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 Abstract 
  Background:  Colorectal cancer (CRC) is a leading cause of cancer-related mortality world-
wide whose incidence has increased rapidly in recent years. There is growing evidence that 
the complex gut microbiota community plays an important role in the development of intes-
tinal tumorigenesis.  Summary:  This review aimed to explore the correlation between gut mi-
crobiota and CRC as well as to identify the pathogens and their metabolites that affect CRC 
and the potential models of gut microbiota action. It promotes our understanding of the cor-
relation between gut microbiota and CRC.  Key Message:  Our knowledge of the risk factors 
associated with gut microbiota for CRC development, as well as of the mechanism how intes-
tinal bacteria act on colorectal tumorigenesis, has improved, leading to a better understand-
ing of the correlation between gut microbiota and CRC.  Practical Implications:  The intestinal 
microbiota community has a close relationship with CRC by influencing the mechanism of the 
body and by regulating the physiological function of the colorectum and even the entire di-
gestive system. Gut microbiota have been linked to CRC based upon their toxic and geno-
toxic metabolites production by fermentation of dietary ingredients. These metabolites could 
bind specific intestinal cell surface receptors and subsequently affect intracellular signal trans-
duction. The mechanisms by which gut microbiota affect CRC development include the ‘Al-
pha-bug’ model, the ‘driver-passenger’ model and the ‘intestinal microbiota adaptions’ mod-
el. This review promotes our understanding of the correlation between gut microbiota and 
CRC.  © 2015 S. Karger AG, Basel 
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 Introduction 

 Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide whose 
incidence has increased rapidly in recent years  [1] . It is often the case that complex causes 
lead to malignant tumorigenesis. Infectious agents, such as bacteria or viruses, are associated 
with several types of cancer  [2] . These cancers tend to have a high level of exposure to 
microbes in tissues. Several direct associations between microbes and cancer have ben iden-
tified over the past 30 years, including  Helicobacter pylori  and gastric cancer, human papil-
lomavirus and cervical cancer, or hepatitis B virus and liver cancer  [3, 4] . There is growing 
evidence that the complex gut microbiota community plays an important role in the devel-
opment of intestinal tumorigenesis  [5–8] . In this review, we will explore the risk factors asso-
ciated with gut microbiota in the development of CRC, as well as the relationship between gut 
microbiota and CRC.

  Overview of Human Gut Microbiota 

 There are about 100 trillion bacteria in the human intestine, of varying and elaborate 
structures, which constitute the intestinal microbiome  [9] . The human gut microbiota are 
dominated by facultative anaerobes, including  Lactobacilli ,  Enterococci ,  Streptococci  and 
 Enterobacteriaceae , and by strict anaerobes, including  Bacteroides ,  Eubacterium ,  Bifidobac-
terium ,  Fusobacterium ,  Peptostreptococcus  and  Atopobium   [10] . There are more than 500 
different species that may be present in the commensal microbiota of normal intestines  [11] . 
This large group of bacteria are referred to as intestinal symbiotic bacteria, because of their 
mutualistic and interdependent relationship with the human body during the long period of 
co-evolution  [12] .

  Some specific strains of bacteria have been classified as pathogens for cancer, such as 
 Streptococcus bovis ,  H. pylori ,  Fusobacterium nucleatum  and  Enterococcus faecalis   [2, 13–16] . 
In addition, some strains of bacteria, including  Lactobacillus acidophilus  and  Bifidobacterium 
longum , may inhibit colorectal tumorigenesis  [17, 18] . The intestinal microbiota community 
has a close relationship with CRC by both influencing mechanism of the body and regulating 
the physiological function of the colorectum and even the entire digestive system  [12, 19] .

  Gut Microbiota and Their Metabolites in the Promotion of CRC 

 Gut microbiota have been linked to CRC based upon their toxic and genotoxic metabolites 
production by fermentation of dietary ingredients. These metabolites could bind specific 
intestinal cell surface receptors and subsequently affect intracellular signal transduction.

  Enterotoxigenic Bacteroides fragilis 
 Enterotoxigenic  Bacteroides fragilis  (ETBF) acts during the initiation phase of CRC by 

producing  B. fragilis  toxin  [20] . In addition to its direct genotoxic effect,  B. fragilis  toxin 
stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin 
cleavage  [21] . This cleavage increases the permeability of the intestinal barrier and triggers 
β-catenin/Wnt signaling transduction in intestinal epithelial cells, which contributes to the 
proliferation and oncogenic transformation of CRC  [22] . ETBF triggers colitis and induces 
colon tumorigenesis in multiple intestinal neoplasia (Min) mice via activation of signal 
transducer and activator of transcription 3 (STAT3) and T helper type 17 T cell responses 
 [23] .
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  Sulfate-Reducing Bacteria 
 Sulfate-reducing bacteria are anaerobic microorganisms that can obtain energy by 

oxidizing organic compounds or molecular hydrogen (H 2 ) while reducing sulfate (SO 4  2– ) to 
hydrogen sulfide (H 2 S). These organisms ‘breathe’ sulfate rather than oxygen in a form of 
anaerobic respiration. The sulfate-reducing bacteria mainly consist of the  Deltaproteobac-
teria , including the orders of sulfate-reducing bacteria, including  Desulfobacterales ,  Desulfo-
vibrionales  and  Syntrophobacterales , which account for the largest group of sulfate-reducing 
bacteria  [24] . The second largest group is found among the  Firmicutes , including the genera 
 Desulfotomaculum ,  Desulfosporomusa  and  Desulfosporosinus . Other studies have shown that 
H 2 S produced by sulfate-reducing bacteria is toxic to intestinal epithelium cells  [25] . Further, 
Attene-Ramos et al.  [26]  found that even low concentrations of H 2 S can cause significant DNA 
damage in human cells.

  Fusobacterium nucleatum 
 In 2012,  F. nucleatum  was identified as a potential pathogen of CRC in an analysis of the 

gut microbial structures of CRC tissues versus matched normal tissues from the same 
subject  [2, 16] . A dominant enrichment of  Fusobacterium  spp. sequences associated with 
CRC tissues has been observed, using 16S rDNA and metagenomic analyses.  Fusobacterium  
spp. act as invasive anaerobes in oral infections as well as in appendicitis and inflammatory 
bowel disease  [16, 27] . Recent studies have provided experimental support for  F. nucleatum -
mediated induction of colonic tumorigenesis. Apc(Min/+) mice showed a significant in-
crease in colon and small bowel tumors after continuous exposure to  F. nucleatum   [28] . 
Data revealed that  F. nucleatum  could change the tumor microenvironment of colonic 
tumors, inducing an increase in myeloid-derived immune cells and upregulating inflam-
mation-associated genes. The data also showed a gradient abundance of  F. nucleatum  in 
feces among healthy and tumor patients. These results suggested that  Fusobacterium  
detection might not be a sufficient biomarker for identifying patients at high risk of CRC  [28, 
29] .

  Reactive Oxygen Intermediates 
 Reactive oxygen intermediates are chemically reactive molecules containing oxygen, 

including often superoxide, hydrogen peroxide, hypochlorous acid, singlet oxygen and 
hydroxyl free radicals. Growing evidence suggests that reactive oxygen intermediates play a 
part in the development of CRC by inducing oxidative DNA damage  [30] . Huycke et al.  [31]  
observed that the intestinal symbiotic bacterium  E. faecalis  produced extracellular super-
oxide and hydrogen peroxide, leading to intestinal epithelial cell DNA damage in vivo and in 
vitro.  E. faecalis  also demonstrated the ability to induce dysplasia and carcinoma in IL-10 –/–  
mice, results that could not be observed in germ-free mice  [32] . Based on these studies, we 
speculate that reactive oxygen intermediates play an important role in CRC by inducing 
colonic epithelial cell DNA damage in the process of inflammation.

  Bile Acid and Secondary Bile Acid 
 Gut microbiota play an important role in the metabolism of bile acid in human intestines. 

Certain bacteria transform bile acid to secondary bile acid via 7α-dehydroxylation  [33] . 
Secondary bile acids, especially deoxycholic acid (DCA), are thought to be genotoxic, having 
the effect of promoting colon tumorigenesis  [34] . DCA caused intestinal epithelium DNA 
damage that might lead to apoptosis, and triggered apoptosis in a p53-independent manner 
 [35] . Many studies have proved that DCA is associated with CRC: high concentrations of fecal 
DCA increase the risk of CRC  [36] .
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  How Do Gut Microbiota Affect the Development of CRC? 

 The ‘Alpha-Bug’ Model 
 Sears and colleagues  [23, 37]  proposed the ‘Alpha-bug’ model after clarifying the capacity 

of ETBF to induce colonic tumors in Min mice. The ‘Alpha-bug’ hypothesis integrates the 
single intestinal bacteria and gut microbiome community views of microbial tumorigenesis. 
‘Alpha-bugs’ was defined as certain intestinal commensal bacteria that produce epithelium 
gene mutations directly as well as indirectly.

  ETBF rapidly triggers the exclusive activation of STAT3, which is a member of a family of 
transcription factors mediating T cell lineage development, serving as key regulators of 
tumorigenesis  [38] . Additionally, STAT3 activation is required for the induction of Th17 
immune responses, which might promote cancer in cooperation with the modified colonic 
epithelium  [23] . This model suggests that ETBF promotes colonic tumorigenesis by modi-
fying the epithelium and mucosa immune function as well as the intestinal microenvironment. 
The modification of the colon epithelium includes the activation of certain signal transduction 
pathways  [38–40] , and epithelium DNA damage, which promotes CRC through releasing the 
toxin by ETBF  [41]  or the release of reactive oxygen intermediates by inflammatory cells  [42] .

  ‘Alpha-bugs’ bacteria may enhance carcinogenesis by their permanent presence and by 
selective ‘crowding out’ of cancer-protective intestinal bacteria. There are several candidate 
‘Alpha-bugs’, including ETBF,  Streptococcus gallolyticus  (also known as  S. bovis ), superoxide-
producing  E. faecalis  and  Escherichia coli   [31, 43–45] .

  The ‘Driver-Passenger’ Model 
 Recently, high-throughput sequencing technology has allowed us to explore the gut 

microbial structures of healthy and diseased body sites. Several experimental data sets 
support a possible role for gut microbiota in CRC  [2, 7, 16, 46] . Based on this, Tjalsma et al. 
 [47]  firstly proposed a bacterial counterpart of the genetic ‘driver-passenger’ model of CRC, 
which will be incorporated into the genetic paradigm of CRC progression. The ‘driver-
passenger’ model is different from the ‘Alpha-bug’ model. The ‘driver-passenger’ model 
suggests that ‘driver’ bacteria initiate CRC and that these ‘driver’ bacteria are then replaced 
by ‘passenger’ bacteria; either one can promote CRC development. First, certain intestinal 
symbiotic bacteria drive epithelium cell DNA damage (termed bacterial drivers). Second, 
colorectal tumorigenesis is mediated by alterations to the intestinal microenvironment, 
which are conducive to the proliferation of certain opportunistic pathogens or probiotics 
(termed bacterial passengers)  [47] , such as  Fusobacterium  spp.  [2, 16] ,  S. bovis   [48, 49]  and 
 Roseburia  spp.  [46] .

  To summarize, bacteria of the ‘driver-passenger’ model have distinct roles in CRC and 
imply differences in their temporal association with the colonic mucosa. This correlates with 
alterations of gut microenvironment during CRC progress. Furthermore, recent studies of gut 
microbiota reported the higher and lower representation of certain bacteria in tumor tissue, 
stating that although bacteria drivers are underrepresented, they may be present in low, but 
sufficient, abundance. The colonization of bacteria drivers in tumor tissue is likely to depend 
on strain-specific virulence characteristics. The propensity for colonization may depend on 
the specific genotype and expression profile of certain strains.

  The ‘Intestinal Microbiota Adaptions’ Model 
 The development of CRC results through a lengthy process from normal tissue to hyper-

plasia, adenoma and, eventually, carcinoma  [50] . During this process, the intestinal micro-
biota maintain a dynamic balance, termed ‘adaptions’  [51] . ‘Intestinal microbiota adaptions’ 
is dependent on the stability and resilience of the human gut microbiota  [52] . Resilience is 
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the amount of stress or disturbance that can be tolerated before a system is modified towards 
a different equilibrium state  [52] .

  Under healthy conditions, gut microbiota maintain homeostasis with the human body 
and the intestinal microenvironment. This balance may be disrupted if the microbiota micro-
environment is stimulated by factors in vivo or in vitro. The composition of the gut microbiota 
becomes modified according to the host’s physiological state. Factors including heredity, diet 
and environment contribute to the function of pathogens, inducing CRC occurrence. At the 
same time, the growth of a tumor leads to changes in the intestinal mucosal barrier function 
and local tumorigenesis microenvironment, which are conducive to shifting the equilibrium 
state of the intestinal microenvironment. Some bacteria will thrive in the new intestinal 
microenvironment, while other bacteria unsuitable for survival decrease or even disappear, 
reflecting the fact that gut microbiota are affected by the occurrence of CRC. Despite highly 
diverse intestinal microbiota composition, the core functional profiles are quite similar in 
different subjects. When cancer-promoting bacteria are dominant, the environment will be 
conducive to the occurrence and development of CRC; in contrast, when cancer-inhibiting 
bacteria are dominant, colorectal tumorigenesis will be blocked  [47] . However, more research 
is required to reveal the correlation between changes in the intestinal microenvironment and 
microbiota homeostasis.

  Conclusions 

 Over the last decades, CRC as a common, deadly human disease has been a hot topic in 
both preclinical and clinical medicine studies. Several clinical studies and experimental 
models have linked the gut microbiota with the occurrence of CRC. Gut microbiota may play 
a role in CRC development by influencing the body’s mechanism and by regulating the physi-
ological function of the colorectum and even the entire digestive system. Therefore, further 
studies are needed to determine the association of the gut microbiota and the host immune 
system with CRC tumorigenesis. This will lead to a deeper understanding of the mechanism 
of the gut microbiota’s effect on CRC and the shift in microbiota homeostasis under the 
influence of tumors.
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