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SUMMARY

The spindle checkpoint safeguards against chromosome loss during cell division by preventing 

anaphase onset until all chromosomes are attached to spindle microtubules. Checkpoint signal is 

generated at kinetochores, the primary attachment site on chromosomes for spindle microtubules. 

Mps1 kinase initiates checkpoint signaling by phosphorylating the kinetochore-localized scaffold 

protein Knl1 to create phospho-docking sites for Bub1/Bub3. Mps1 is widely conserved but is 

surprisingly absent from the nematode lineage. Here, we show that PLK-1, which targets a similar 

substrate motif as Mps1, functionally substitutes for Mps1 in C. elegans by phosphorylating 

KNL-1 to direct BUB-1/BUB-3 kinetochore recruitment. This finding led us to re-examine 

checkpoint initiation in human cells, where we found that Plk1 co-inhibition significantly reduced 

Knl1 phosphorylation and Bub1 kinetochore recruitment relative to Mps1 inhibition alone. Thus, 

the finding that PLK-1 functionally substitutes for Mps1 in checkpoint initiation in C. elegans 

uncovered a role for Plk1 in species that have Mps1.
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Introduction

The spindle checkpoint ensures fidelity in chromosome segregation by monitoring the 

interaction between chromosomes and microtubules (Lara-Gonzalez et al., 2012; Musacchio 

and Salmon, 2007). Spindle checkpoint proteins enrich at kinetochores, the microtubule 

attachment sites on chromosomes, where they generate a diffusible inhibitor of anaphase 

onset. Following microtubule attachment, spindle checkpoint proteins are removed from 

kinetochores and the checkpoint is silenced, leading to sister chromatid separation, anaphase 

chromosome segregation, cytokinesis, and mitotic exit.

At the kinetochore, the protein Knl1 recruits the Bub1/Bub3 complex to activate the 

checkpoint, recruits the PP1 phosphatase that participates in checkpoint silencing, and 

interacts with microtubules (Ghongane et al., 2014; Caldas and DeLuca, 2014). The KNL-1 

N-terminus contains several “MELT” repeats comprised of repetitions of the M-[E/D]-[L/I]-

[T/S] amino-acids sequence (Cheeseman et al., 2004; Desai et al., 2003; Vleugel et al., 

2012). In yeast and in human cells, Bub1/Bub3-binding to Knl1 is dependent on Knl1 

phosphorylation of MELT repeats, and adjacent motifs, by Mps1 kinase (Krenn et al., 2014; 

London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012; Zhang et al., 2014). 

However, in human cells, whether Mps1 fully accounts for Bub1/Bub3 localization is not 

clear (Espert et al., 2014; Hewitt et al., 2010; Maciejowski et al., 2010; Santaguida et al., 

2010).

Consistent with the central importance of Mps1 in the spindle checkpoint, Mps1 kinases are 

widely conserved in fungi, metazoans, and plants. Surprisingly, in the nematode lineage that 

includes the well-studied model organism C. elegans, Mps1 is absent (Fig. 1A). This 

singular absence is intriguing since all other spindle checkpoint components are present and 
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C. elegans embryonic cells and adult germline cells mount a checkpoint response at 

unattached kinetochores (Espeut et al., 2012; Essex et al., 2009; Kitagawa and Rose, 1999). 

This evolutionary ‘knockout’ suggests that BUB-1 anchorage on KNL-1 is either not 

regulated by phosphorylation in nematodes or that a kinase other than Mps1 is 

phosphorylating KNL-1 to direct BUB-1/BUB-3 recruitment. The second possibility 

appeared likely given the presence of ‘MELT’ motifs in the C. elegans KNL-1 N-terminus 

(Cheeseman et al., 2004; Desai et al., 2003). Among the potential kinases that could replace 

Mps1 in C. elegans, Polo-like kinase 1 (PLK-1) was a good candidate as Mps1 and Plk1 

have related phosphorylation consensus motifs (Fig. 1B; Dou et al., 2011), which include the 

Knl1 ‘MELT’ repeats, and they both localize to kinetochores.

Here we show that in C. elegans, PLK-1 substitutes for Mps1 by phosphorylating the 

KNL-1 N-terminus to direct recruitment of BUB-1/BUB-3 to the kinetochore. This result led 

us to analyse Bub1 recruitment in human cells, where a substantial pool of Bub1 was present 

at kinetochores independently of Mps1 activity and that this pool depended on Plk1 activity. 

Thus, analysis of how a fundamental cellular pathway— the spindle checkpoint—functions 

in the natural absence of its central regulator Mps1 revealed a mechanism that is also 

operating in species that contain Mps1.

Results

The KNL-1 N-terminus is a robust Plk1 substrate in vitro

A straightforward initial test of the hypothesis that PLK-1 functionally substitutes for Mps1 

in directing recruitment of BUB-1/BUB-3 to the C. elegans kinetochore would be to inhibit 

PLK-1 and monitor BUB-1/BUB-3 recruitment. However, depletion of PLK-1 causes a 

potent meiosis I arrest in C. elegans (Chase et al., 2000; not shown), preventing the 

generation of mitotic embryos in which BUB-1 kinetochore localization can be monitored. 

Therefore, we focused on analyzing KNL-1 phosphorylation by PLK-1 and on determining 

the role of this phosphorylation in BUB-1/BUB-3 recruitment and checkpoint signaling.

We purified C. elegans PLK-1 from insect cells and analyzed phosphorylation of 

recombinant N-terminal (KNL-11–505) and C-terminal (KNL-1506–1010) KNL-1 fragments, 

as well as the model Plk1 substrate α–casein (Fig. 1C, S1A). The N-terminal half of KNL-1, 

which contains 9 M-[E/D]-[L/I]-[T/S] (Cheeseman et al., 2004; Desai et al., 2003; Vleugel 

et al., 2012) and two related motifs (M199DLD and M473SID), was robustly phosphorylated 

by PLK-1; in contrast, the C-terminal half was not phosphorylated (Fig 1C). The phospho-

signal observed on KNL-11–505, was 7-fold higher than for a similar concentration of casein, 

a model substrate of Polo kinases (Fig S1A); this could be due to multiplicity of target sites 

on the KNL-1 N-terminus and/or substrate preference relative to casein.

Next, we assessed the effect of KNL-1 phosphorylation by PLK-1 on interaction with 

BUB-1 and BUB-3 by incubating beads coated with GST-tagged KNL-11–505 in a 

reticulocyte lysate expressing BUB-11–494 and BUB-3. Phosphorylation by PLK-1 increased 

association of BUB-1 and BUB-3 with KNL-11–505 by 2.4 and 3.8 fold respectively (Fig. 

1D). Thus, phosphorylation of KNL-1 by PLK-1 promotes interaction of the KNL-1 N-

terminus with BUB-1 and BUB-3.
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To assess the contribution of the MELT repeats to the phosphorylation of the KNL-1 N-

terminus, we compared PLK-1 kinase activity on WT KNL-11–505 to a mutant with the 11 

MELT repeats mutated to AEAA (Fig. 1E,F, S1B). Mutation of the MELT repeats reduced 

KNL-11–505 phosphorylation to ~60 % of WT KNL-11–505 (Fig. 1F) indicating that 

additional sites are targeted by PLK-1. To identify these other sites, we analysed 

phosphorylation of recombinant fragments followed by targeted amino acid mutations (Fig. 

S1C–G). Using this approach, we identified 8 sites (T108, S112, T115, T116, T159, T166, 

S204, S214) phosphorylated by PLK-1, whose mutation to alanine (8A) decreased 

phosphorylation of KNL-11–505 by ~50% (Fig. 1F). Combining mutation of the MELT 

repeats and of the 8 additional sites (MELT/A+8A), additively reduced PLK-1 

phosphorylation to ~20% of control (Fig. 1F). Thus, biochemical analysis defined a set of 

residues whose mutation should enable testing the functional significance of PLK-1 

phosphorylation of KNL-1 in vivo.

KNL-1 Mutants Compromised for PLK-1 Phosphorylation Retain Functional Properties 
Associated with the KNL-1 N-terminus

As the mutations introduced to reduce PLK-1 phosphorylation alter a significant number of 

residues in KNL-1 (e.g. 41 out of 1010 in MELT+8A), we were concerned about 

interpreting such mutants in vivo. The KNL-1 N-terminus has a PP1 docking site, a 

microtubule-binding activity, and behaves as an oligomer on gel filtration (Cheeseman et al., 

2006; Espeut et al., 2012; Kern et al., 2014). We therefore tested all three properties for the 

MELT/A, 8A and MELT/A+8A mutations and found that none of them was affected by 

mutations in PLK-1 phosphorylation sites (Fig. S2A–C). Thus, any effect of these mutations 

in vivo is unlikely to be due to a non-specific disruption of the N-terminal half of KNL-1.

A KNL-1 Mutant Compromised for PLK-1 Phosphorylation Significantly Reduces BUB-1 
Kinetochore Recruitment

We next generated strains expressing single copy RNAi-resistant versions of MELT/A, 8A 

and MELT/A+8A mutant forms of KNL-1 in vivo. These transgenes were based on a prior 

RNAi-resistant knl-1::mCh transgene that was functionally validated (Espeut et al., 2012).

The three KNL-1 mutants generated—MELT/A, 8A and MELT/A+8A—all localized to 

kinetochores at levels similar to WT KNL-1 (Fig. 2A). To monitor BUB-1 kinetochore 

localization in these mutants, we introduced a bub-1::gfp transgene into the different 

knl-1::mCh transgene containing strains, depleted endogenous KNL-1, and measured 

BUB-1::GFP levels relative to KNL-1::mCherry on kinetochores of aligned chromosomes 

(Fig. 2B,C). This analysis revealed that the 8A and MELT/A mutants recruited less BUB-1 

at kinetochores compared to WT KNL-1 (Fig. 2B,C). Notably, in the MELT/A+8A mutant, 

significantly less BUB-1 was recruited to kinetochores, compared to MELT/A or 8A alone 

(Fig. 2B,C). Thus, mutations that compromise PLK-1 phosphorylation of the KNL-1 N-

terminus in vitro significantly perturb BUB-1 kinetochore recruitment in vivo, with the 

MELT/A+8A mutant nearly abolishing BUB-1 localization.

To compare the ability of WT and mutant KNL-1 to support chromosome segregation, we 

crossed in GFP fusions with histone H2b and γ-tubulin and depleted endogenous KNL-1 
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(Fig. 2D). The MELT/A+8A mutant, but not MELT/A or 8A, showed defects in 

chromosome segregation at 26°C, with ~30% of first embryonic division embryos exhibiting 

lagging chromatin in anaphase (Fig. 2D). Moreover, embryonic viability dropped to ~40% at 

26°C for the MELT/A+8A transgene in the background of the knl-1(ok3457) deletion 

mutant (Fig. S2D). Thus, the MELT/A+8A mutant that compromises PLK-1 

phosphorylation to the greatest degree greatly reduces BUB-1 kinetochore localization and 

compromises chromosome segregation in vivo. The phenotypic difference between the 

MELT/A or 8A mutants and the MELT/A+8A mutant is reminiscent of prior work in human 

cells showing that ~10% of Bub1 is sufficient to sustain the checkpoint (Johnson et al., 

2004; Meraldi and Sorger, 2005).

Overall, these data suggest that PLK-1 phosphorylation of the KNL-1 N-terminus directs 

BUB-1 kinetochore recruitment in C. elegans.

KNL-1 Phosphorylation by Plk1 is Required for Spindle Checkpoint Activation

Complete loss of BUB-1 kinetochore localization is expected to abolish spindle checkpoint 

signalling. In order to monitor checkpoint signaling, we depleted the kinase ZYG-1 to 

inhibit centriole duplication and generate monopolar spindles in the second embryonic 

division, and measured the time between nuclear envelope breakdown (NEBD) and 

chromosome decondensation (Fig. 3A). WT KNL-1::mCherry supported normal checkpoint 

signaling, as evidenced by the MAD-2-dependent lengthened NEBD-to-decondensation 

interval in the presence of monopolar spindles, compared to control embryos with bipolar 

spindles (Fig. 3A; (Espeut et al., 2012; Essex et al., 2009). In cells expressing either the 

MELT/A or the 8A mutant, the MAD-2-dependent delay induced by monopolar spindles 

was similar to that observed with WT KNL-1 (Fig. 3A). In contrast, in the MELT/A+8A 

mutant the monopolar spindle-induced checkpoint delay was abolished (Fig. 3A).

A marker of spindle checkpoint activation is kinetochore localization of MAD-2. Imaging of 

GFP::MAD-2 on chromosomes following monopolar spindle formation revealed that the 

MELT/A or 8A mutants decreased GFP::MAD-2 kinetochore localization (Fig. 3B), 

consistent with reduced amount of kinetochore-localized BUB-1 (Fig. 2B,C; note that the 

BUB-1 and MAD-2 measurements are not directly comparable as the BUB-1 was measured 

on bipolar metaphase kinetochores whereas MAD-2 was measured on monopolar unattached 

kinetochores, where checkpoint proteins are known to amplify). More importantly, the 

MELT/A+8A mutation eliminated detectable GFP::MAD-2 kinetochore localization (Fig. 

3B), consistent with the abrogation of checkpoint signaling. Thus, the MELT/A+8A mutant 

of KNL-1, which greatly reduces Plk1 phosphorylation in vitro and BUB-1 kinetochore 

localization in vivo, lacks a functional spindle checkpoint.

Plk1 contributes to Knl1 phosphorylation and Bub1 kinetochore localization in Mps1-
inhibited human cells

Our finding that PLK-1 substitutes for Mps1 in controlling BUB-1 kinetochore recruitment 

in C. elegans led us to consider the possibility that Plk1 may also contribute to Bub1 

targeting in species that contain Mps1. To test this possibility, we re-examined Bub1 

kinetochore recruitment in HeLa cells. In published work, the effect of Mps1 on Bub1 
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kinetochore localization has been variable—several publications indicate a partial effect on 

Bub1 localization (~65–75% relative to control) (Hewitt et al., 2010; Santaguida et al., 

2010) while others suggest near-complete elimination (Espert et al., 2014; Maciejowski et 

al., 2010).

To inhibit Mps1, we employed three structurally distinct small molecule inhibitors (Table 

S1): AZ3146 (Hewitt et al., 2010), NMS-P715 (Colombo et al., 2010) and MPI-0479605 

(Tardif et al., 2011). When directly compared in radiometric biochemical activity assays, 

AZ3146, NMS-P715 and MPI-0479605 potently inhibited Mps1 with IC50s in the 

nanomolar range and, importantly for the analysis here, only significantly affected Plk1 

activity at micromolar concentrations (Table S1).

To monitor Bub1 kinetochore recruitment, we released HeLa cells from a double thymidine 

arrest and treated with each Mps1 inhibitor as well as nocodazole prior to mitotic entry (Fig. 

4A). All 3 Mps1 inhibitors, at effective doses, greatly reduced Mad1 kinetochore 

localization (Fig. S3A,B; (Liu et al., 2003; Martin-Lluesma et al., 2002). In contrast, Mps1 

inhibitors only partially affected Bub1 recruitment, with a significant residual pool of Bub1 

(~35–50% of control) at kinetochores (Fig. 4B,C; S3A,B). Increasing dosage of AZ3146 did 

not affect this residual Bub1 pool while eliminating Mad1 localization (Fig. 4C; S3A,B). 

Thus, Mps1 inhibition on its own does not prevent Bub1 kinetochore recruitment.

We next combined the specific Plk1 inhibitor BI2536 (Lenart et al., 2007) with each of the 

three Mps1 inhibitors. On its own, BI2536 did not significantly affect Bub1 kinetochore 

recruitment, even at high concentrations (Fig. 4B,C, S3C and not shown). However, in all 

three of the combination treatments, BI2536 reduced Bub1 kinetochore recruitment to ~10–

15% of controls (Fig. 4B, C, S3C).

One explanation for the above result is that the double inhibitor treatments prevent 

kinetochore recruitment of Knl1. To test this, we co-stained treated cells for Knl1 and Bub1 

and measured the levels of both proteins on individual kinetochores. Single Plk1 or Mps1 

inhibition (with NMS-P715) reduced Knl1 kinetochore levels to ~70%–80% of controls 

(Fig. 4E, S4A,). In the double Plk1/Mps1-inhibited cells, there was a modest additive defect 

in Knl1 recruitment (Fig. 4E, S4A). However, this partial reduction in Knl1 recruitment is 

insufficient to explain the near-absence of Bub1 recruitment observed in the double Plk1 and 

Mps1 inhibition (Fig. S4B).

Next, we analysed phosphorylation of the Knl1 MELT repeats, which form docking sites for 

Bub3/Bub1, using a phospho-specific antibody directed against Thr875 (Yamagishi et al., 

2012); this repeat has been shown to be functional for Bub1/Bub3 kinetochore recruitment 

(Vleugel et al., 2015). Inhibition of Mps1 with NMS-P715 reduced Knl1 pT875 kinetochore 

staining (Fig. 4D,E), as well as total Knl1 phosphorylation (Fig. S4C); however, as with 

Bub1, a substantial proportion (~30%) of pT875 staining remained. A partial effect on 

pT785 staining was observed with Plk1 inhibition alone (Fig. 4D,E), although this is likely 

due to reduced Knl1 kinetochore levels (Fig. 4D,E, S3A). Strikingly, the double Plk1 and 

Mps1 inhibition abolished pT875 staining (Fig. 4D,E), analogous to what was observed for 

Bub1. We conclude that Plk1 activity accounts for the significant residual pool of phospho-
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MELT staining and kinetochore-localized Bub1 that is observed in Mps1-inhibited human 

cells.

Conclusion

Here, we investigated how the initiating event of spindle checkpoint signaling—

phosphorylation-dependent recruitment of the Bub1/Bub3 complex to the Knl1 kinetochore 

scaffold—occurs in the absence of Mps1 kinases in the nematode lineage.

We found that PLK-1, which is also kinetochore-localized and targets a similar substrate 

motif as Mps1, functionally substitutes for Mps1 by phosphorylating the KNL-1 N-terminus 

and creating recruitment sites for the BUB-1/BUB-3 complex. This result prompted us to re-

examine Bub1 kinetochore localization in human cells, where we observed a contribution of 

Plk1 activity to Bub1 recruitment that was revealed after Mps1 inhibition. While it is 

possible that the additive effect of Plk1 and Mps1 co-inhibition is indirect, our analysis of 

Knl1 phosphorylation suggests a direct role. Moreover, an independent study examining 

Plk1 and Mps1 cooperation in human cells (Von Schubert et al., XXX) also supports a direct 

role for Plk1 in Knl1 phosphorylation and provides evidence against the observed synergy 

being due to perturbation of Plk1’s role in haspin activation and Aurora B localization 

(Ghenoiu et al 2013, Zhou et al 2014). The lack of a significant effect of Plk1 inhibition on 

its own suggests that the primary kinase targeting Knl1 in human cells is indeed Mps1. 

However, quantitative phosphoproteomics has shown that Plk1 phosphorylates Knl1 in 

human cells on at least three sites (Santamaria et al., 2011), two of which are in close 

vicinity to a MELT motif or a TxxF/Y motif—also shown to be important for Bub1 

recruitment (Vleugel et al., 2013). This proteomic data suggests that Plk1 may contribute to 

recruitment of a pool of Bub1 by phosphorylating Knl1 even in the presence of Mps1 

activity, which is consistent with work described in the related, independent study (Von 

Shubert et al., XXX).

Nematodes are holocentric, with diffuse kinetochores extending along the length of each 

chromatid in mitosis (Maddox et al., 2004). Mps1 loss in this lineage may have occurred to 

dampen checkpoint signaling in the context of holocentric chromosome architecture. 

However, contrary to this notion, recently analyzed holocentric insect species all contain 

Mps1 family kinases (personal communication; Drinnenberg et al., 2014). Thus, the reason 

as to why Mps1 is lost in the nematode lineage remains mysterious. Nevertheless, the 

natural absence of Mps1 provided an opportunity to study how the spindle checkpoint 

initiates without kinetochore-targeted Mps1 kinase activity. The answer, which is 

compensation by a similar substrate motif-targeting mitotic kinase, has in turn revealed a 

potential new contributing mechanism in species that contain Mps1.

Experimental Procedures

Imaging and quantification in C. elegans embryos

Chromosome segregation and checkpoint signaling was followed in embryos expressing 

GFP::H2b/GFP:γ-tubulin using a Zeiss AxioimagerZ1 microscope equipped with a 

Coolsnap HQ2 camera at 20°C. Five z-sections (100 ms exposure) were acquired at 2 μm 
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steps at 10s (segregation) or 20s (checkpoint) intervals using a 100×, 1.3 NA Olympus U-

Planapo objective with 2×2 binning and a 480×480 pixel area.

For BUB-1::GFP and GFP::MAD-2 localization, embryos were filmed with a a Yokogawa 

CSU-X1 spinning disk confocal head mounted on an inverted microscope (Ti-Eclipse; 

Nikon, Tokyo, Japan) equipped with a 100x, 1.45 NA Plan Apochromat lens (Nikon), a 

solid-state laser combiner (ALC) and an iXon Ultra EM-CCD (Andor Technology, Belfast, 

Ireland). Acquisition parameters, shutters, and focus were controlled by iQ 3 software. 5 x 2 

μm GFP/mCherry z-series with no binning were collected every 20 s at 20°C. Exposures 

were 200 ms for GFP and 600 ms for mCherry.

Kinase assays

KNL-1 fragments at a concentration of 5.6 μM were incubated for 10 min at room 

temperature in the presence of 25 nM Plk1 (WT or KD), 100 μM ATP and 0.1 μCi/μl of 

[γ-32P] ATP. Reactions were analyzed by SDS-PAGE and autoradiography.

Human cell experiments

HeLa cells growing on poly-L-lysine–coated coverslips were synchronized with a double 

thymidine (2 mM) block, released into the different drug combinations (Fig. 4A), fixed in 

1% formaldehyde and stained with the indicated antibodies. Cells were imaged using a 

Deltavision microscope and kinetochore intensities quantified as described (Hoffman et al., 

2001). See supplemental information for more details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Nematodes lack Mps1 kinase despite having a functional spindle checkpoint

• PLK-1 substitutes for Mps1 in controlling spindle checkpoint initiation in C. 

elegans

• PLK-1 phosphorylation of KNL-1 directs BUB-1/BUB-3 recruitment in absence 

of Mps1

• Plk1 contributes to Knl1 phosphorylation and Bub1 targeting in human cells 

with Mps1
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Figure 1. The N-terminal half of KNL-1 is a robust Plk1 substrate in vitro
(A) Schematic of BUB-1/BUB-3 kinetochore recruitment. Mps1 is absent in the nematode 

lineage.

(B) Mps1 and Plk1 phosphorylation consensus sequences (Dou et al., 2011).

(C) Plk1 phosphorylation of GST-KNL-11–505 and GST-KNL-1506–1010.

(D) Binding of in vitro translated BUB-11–494 and BUB-3 to GST-KNL-11–505 with or 

without PLK-1 phosphorylation. Quantification (right) is from 3 independent experiments; 

error bars are the 95% confidence interval.
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(E) Schematic of KNL-1 features, highlighting MELT repeats (green) and other PLK-1 

target sites (orange) mapped in Fig. S1.

(F) Analysis of KNL-11–505 WT, MELT/A, 8A, MELT/A+8A phosphorylation by PLK-1 

performed as in Fig. 1c. Quantification, relative to WT, from 3 independent experiments is 

shown on the right. Error bars are the 95% confidence interval. See also Figure S1 and S2.
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Figure 2. Mutations in KNL-1 that disrupt Plk1 phosphorylation perturb BUB-1 kinetochore 
recruitment and chromosome segregation
(A) Images of the metaphase plate in one-cell embryos depleted of endogenous KNL-1 that 

express indicated RNAi-resistant KNL-1::mCherry variants and GFP::H2b. Scale bar, 2 μm.

(B) Analysis of BUB-1::GFP kinetochore targeting in the indicated KNL-1 variants. 

Endogenous KNL-1 was depleted in each condition. Scale bar, 2 μm.

(C) Quantification of BUB-1::GFP kinetochore localization in the indicated strains. Graph 

plots the ratio of BUB-1::GFP (green) to KNL-1::mCh (red) measured at kinetochores of 

aligned chromosomes. The measured ratios were normalized relative to WT KNL-1. n refers 

to the number of embryos analyzed. Error bars are the 95% confidence interval.

(D) Images represent normal segregation (top) or segregation with lagging chromatin 

(bottom) in one-cell embryos at 26°C. The frequency of each for the indicated KNL-1 

variants is shown on the right. Scale bar, 5 μm.
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Figure 3. The MELT/A+8A mutant of KNL-1 is checkpoint signaling-defective
(A) (left) Schematic of the experimental approach used to compare mitotic duration in the 

AB cell in 2 states: bipolar or monopolar. Monopolar second division cells are generated by 

depletion of ZYG-1, the kinase required for centriole duplication. (right) NEBD – 

chromosome decondensation interval measured for the indicated conditions. Error bars are 

the 95% confidence interval.

(B) (left) GFP::MAD-2 localization at unattached kinetochores on monopolar spindles 

generated by inhibiting centriole duplication. Scale bar, 5 μm. (right) GFP::MAD-2 intensity 
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on kinetochores normalized relative to the WT KNL-1 transgene control. Error bars are the 

95% confidence interval. See also Figure S2.
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Figure 4. Effect of Plk1 inhibition on Knl1 phosphorylation and Bub1 localization in Mps1-
inhibited human cells
(A) Schematic of the protocol used to treat cells with inhibitors prior to mitotic entry under 

microtubule depolymerization conditions. HeLa cells were used for this analysis and, after 

fixation, stained for Bub1, Mad1 or Knl1, and centromeres (ACA).

(B) Representative immunofluorescence images of mitotic HeLa cells treated with the Plk1 

inhibitor BI2536, the Mps1 inhibitor MPI-0479605, or both, and stained for Bub1. Scale bar, 

5 μm.
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(C) Quantification of Bub1 kinetochore intensities for the indicated conditions. Values are 

normalized to controls. Error bars represent the 95% confidence interval for all kinetochores 

measured. ***: p < 0.0001

(D) Representative immunofluorescence images of mitotic HeLa cells stained for Knl1 

pT875 under the indicated conditions. Scale bar, 5 μm.

(E) Quantification of Knl1, Knl1 pT875 and Bub1 kinetochore intensities for the indicated 

conditions. Values are normalized to controls. Error bars represent the 95% confidence 

interval for all kinetochores measured. See also Figure S3 and S4.
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