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SUMMARY

Articular cartilage degeneration is hallmark of osteoarthritis (OA). Low-grade chronic 

inflammation in the joint can promote OA progression. Emerging evidence indicates that 

bioenergy sensors couple metabolism with inflammation to switch physiological and clinical 

phenotypes. Changes in cellular bioenergy metabolism can reprogram inflammatory responses, 

and inflammation can disturb cellular energy balance and increase cell stress. AMP-activated 

protein kinase (AMPK) and sirtuin 1 (SIRT1) are two critical bioenergy sensors that regulate 

energy balance at both cellular and whole-body levels. Dysregulation of AMPK and SIRT1 has 

been implicated in diverse human diseases and aging. This review reveals recent findings on the 

role of AMPK and SIRT1 in joint tissue homeostasis and OA, with a focus on how AMPK and 

SIRT1 in articular chondrocytes modulate intracellular energy metabolism during stress responses 

(e.g., inflammatory responses) and how these changes dictate specific effector functions, and 

discusses translational significance of AMPK and SIRT1 as new therapeutic targets for OA.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis. Aging, obesity and biomechanical 

injury increase the risk of developing OA1. The central characteristic of OA is progressive 

degeneration of cartilage, which leads to permanent functional joint failure and disability1. 

However, OA is a disorder of the whole synovial joint organ1. Other joint tissues such as 

synovium and subchondral bone are also affected in OA1–4. Increasing evidence indicates 

that low-grade local joint inflammation (synovitis), induced by endogenous molecular 

products derived from cellular stress and extra-cellular matrix disruption acting through 

innate inflammatory network, can influence integrity and function of articular cartilage and 

promote OA progression5,6. Low-grade systemic inflammation resulted from metabolic 
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disturbance could also contribute to OA progression7. Mounting an inflammatory response 

is an energy-intensive process8,9. The concept of interplay between cellular bioenergetics/

metabolism and inflammation has been emerged8–10. Pro-inflammatory mediators alter 

cellular energy metabolism. Disturbances in the maintenance of cellular energy balance 

trigger cell stress and induce inflammation8–10. Effective regulation of cellular energy 

metabolism is critical for tissue homeostasis11. AMP-activated protein kinase (AMPK) and 

sirtuin 1 (SIRT1) are two critical energy sensors that regulate energy balance at both cellular 

and whole-body levels11. The aim of this review is to discuss recent advancement in 

understanding the role of AMPK and SIRT1 in joint tissue homeostasis and OA, and their 

potential to be used as therapeutic targets in OA.

Function of AMPK and SIRT1 in articular cartilage

Articular cartilage is an avascular and hypoxic connective tissue12. Chondrocytes embedded 

in the articular cartilage have to cope with a nutritionally challenging environment in which 

metabolic demands may change due to alterations in biomechanical demands, local 

inflammatory mediators, aging and other factors12. Glucose transport and glycolysis, and 

less so mitochondrial oxidative phosphorylation (OXPHOS), provide the primary sources of 

metabolic energy in articular chondrocytes12,13.

AMPK in chondrocytes

AMPK, a serine/threonine kinase, is a master regulator of cellular energy balance, whose 

notable conservation in evolution supports its fundamental role in cell biology14,15. AMPK 

exists in essentially all eukaryotic cells in the form of heterotrimeric complexes comprising 

catalytic α-subunits and regulatory β- and γ-subunits. Each subunit has 2–3 isoforms (α1, 

α2, β1, β2, γ1, γ2, γ3) encoded by different genes14,15. Importantly, phosphorylation of a 

conserved threonine within the catalytic domain of both the α1 and α2 subunits (which are 

90% homologous in their catalytic cores) is crucial for AMPK activity14,15. Articular 

chondrocytes express α1, α2, β1, β2 and γ1 isoforms of AMPK subunits, and α1 appears to 

be the predominantly expressed and functionally active AMPK α isoform16. AMPK is 

activated by metabolic stress (e.g., nutrient deprivation, hypoxia, heat shock, and exercise/

muscle contraction)14,15. Once activated, AMPK responds by phosphorylating multiple 

downstream targets, which allow inhibition of pathways that consume ATP such as fatty 

acid, phospholipid, and protein biosynthesis, and activation of pathways that generate ATP 

such as glucose uptake and fatty acid oxidation14,15. In this manner, AMPK allows cells to 

adjust to changes in energy demand14,15. AMPK can also be activated by pharmacological 

compounds such as the nucleotide mimetic AICAR (5-aminoimidazole-4-caboxamide 1-b-D-

ribofuranoside), and A-769662 which is a selective and direct AMPK activator14,15.

We discovered that phosphorylation of AMPKα Thr172 (indication of AMPK activity) is 

constitutively present in normal articular chondrocytes/cartilage, but is decreased in human 

knee OA chondrocytes/cartilage16, in mouse knee OA cartilage17, and in aged mouse knee 

cartilage17. In addition, phosphorylation of AMPKα is decreased, correlated with increased 

catabolic responses in normal chondrocytes challenged with either inflammatory cytokines 

IL-1β and TNFα or biomechanical injury16,17. Moreover, AMPK pharmacological activators 
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are able to reverse these effects16,17. These data suggest that sustained AMPK activity in 

articular chondrocytes could be critical for cartilage matrix homeostasis.

Regulation of AMPK activity involves phosphorylation by upstream kinases. The liver 

protein kinase B1 (LKB1) is thought to be the primary upstream kinase that phosphorylates 

AMPKα Thr17214,15. This is true in articular chondrocytes, as phosphorylation of AMPKα 

is nearly completely inhibited in LKB1 knockdown chondrocytes17. In addition, 

chondrocyte catabolic responses to IL-1β and TNFα are significantly enhanced in LKB1 

knockdown chondrocytes17. Interestingly, concomitant reduction of phosphorylation of both 

LKB1 and AMPKα is observed in primary human knee OA chondrocytes, in mouse knee 

OA cartilage, in aged mouse knee cartilage, and in chondrocytes challenged with 

mechanical injury17, indicating that dysregulation of LKB1 in aged and OA cartilage may 

play a major role in suppression of AMPK activation. AMPK activity, on the other hand, 

can be negatively regulated through de-phosphorylation by protein phosphatases such as 

protein phosphatase 2A (PP2A) and PP2Cα14,15. We found that phosphorylation of AMPKα 

(Thr172) was increased, while catabolic responses were decreased in the PP2Ca knockdown 

chondrocytes stimulated with IL-1β and TNFα (unpublished observation). Thus, 

chondrocytes with reduced AMPK activity are more susceptible to inflammation-induced 

catabolic responses (Fig. 1).

SIRT1 in chondrocytes

SIRT1, another evolutionary conserved energy sensor, is a member of sirtuins that are 

nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylases, acting on a wide 

range of protein substrates11,18,19. Expression of SIRT1 is decreased in both human and 

mouse knee OA cartilage, as well as in aged mouse knee cartilages20–22. Inhibition of 

SIRT1 in chondrocytes leads to increased apoptosis and enhanced pro-catabolic responses to 

IL-1β and TNFα23–25. Moreover, SIRT1 promotes cartilage-specific gene expression26, 

protects chondrocytes from radiation-induced senescence27, and inhibits apoptosis in 

chondrocytes23,28,29. SIRT1 enhances human OA chondrocyte survival by repressing 

protein tyrosine phosphatase 1B (PTP1B), a potent pro-apoptotic protein23. Furthermore, 

adult heterozygous Sirt1 knockout (KO) mice and mice with a Sirt1 point mutation exhibit 

increased OA progression29,30, and cartilage-specific Sirt1 KO mice develop accelerated 

OA progression22. Clearly, SIRT1 has a chondroprotective role.

AMPK and SIRT1 in chondrocyte stress resistance

Activation of AMPK is shown to stimulate the functional activity of SIRT1 by increasing 

the intracellular concentrations of NAD+ in several different cell types11,31. SIRT1 

deacetylates LKB1, which subsequently increase LKB1 activity, leading to AMPK 

activation11,31. The same scenario was seen in articular chondrocytes as well (unpublished 

observation). This positive feedback loop between SIRT1 and AMPK could potentiate the 

function of AMPK, and effectively control cellular energy balance11,31. Importantly, AMPK 

and SIRT1 not only regulate cellular energy metabolism, but also coordinate several 

housekeeping mechanisms to increase cell stress resistance via certain downstream 

mediators.
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Regulation of mitochondrial biogenesis and function

AMPK phosphorylates PGC-1α (peroxisome proliferator-activated receptor γ co-activator 

1α) protein that subsequently allows SIRT1 to deacetylate and activate PGC-1α11,31. 

PGC-1α, a transcriptional co-activator, is a master regulator of mitochondrial biogenesis and 

function11,31. The primary function of mitochondria is to produce ATP through the process 

of OXPHOS, transduced by the respiratory complexes (I–IV) and the ATP synthase 

(complex V)13,32. Mitochondrial function is known to decline with aging33. As cells age, the 

efficacy of the mitochondrial respiratory chain tends to diminish, thus increasing electron 

leakage that leads to increases in reactive oxygen species (ROS) production and oxidative 

damage, and reduced ATP generation33. Mitochondrial function is impaired in OA 

chondrocytes, reflected by decreased numbers of mitochondria and activity of respiratory 

complexes I, II and III13,32,34. Although the majority of the ATP in chondrocytes is made by 

glycolysis rather than by OXPHOS, ATP levels per chondrocyte are reduced despite 

glycolysis is increased in OA chondrocytes35, which not only contributes to decreased 

mitochondrial bioenergetic reserve36–38, but also adversely affects cellular redox 

balance39–42, and chondrocyte homeostatic functions dependent on physiological generation 

of low levels of ROS41,42.

Mitochondrial dysfunction is implicated in onset and progression of cartilage degradation. It 

increases responsiveness of chondrocytes to pro-inflammatory cytokines, leading to 

increased matrix catabolism43,44. Mitochondrial biogenesis is important for maintenance of 

mitochondrial function. We recently found that expression of PGC-1α is decreased in both 

mouse knee OA cartilage and in aged mouse knee cartilage45. In addition, we observed that 

mitochondrial biogenesis capacity and function are significantly reduced in advanced human 

knee OA chondrocytes, indicated by deceased mitochondrial DNA content and 

mitochondrial mass, and reduced oxygen consumption rate and intracellular ATP level, all 

of which were correlated with concomitant reduction of phosphorylation of AMPKα, 

expression of SIRT1 and PGC-1α, and increased acetylation of PGC-1α (unpublished 

observation). Moreover, the established impairments in mitochondrial biogenesis and 

function in advanced human knee OA chondrocytes can be reversed by either AMPK 

pharmacologic activation or overexpression of SIRT1 or PGC-1α (unpublished 

observation).

Inhibition of oxidative stress and inflammatory responses

FOXO3a, a transcription factor that belongs to the forkhead box O (FOXO) family, is 

another downstream target of AMPK and SIRT111,31. As for PGC-1α, AMPK directly 

phosphorylates FOXO3a, and SIRT1 deacetylates and activates FOXO3a11,31. PGC-1α and 

FOXO3a are closely related. FOXO3a is a direct transcriptional regulator of PGC-1α, and 

PGC-1α itself can augment the transcriptional activity of FOXO3a46. Both PGC-1α and 

FOXO3a have been shown to limit cellular oxidative stress by up-regulating antioxidant 

enzymes, including manganese superoxide dismutase (MnSOD or SOD2) and catalase46,47. 

In this light, reduction of SOD2 expression has been linked to chondrocyte mitochondrial 

dysfunction48 and OA progression49. Similar to PGC-1α, expression of FOXO3a is reduced 

in both mouse knee OA cartilage and in aged mouse knee cartilage45. AMPK pharmacologic 
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activation enhances expression of PGC-1α and FOXO3a, as well as SOD2 and catalase, and 

inhibits oxidative stress in articular chondrocytes45.

Mitochondria dysfunction leads to elevated levels of ROS, which promotes cartilage 

degradation directly by cleaving collagen and aggrecan and indirectly by activating matrix 

metalloproteinases (MMPs)50,51. Additionally, ROS act indirectly by modulating redox-

sensitive NF-κB and other signaling pathways that increase chondrocyte catabolic 

activity41,42,52. NF-κB plays a major role in innate immune responses. The regulation of 

innate immunity and energy metabolism is connected together through an antagonistic 

crosstalk between NF-κB and AMPK and SIRT1 signaling pathways11,53,54. Many studies 

have demonstrated that activities of AMPK and SIRT1 have anti-inflammatory effects in 

diverse types of cells and tissues11,31. Activation of AMPK inhibits NF-κB activation via 

SIRT1, which deacetylates p65 NF-κB subunit, ultimately primes p65 for proteasome 

degradation11,31. Studies have shown that activation of AMPK or SIRT1 inhibits pro-

inflammatory responses to IL-1β and TNFα via attenuation of NF-κB activation in articular 

chondrocytes16,24,25,55–57. In addition, PGC-1α and FOXO3a, at least in part, mediate 

AMPK to inhibit NF-κB activation and inflamma-tory cytokine-induced catabolic responses 

in chondrocytes45. Inflammatory cytokines have negative impact on both phosphorylation of 

AMPKα and SIRT1 expression in chondrocytes16,26. IL-1β and TNFα de-phosphorylate 

AMPKα partially by inducing increased expression of PP2Cα (unpublished observation). 

TNFα also reduces SIRT1 activity in chondrocytes by inducing cathepsin B-mediated 

cleavage of SIRT158. In addition, activation of NF-κB can down-regulate SIRT1 activity 

through induction of expression of miR-34a, which targets the 3′ UTR of SIRT1 and inhibits 

the expression of SIRT159. Chondrocytes with reduced activity of AMPK or SIRT1 have 

increased responsiveness to in-flammatory cytokines16,25. These findings suggest that 

chronic low-grade inflammation in OA and aging joint could be associated with 

dysregulation of AMPK and SIRT1 signaling, which reduces chondrocyte resistance to 

inflammatory stress and further provokes inflammatory responses.

Modulation of endoplasmic reticulum (ER) stress

The ER is a sub-cellular organelle where all secretory and integral membrane proteins are 

folded and post-translationally modified. The ER is also a site of calcium storage and lipid 

biosynthesis. Protein folding in the oxidizing environment of the ER is an energy-requiring 

process60,61. Stresses that compromise the ER homeostasis such as perturbations in calcium 

homeostasis, energy stores, redox state, and metabolic and inflammatory challenges result in 

the accumulation of misfolded proteins and activation of a stress response termed the 

unfolded protein response (UPR)60,61. Several adaptive signaling pathways have evolved to 

restore an efficient protein-folding environment through the induction of chaperones, 

degradation of misfolded proteins and attenuation of protein translation60,61. Inositol-

requiring kinase 1 (IRE1), ER eukaryotic translation initiation factor 2 (eIF2a) kinase 

(PERK), and activating transcription factor 6 (ATF6) are the three branches of UPR 

signaling cascade, which are triggered by disassociation of the chaperon GRP78 upon ER 

stress60,61. When ER stress is too severe or chronic, or the UPR is unable to resolve the 

protein-folding defects, cells are led to apoptosis through induction of C/EBP homologous 

protein (CHOP)60,61.

Liu-Bryan Page 5

Osteoarthritis Cartilage. Author manuscript; available in PMC 2015 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The UPR is activated in OA articular chondrocytes (Fig. 2), evidenced by increased 

expression of GRP78 and CHOP, as well as generation of alternatively spliced and 

transcriptionally activated X-box protein 1 (XBP1) in OA cartilage62,63. ATF6 upregulates 

XBP1 expression in OA chondrocytes by promoting direct binding to XBP1 promoter64, and 

increased XBP1s expression accelerates chondrocyte hypertrophy65. XBP1 expression is 

also increased by IL-1β in chondrocytes62. Inhibition of XBP1 expression in chondrocytes 

via siRNA attenuates nitric oxide and MMP-3 release induced by IL-1β62. Several factors 

implicated in OA pathogenesis including biomechanical injury, IL-1β, nitric oxide and 

advanced glycation end products (AGEs) upregulate expression of GRP78 and CHOP in 

cultured articular chondrocytes62,63,66–69. CHOP potentiates the capacity of IL-1β to induce 

catabolic responses, superoxide generation and apoptosis in chondrocytes, and does so by 

inhibiting AMPK activity62. Moreover, CHOP-mediated apoptosis contributes to the 

progression of cartilage degeneration in mice70. Moreover, pharmacologic AMPK activation 

blunts CHOP expression and catabolic responses induced by IL-1β and biomechanical 

injury17,62. These data indicate that AMPK modulates UPR, and activation of AMPK 

alleviates ER stress in chondrocytes.

Regulation of autophagy

Autophagy is a cellular housekeeping and protein quality control mechanism, which can 

remove damaged or defective proteins and organelles, e.g., damaged mitochondria11,71. 

AMPK controls autophagy through mammalian target of rapamycin (mTOR) and Unc-51-

like kinase 1 (ULK1) signaling71. mTOR, a conserved Ser/Thr protein kinase, is a potent 

inhibitor of autophagy. ULK1 is a critical kinase that governs the cascade of events 

triggering autophagy. AMPK can inhibit activity of mTOR complex (mTORC1) either by 

directly phosphorylating Raptor, a regulatory component of mTORC1, or by 

phosphorylating tuberous sclerosis protein 2 (TSC2), which subsequently suppresses mTOR 

activity71. AMPK stimulates autophagy by dissociating mTORC1 from the ULK1 complex 

via the phosphorylation of the Raptor component, as well as by directly binding to the 

ULK1 complex and phosphorylating ULK171. In addition, AMPK can also enhance the later 

steps in autophagosome formation through SIRT1 by deacetylating several autophagy-

related proteins (e.g., Atg5, Atg7 and Atg8)11. Chondrocyte auto-phagy is known to be a 

constitutive homeostatic mechanism in articular cartilage72, which can be promoted by 

AMPK signaling73,74 through mTOR suppression. As for both phosphorylation of AMPKα 

and SIRT1 expression, chondrocyte autophagy is reduced with a linked increase in apoptosis 

in human knee OA, mouse knee OA and aged mouse knee cartilages75. Suppressed 

autophagy also is observed in cartilage ex vivo in response to mechanical injury76. 

Inhibition of autophagy in chondrocyte exacerbated IL-1β–induced OA-like gene expression 

changes and apoptotic signals, while activation of autophagy inhibited them, possibly 

through modulation of ROS in chondrocytes in vitro77. Cartilage-specific genetic deletion of 

mTOR78 and pharmacologic inhibition of mTOR signaling by rapamycin79 upregulates 

autophagy and reduces the severity of experimental OA in vivo.
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Function of AMPK and SIRT1 in synovium and bone

The function of bioenergy sensors in synovium is merely studied yet. One study using 

fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA) showed that SIRT1 

expression is decreased by HMGB1, but is recovered by pre-treatment with resveratrol, a 

SIRT1 activator80. Interestingly, Cilostazol, a drug used to treat intermittent claudication 

that has been shown to activate AMPK, prevents HMGB1-induced angiogenesis via SIRT1 

in RA FLS in vitro and exhibits anti-angiogenic effect in collagen-induced arthritis (CIA) 

mouse model in vivo80. Simvastatin, a cholesterol-lowering drug that is also known to 

activate AMPK, inhibits cysteine-rich angiogenic inducer 61 (CYR61) and CCL20 in RA 

FLS via up-regulation of SIRT1/FOXO3a signaling81. These results implicate an anti-

inflammatory role of synovial activation of AMPK and SIRT1. Whether activation of 

AMPK and SIRT1 limits synovial inflammation in OA needs to be investigated.

Both AMPK and SIRT1 are involved in regulation of bone metabolism. Activation of 

AMPK promotes osteoblast differentiation, bone formation and bone mass, and inhibits 

osteoclast differentiation in vitro82–91. Mice deficient in AMPKα1 or AMPKα2 exhibit 

reduced bone mass compared with WT mice83. AMPKα1 deficient mice have an elevated 

rate of bone remodeling, whereas AMPKα2 deficient mice largely have elevated bone 

resorption83. Osteoclast- or osteoblast-specific SIRT1 conditional KO mice have decreased 

bone mass caused by increased resorption and reduced bone formation90. Wnt/β-catenin is 

known to be indispensable for osteoblast generation. SIRT1 is shown to regulate 

differentiation of mesenchymal stem cells (MSCs) by deacetylating β-catenin92. MSCs 

isolated from MSC-specific SIRT1 KO mice have reduced differentiation towards 

osteoblasts and chondrocytes in vitro92. Activation of AMPK or SIRT1 decreases adipocyte 

and promotes osteoblast formation during differentiation of MSCs93–95, suggesting a critical 

role of AMPK and SIRT1 in regulation of the lineage commitment of MSCs. 

Osteoprogenitor-specific SIRT1 KO mice display lower cortical thickness in femora and 

vertebrae because of reduced bone formation at the endocortical surface, associated with 

decreased Wnt/b-catenin signaling88. Decreased expression of SIRT1 is found in human OA 

subchondral bone osteoblasts89. Inhibition of SIRT1 in osteoblasts leads to abnormal 

sclerostin expression that decreases Wnt/β-catenin activity89, which can be inhibited by 

resveratrol89. Obviously, AMPK and SIRT1 play an important role in bone homeostasis. 

Abnormal AMPK and SIRT1 levels in osteoblasts and osteoclasts may contribute to 

subchondral bone pathological changes in OA.

Clinical relevance and translation

Dysregulation of AMPK and SIRT1 is linked to diabetes, atherosclerosis, cardiovascular 

disease, cancer, neurodegenerative diseases11,33, as well as OA based on recent findings, all 

of which are age-related diseases. Studies have revealed that responsiveness of AMPK 

activation declines during the aging process11, and low-grade inflammation present in aging 

tissues may be at least in part responsible for suppressing AMPK signaling11. The 

prevalence of OA increases with aging further supports the concept that a dysfunction of 

AMPK is involved in the disease process.
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Nutritional factors can affect AMPK signaling. Caloric restriction is known to stimulate 

AMPK activity, whereas nutritional overload seems to impair AMPK activity, which can 

induce insulin resistance in many tissues11. The metabolic disturbance can cause low-grade 

inflammation leading to development of metabolic syndrome such as obesity and diabetes11, 

which are often associated with OA7. Diet rich in n-3 long chain polyunsaturated fatty acids 

(PUFAs) is considered as a nutritional tool to prevent insulin resistance associated to type 2 

diabetes and obesity96. This is probably at least in part owing to the ability of n-3 PUFAs to 

stimulate AMPK activity97–100. Exercise is considered as one of the most cost effective 

approaches to provide health benefits101. Evidence supports benefits of various types of 

exercise for improving pain and function in knee OA102. Studies in both animals and 

humans demonstrate that skeletal muscle contraction and exercise activate AMPK in an 

intensity and time-dependent manner101,103, and increased AMPK activation promotes 

adaptation to muscle endurance exercise101,103. As such, activation of AMPK provides 

molecular basis of the benefits of exercise, and supports clinical recommendation of exercise 

for the management of OA102.

A number of drugs already in the clinic for arthritis and other conditions (e.g., sodium 

salicylate, high dose aspirin, methotrexate, metformin), and a variety of natural plant 

products either present in traditional medicine or derived from food (e.g., berberine, 

resveratrol, curcumin, quercetin) appealed to have “nutraceutical” properties are able to 

activate AMPK104,105. However, the majority of them were in use for their respective 

purposes before they were known to be activators of AMPK104,105. Interestingly, a recent 

study on a randomized placebo-controlled small trial of methotrexate in symptomatic knee 

OA showed significant improvement in physical function associated with reduced pain and 

synovitis106. In addition, a randomized double-blind placebo-controlled small trial of 

curcuminoid (closely related to curcumin) in treatment of knee OA also showed significant 

improvements in pain and physical function107. Moreover, several randomized placebo-

controlled trials of avocado–soybean unsaponifiables (ASU) on both knee and hip OA 

demonstrated significant efficacy in improving the symptoms of OA and reducing 

progression of joint space narrowing108–110. ASU is a natural vegetable extract made from 

avocado and soybean oils used as a dietary supplement. The carotenoids such as β-carotene 

and lutein present in avocado, and a key isoflavone genistein present in soybean are capable 

of activating AMPK111–113. The beneficial effects of the agents tested in the OA clinical 

trails aforementioned are conceivably in part due to AMPK activation, which warrant further 

investigation.

Conclusion

Disturbances in the maintenance of energy balance provoke diseases and jeopardize healthy 

aging11. Reduced capacity of AMPK and SIRT1 activation in articular joint tissues could 

limit energy availability for cellular maintenance, trigger significant cell stress by inducing 

mitochondrial dysfunction, oxidative stress and inflammation, ultimately, compromise cell 

survival and tissue function. These bioenergy sensors can couple metabolism with 

inflammation to switch physiologic and clinical phenotypes. Given the fact that activation of 

AMPK and SIRT1 in articular chondrocytes regulates energy balance and coordinates 

several housekeeping mechanisms to increase cell stress resistance and maintain quality 
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control (Fig. 3), targeted activation of AMPK and SIRT1 appeals to be an attractive 

therapeutic strategy for OA, which could be potentially achieved by pharmacologics, 

lifestyle measures (diet and exercise) and nutraceuticals.
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Fig. 1. 
Impaired chondrocyte AMPK and SIRT1 activity disrupts cartilage matrix homeostasis. 

Aging, inflammation and biomechanical injury in the joint can decrease phosphorylation of 

AMPKα Thr172 (indicating AMPK activity) and expression of SIRT1 in articular 

chondrocytes, likely through down-regulation of activity of the major upstream AMPK 

kinase LKB1 and up-regulation of protein phosphatase PP2Cα, and PTB1B. As a result, the 

balance between chondrocyte catabolic and anabolic function is disrupted. Overactive 

chondrocyte catabolic responses ultimately lead to cartilage matrix degradation.

Liu-Bryan Page 15

Osteoarthritis Cartilage. Author manuscript; available in PMC 2015 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The UPR in articular chondrocytes in OA. ER stress in OA chondrocytes caused by certain 

inflammatory mediators, biomechanical injury, nitric oxide and AGEs leads to activation of 

the UPR signaling cascades triggered by dissociation of the chaperon GRP78 from the ER 

transmembrane proteins PERK, IRE1α, and ATF6. The active XBP1 spliced form (XBP1s), 

generated by IRE1a through alternatively splicing mRNA of unspliced XBP1 (XBP1u), 

promotes chondrocyte hypertrophy and increases catabolic responses. The cleaved active 

form of ATF6 (p50) can induce XBP1 expression through direct binding to XBP1 promoter. 

Increased CHOP expression potentiates IL-1β to decrease phosphorylation of AMPKα and 

induce catabolic responses, superoxide generation and apoptosis.
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Fig. 3. 
AMPK and SIRT1 activity in regulation of cartilage homeostasis by increasing chondrocyte 

stress resistance. Pharmacological activators (e.g., AICAR, A-769662, and metformin), 

possibly some natural plant products (nutraceuticals), caloric restriction and exercise, 

activate AMPK in articular chondrocytes. As a result, intracellular NAD+ level is increased, 

leading to activation of SIRT1. Resveratrol, a natural plant product, also activates SIRT1. In 

turn, SIRT1 activates LKB1, the major upstream kinase of AMPK, through deacetylation of 

LKB1. Activation of AMPK and SIRT1 coordinates several housekeeping mechanisms to 

increase chondrocyte stress resistance by increasing mitochondrial biogenesis and function 

via PGC-1α; inhibiting oxidative stress and via PGC-1α and FOXO3a; attenuating 

inflammatory responses via inhibition of NF-κB activation, alleviating ER stress via limiting 

excessive CHOP; and promoting autophagy via suppression of mTOR, ultimately leading to 

cartilage homeostasis.
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