affect both

the genomic and ChIP-Seq reads equally. ABC applies a binomial

probability test to call an allele-specific bias in the ChIP-Seq reads

using the observed gAR as the expected occurrence of the two al-

leles. ABC requires aligned reads from a ChIP-Seq experiment in

Sequence Alignment/Map (SAM) format (Li et al., 2009) and a file

containing the position, strand, observed alleles and the gAR of het-

erozygous SNVs. Ideally the gAR is calculated from genomic

sequencing reads of similar length aligned to the same reference

genome.

Unprocessed ChIP-Seq reads result in two strand-specific read

pile-ups (peaks) surrounding the location of a TF-binding site (Fig.

1A). Binding site(s) can be inferred by extending the mapped reads

in a strand-specific manner by an estimated fragment size (Park,

2009). Thus, the detection of an allelic imbalance using only aligned

reads has the most power on the edges of a binding site and not

within the centre. The available read information for a SNV is also

limited to twice the read length used (Fig. 1B).

However, a SNV’s position can be inferred by assessing the strand

distribution of the reads containing each allele. Reads containing a SNV

that map in both orientations identify SNVs closer to the centre of a

binding site. ABC performs a Fisher’s exact test to determine that the

strand distribution is similar for both alleles. Unlike genomic DNA

sequencing the expectation of equal coverage of a SNV by reads in both

orientations is not held for reads derived from ChIP-Seq assays (Fig.

1A). A position bias where the alleles of a SNV are not equally distrib-

uted along the length of the reads spanning it can be used to identify po-

tential false-positive allelic imbalances. ABC applies a Mann-Whitney U

test to assess a potential read position bias observed between the alleles.

Confidence in the allele-specific binding called can also be gained by ac-

counting for the maximum signal intensity found within the window

surrounding the SNV. Instructions and a tutorial on how to run ABC

can be found in the Supplementary Information.

3 Results

The rs4784227 SNP imposes allele-specific binding of FOXA1 in

MCF7 cells based on ChIP-qPCR (Cowper-Sal lari et al., 2012).

Using ABC against FOXA1 ChIP-Seq data from MCF7 cells

(Hurtado et al., 2011) reports increased binding intensity of FOXA1

to the variant versus reference allele of the rs4784227 SNP.

Specifically, 53 aligned reads from the FOXA1 ChIP-Seq data map

to the variant allele while 26 map to the reference allele

(P¼3.18�10�3) (Fig. 1C). No strand or position biases are

observed (P>0.05) and a high processed signal is reported at this

site (normalized read depth¼128). In addition, we applied ABC

genome-wide to identify SNVs modulating binding affinity of the

PU.1 (or SPI1) (Supplementary Information) and ZNF143(Bailey

et al., 2015) in GM12878 cells.

ABC provides the ability to identify allelic imbalance in TF bind-

ing, similar to a traditional allele-specific ChIP-qPCR assay and to

what is reported by Ni and colleagues (Ni et al., 2012). However,

we do not attempt to call SNVs from the ChIP-Seq data and we con-

trol for potential biases in the alignment across alleles. ABC can be

used to help understand the role of SNVs associated with traits or

disease by directly assessing their capacity to modulate TF binding

to the chromatin.

Fig. 1. The ABCs of ChIP-Seq. (A) DNA fragments (black) are sequenced from

both ends in ChIP-Seq assays. The reads (grey) are short and less than the

DNA fragment size selected for sequencing. Reads map to the positive (solid

grey) and negative (dashed grey) strands. The TF binding site (black) is

inferred by extending the reads in a strand-specific manner. (B) The SNV’s lo-

cation within the TF binding site can be inferred from the aligned reads. The

distribution of total, positive and negative strand reads should be equal be-

tween alleles. The coverage window of a SNV is limited to twice the read

length used (dashed green lines). (C) Allele-specific binding of FOXA1 caused

by the rs4784227 SNV. The reads containing the reference (red) and variant

(blue) alleles, as well as the distribution of the positive (solid grey) and nega-

tive (dashed grey) reads are shown (left). The interpretation of the results is

illustrated (middle) indicating the preference of the TF (green) for the variant

allele. The processed signal, peak, is shown (right)
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