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Abstract

The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift 

depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR 

and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software 

was developed that downloads BMRB datasets and corresponding PDB structure files, and then 

generates residue-specific attributes based on the calculated secondary structure. Attributes 

represent properties present in each sequential stretch of five adjacent residues and include 

variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes 

and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a 

predictive model using support vector regression. These models can then be used to predict shifts 

for new sequences. The new software tools, available as stand-alone scripts or integrated into the 

NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or 

validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the recalibration a 

ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural 

data as guides.
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Introduction

RNAs participate in a large and growing number of known biological functions including 

catalysis, transcriptional regulation, maintenance of sub-cellular structure, intracellular 

trafficking, antiviral restriction, and of course, storage and transmission of genetic 

information (Bartel 2004; Bessonov et al. 2008; Boisvert et al. 2007; Brodersen and Voinnet 

2006; Doudna and Rath 2002; Edwards et al. 2007; Hassouna et al. 1984; Kim 2005; 

Korostelev and Noller 2007; Steitz 2008; Wakeman et al. 2007). A significant portion of the 

Eukaryotic genome is transcribed into non-coding RNAs, and many of these have unknown 

functions (Ponting et al. 2009). Secondary structures of non-coding RNAs with known 

functions appear to be evolutionarily conserved (Hamada 2015), and it is now generally 

accepted that, like proteins, RNA function is tightly correlated with structure. Compared to 

proteins, understanding of RNA structure–function relationships is limited, due in part to a 

paucity of structural information: There are presently about 2700 RNA-containing structure 

depositions in the Nucleic Acid Database (NDB; http://ndbserver.rutgers.edu), whereas 

more than 99,000 protein-containing structures have been deposited in the Protein Databank 

(PDB; http://www.rcsb.org/pdb/home/home.do).

The development of tools to facilitate NMR signal assignment and/or assignment validation 

could be of significant assistance in expanding the RNA structure pipeline. Assignment of 

chemical shifts to individual atoms is generally a prerequisite to the determination of angular 

and distance restraints used to calculate 3D RNA structures (Wüthrich 1995). In addition, 

because chemical shifts are dependent on 3D structure, they have potential intrinsic value as 

restraints for structure calculations. A variety of approaches have been used to predict 

chemical shifts in nucleic acids, including an empirical database approach we employed that 

is based on a central nucleotide and its neighbors (Barton et al. 2013). A similar approach 

was originally developed to analyze proton shifts in DNA (Altona et al. 2000; Kwok and 

Lam 2013; Lam 2007; Lam et al. 2007; Ng and Lam 2015). Trends in shift patterns for 13C 

have also been determined by the examination of database depositions (Fares et al. 2007). 

Where 3D structural information is available chemical shifts can be predicted using physical 

parameters such as ring current shifts (Cromsigt et al. 2001; Dejaegere et al. 1999; Sahakyan 

and Vendruscolo 2013), data mining approaches with multiple structure based attributes 

(Frank et al. 2013), distance-based approaches (Frank et al. 2014), or ab initio quantum 

mechanical calculations (Fonville et al. 2012). A primary motivation for developing an RNA 

chemical shift prediction algorithm was to be able to predict shifts in the absence of 3D 

structures, so that they could be used as an aid to the NMR assignment process. We have 

therefore focused on developing approaches that use attributes from the primary and 

secondary structure as input, and that are trained with shift values available in database 

depositions.

Our previous work focused on predicting 1H NMR chemical shifts of non-exchangeable 

protons for residues in A-form helical regions of RNAs (Barton et al. 2013). That protocol, 

which employed a linear regression based method to estimate the contribution of different 

chemical environments derived from the nucleotide sequence and base-pairing, was able to 

predict shifts with a high degree of accuracy (cross validated rms deviation of 0.06 ppm). 

However, the approach required labor-intensive examination of various data types to 
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generate the attribute descriptors used in training the prediction model, and was only used to 

model 1H NMR chemical shifts for base-paired residues (G-C, A-U, or G*U) that were both 

preceded and followed by additional base paired residues.

Unlike DNA, RNA is often found in a variety of non-helical conformations, and these non-

helical residues often play central functional roles. Restricting predictions to helical regions 

therefore meant that assignments for residues in interesting structural regions were not 

predictable. The ability to predict 13C NMR chemical shifts could also be useful, both for 

facilitating assignment of heteronuclear 1H-13C NMR spectra and as potential restraints for 

structure determination. We therefore expanded our prediction model to include both 

hydrogen and carbon shifts, and also to include residues in non-A-form RNA conformations 

(i.e. the complete RNAs under investigation). We also automated the data mining and 

secondary structure assessment protocols, enabling convenient refinement of the prediction 

models as new data are added to the databanks, and have incorporated these new tools into 

both stand-alone and existing software packages.

Methods

The NMR chemical shift data were analyzed using a set of computer programs that are a 

major rewrite and extension of the RNAShifts program described in our earlier publication 

(Barton et al. 2013). The software was rewritten in the Python programming language and 

several major enhancements were made. First, the retrieval of data files was automated. The 

program begins by using an input file with a list of entry numbers corresponding to 

depositions at the Biological Magnetic Resonance Data Bank (BMRB). This input list was 

generated using the BMRB web site to search for entries containing RNA and RNA-protein 

shifts. RNAShifts2 automatically fetches the corresponding version 3.1 BMRB STAR file 

for each entry, and then using the BMRBLIB software extracts the PDB ID within the star 

file, and fetches the PDB structure file from the PDB website (Fig. 1).

Our original data analysis relied on the tedious manual analysis of PDB files, literature 

references and the BMRB entries to generate our set of predictive attributes. The second 

major advance was to largely automate this process (Fig. 1). Attribute generation involves 

the use of our own Python scripts and invocations of the external programs Defining the 

Secondary Structures of RNA (DSSR) and Structures of Nucleic Acid-Protein Structures 

(SNAP), components of the 3DNA suite of software programs (Lu and Olson 2008; Lu et al. 

2010). Using the structural information from the PDB file, DSSR identifies secondary 

structural information including base pairing, multiples, pseudoknots, multiple chains, and 

other attributes. SNAP also uses the PDB file to identify any protein interactions within the 

RNA structure. The output files of these two external programs are parsed and the relevant 

information is synthesized into an output template file that contains all the derived attributes 

for each BMRB entry in a format used for RNAShifts2 as illustrated in Fig. S1 of the 

Supplementary Material. There were cases where RNAShifts2 could not properly generate a 

template for certain BMRB entries, where no PDB file was available, or where we had 

locally derived data that hadn’t yet been deposited in the BMRB database. To handle these 

situations we allow the software to check for and use manually generated template entries. 

Intermediate files (including BMRB entry files and PDB files) are cached so when the 
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software is run multiple times the files are only fetched or generated if they are not already 

present.

The RNA chemical shift prediction analysis focuses on the central nucleotide in a stretch of 

five nucleotides: [5′-ni−2–ni−1–N–ni+1–ni+2-3′] (N = nucleotide for which the NMR shifts 

are being evaluated; n = neighboring nucleotides). The list of attributes generated using the 

automated protocol described above thereby describes the chemical environment 

surrounding the central nucleotide. Each nucleus is currently described by a set of 10 

attributes. The first five represent the nucleotide and its base paired nucleotide (if any) for 

each of the five sequential positions. Watson–Crick base pairing, loops, mismatches and 

similar attributes are all implicitly represented in the base pair entry at each position. The 

first (ni−2) and last (ni+2) positions are represented in a simplified format where the 

nucleotide and its base pair are only presented as being either a purine or pyrimidine (rather 

than the four specific nucleotides used at the other three positions). Empty values for the 

first one or two, and last one or two positions, are used at the 5′ and 3′ termini. The 

remaining five attributes represent any additional attributes for each of the five positions. 

These include values such as the position in a tetraloop, multiplets, stacking, and 

pseudoknots. Figure S1 of the Supplementary Material illustrates a simple RNA sequence, 

the text file description of the template, and an example set of attributes that are used as 

input to the support vector regression software.

Available chemical shift values were extracted from the BMRB files for non-exchangeable 

(H8, H2, H6, H5, H1′, H2′, and H3′) protons and the corresponding carbon nuclei. Inclusion 

of data for carbon nuclei is another significant advance from our previous work. Adding 

additional atoms or elements (N or P) requires the trivial addition of the element and atom 

names to an input file. At present we’ve restricted the program to the carbon and hydrogen 

elements and the above atoms, as they are the ones with the most comprehensive set of 

currently available data.

In our original work we used a linear analysis with PACE regression (Wang and Witten 

2002) to model the contributions of each attribute to the observed chemical shift. This 

allowed a simple calculation of the modeled chemical shift, and an understanding of the 

relative contributions of different attributes. The linear contribution model however limits 

the ability to model different environments without using an excessively large number of 

attributes. In the current work we’ve allowed for more complex attribute contributions by 

using support vector regression (SVR) with non-linearity provided by a Radial Basis 

Function Kernel. There is a wide range of data mining algorithms that could potentially be 

used for predicting chemical shift values from a set of attributes including decision trees, 

neural networks, and linear regression (Witten et al. 2011). The SVR technique was chosen 

both for its ability to produce a sparse solution at the global minimum (Bishop 2006), but 

also because efficient code was available to readily include the prediction model as an 

integrated component in NMRViewJ. Alternative methods such as neural networks were 

investigated, but require complex decisions about network topology and the code libraries 

did not lend themselves to simple embedding of the prediction code. SVR calculations were 

performed using the Java library, libsvm (Chang and Lin 2011) which could be used both in 

a standalone mode for training, but also used as an integrated library in NMRViewJ. As with 
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our previous work we assessed the quality of the predictions using a tenfold stratified cross-

validation during our analysis. This method trains the model on 90 % of the data and uses 

this to predict the remaining 10 %. This process is repeated ten times using a different set of 

data each time and derives rms deviations based on the whole process. Cross-validation was 

done as implemented in the libsvm library.

The quality of predictions depends in part on factors that are not included in the training 

model and on the quality of the input data. We did not explicitly include sample conditions 

(pH, temperature, ionic strength, etc.). These can have both an overall effect on the average 

shifts, and an influence on the shifts of particularly sensitive nuclei. Factors that influence 

the overall quality of the data include errors in referencing and specific miss-assignments. 

We minimize the impact of these factors on the performance of the predictive models in two 

ways: automatic reference adjustment and outlier removal. We skipped any BMRB files 

where we could detect that the molecular structure had unusual attributes such as DNA-

RNA hybrids or extensive use of non-standard nucleotides or nucleotide linkers as these 

were unlikely to be represented in sufficient numbers for accurate modeling.

Reference adjustment was performed by a two-step procedure. First we used a protocol for 

adjusting the carbon chemical shifts based on the expected shifts of GC–GC pairs commonly 

found at the termini of synthesized RNA (Aeschbacher et al. 2012). Certain carbon shifts in 

these terminal nuclei have characteristic shifts. Deviation of measured shifts from the 

expected value is particularly good for detecting a common error of approximately 2.7 ppm 

made when calibrating the carbon shifts. Next we used the consensus-based procedure 

described in our earlier publication. In this protocol the predictive model is trained once and 

the average error for the proton and carbon shifts from each BMRB entry is calculated. The 

average error in the prediction is then subtracted from each shift and the model is then 

retrained with the now corrected shift data. This is a useful addition to the reference protocol 

because not all sequences have the GC–GC terminal pairs or some necessary shifts may be 

missing. Additionally, we noted that different referencing errors could be observed for 

different carbon types. For example, the reference error for carbon atoms in the ribose ring 

could be different from the error for base carbons, suggesting that users made different 

reference errors in different NMR experiments. Because of this we calculated the reference 

error separately for ribose and base atoms. If the error was similar for both categories a 

single average correction was used.

The compensation for assignment errors and other non-modeled effects on specific chemical 

shifts was done by manually and automatically trimming outliers. Obvious errors in shifts 

that were observed in plots were manually removed by entering an atom identifier into a text 

file. Atoms with entries in this error file were ignored during subsequent analysis steps. The 

automated trimming was performed by running two passes of the prediction analysis. The 

rms deviation between the experimental and predicted values were calculated using all the 

data for each atom of each of the four bases, and any data values that were beyond three 

times the measured rms deviation value were marked as being outliers. The second pass was 

then performed on the database excluding the outliers.
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Output of the above analysis includes the cross-validated rms for each atom, an overall rms 

for carbon and protons, and prediction models in libsvm format. Additionally, average 

prediction errors for each BMRB file and various atom specific reports can be generated.

The good results of the prediction analysis (see “Results and discussion” section) suggested 

the possibility of using our model to calibrate parameters used in deriving chemical shifts 

with a ring current shift model. We used the prediction model to predict the chemical shifts 

of the sequence of the 19-residue A-form helical RNA of chains C and D of PDB entry 

1QC0 (1.55 Å resolution). The sequence and helix secondary structure were provided to our 

prediction software and predicted proton shifts determined.

Ring current effects can be described (Case 1995) as the product of three terms, G(r), a 

geometric factor that depends on the position (r) of the target atom relative to the aromatic 

ring, B a constant representing contributions of a benzene ring (here set to 5.455 × 10−6 Å ), 

and i an intensity factor that scales the contribution of a specific ring type to that of benzene:

(1)

The PDB model was loaded into NMRViewJ and for each proton with a predicted chemical 

shift we calculated the geometric contribution (G) of each aromatic ring to the proton (Haigh 

and Mallion 1980) multiplied by the i and B values given by Case (1995). A matrix equation 

was then established as follows:

(2)

Each row of the matrix A and vector b represents one of the predicted protons. The first 13 

columns of matrix A are binary values with only one of the columns set to 1. That column 

represents the type of the proton. Proton types were AH2, AH8, GH8, CH5, UH5, CH6, 

UH6, AH1′, GH1′, CH1′, UH1′, H2′, H3′. Preliminary analysis showed little difference in 

shifts for H2′ and H3′ so we minimized the number of total attribute columns by grouping of 

H2′ and H3′ into single types for the four different bases. The final column of matrix A 
contains the sum of all the ring current contributions of all nearby rings in the structure. 

Figure 2 illustrates the matrix equation. The matrix equation was then solved for the vector x 
using a Singular Value Decomposition (SVD). The first 13 elements of the solution vector 

represent the shift of each of the 13 proton types in the absence of any aromatic ring current 

shift (other than the effect of a given aromatic ring on its own protons). The final element of 

the solution vector represents a scaling factor that multiplies the ring current contribution 

calculated using the Haigh-Maillion theory and the intensity factors calculated by Case 

(1995).

The utility of the new reference shifts and the scaled intensity factor in doing ring-current 

shift calculations of new structures was established by calculating the chemical shifts of 

protons in a set of PDB structures with assigned chemical shifts. For this test we used a set 

of PDB models used previously (Frank et al. 2013). For each PDB model, the rms deviation 

of the calculated shift with the assigned values from the corresponding BMRB file was 
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determined. We used the structures as obtained directly from the PDB, without any 

additional refinement. Calculated shifts were done in four ways: using the average value for 

the proton from the BMRB database, using ring-current shifts as described in Case (1995) 

[but using our own software implementation, not the original Shifts program (Xu and Case 

2001)], using the ring-current shifts with the above calibration, and using our SVR 

prediction.

Results and discussion

Referencing

Generation of useful shift prediction models from database-derived shifts requires properly 

referenced and assigned data. Deposited shifts from both protein and nucleic acids are 

however subject to errors of referencing and errors in assignment. A variety of methods for 

checking protein chemical shift assignments have been developed, including LACS (Wang 

et al. 2005), RefDB (Zhang et al. 2003) and PANAV (Wang et al. 2010). In our previous 

work on RNA shift prediction we used similar procedures to that used in RefDB and that 

work by performing two cycles of prediction. The average error for each BMRB entry after 

the first cycle is used as a correction before starting the second prediction cycle. An 

alternative protocol for correcting referencing errors in RNA spectra based on the expected 

shifts of five specific atoms has also been described (Aeschbacher et al. 2012). In the current 

study we used a combination of the two methods. As the two-cycle prediction-correction 

technique basically works by forming a consensus reference and then correcting datasets 

relative to that it’s useful to ensure that obvious errors are minimized before the first cycle. 

So on datasets that are amenable to the procedure we used the procedure of (Aeschbacher et 

al. 2012) prior to the first prediction cycle. Because not every data set has necessary atoms 

for 5-atom correction procedure, it is important to also do the two-cycle correction.

Figure 3 shows an example of three different BMRB entries with different referencing 

situations. The plots are the deviation between predicted and measured shifts and are done 

without any reference correction. BMRB entry 5705 can be seen to have an average error 

near 0.0 demonstrating that the data set is well referenced and that shifts can be well 

predicted with our protocol. BMRB entry 18,975 has an average error near 2.7 ppm, a value 

consistent with a common error of referencing where the reference is set to tetramethylsilane 

(TMS) rather than 2,2-dimethylsilapentane-5-sulfonic acid (DSS) (Aeschbacher et al. 2012). 

BMRB entry 5932 has the property that the chemical shifts for the carbons of the aromatic 

bases are correctly referenced, but the sugar carbons are offset by an amount suggesting that 

the datasets used to acquire them were incorrectly referenced to tetramethylsilane (TMS). 

Errors such as that found in entry 5932 led us to calculate the reference correction for 

aromatic base carbons and sugar carbons separately. If the two corrections were similar they 

were averaged, otherwise the two sets of carbon shifts were corrected separately.

Outlier analysis

Analysis of the data shows that outliers, values where the error in prediction is significantly 

larger than was typical, were present. These outliers could be due to unusual chemical 

environments where our prediction model doesn’t work well, or could be due simple errors 
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and mis-assignments in the original datasets. Some errors were quite obvious and were 

manually eliminated. For example, BMRB entry 19,018 has a variety of shifts set to 

precisely 0.0. We assumed that these were errors and eliminated them. Other errors show 

particular patterns. For example, Fig. 4 shows a plot of the predicted versus measured values 

for the C2′ and C3′ atoms from reference corrected, but untrimmed analyses. The plot shows 

groups of shifts for C2′ atoms that are at the expected values for the C3′ atoms, and shifts for 

C3′ atoms at the expected values of C2′ atoms. This pattern of shifts located symmetrically 

across the diagonal are consistent with, but not definitive proof of, what would happen if the 

assignments for these two atoms were interchanged. We did not attempt to correct for 

possible interchange of the C2′ and C3′ shifts, but the effect of this would be minimized by 

our overall protocol of automatically trimming out shifts that were more the 3 times the 

average rms error for each atom type.

The protocol used for removing outliers undoubtedly removes some data values that are 

correct and thereby minimizes the range of chemical shift environments that are successfully 

predicted by the algorithm. However, the limited number of available chemical shift datasets 

for RNA available from the BMRB means that some attribute combinations are represented 

by a very small number of examples. Indeed for many attribute combinations only zero or 

one data value is available. Given this fact it is almost impossible to automatically and 

correctly distinguish between outliers that are due to poorly predicted valid data rather than 

invalid data values. We included the trimming protocol as we expect that retaining errant 

values could corrupt the prediction model that results from the training process. The total 

number of shifts removed in our protocol is, however, relatively small. Approximately 2 % 

of shifts were removed in our analysis. By comparison, the “reduced” dataset used in 

(Cromsigt et al. 2001) removed 25 % of the shifts. We expect that as additional datasets are 

deposited more examples of unusual attribute environments will be available and the 

number of valid data values eliminated as outliers will be reduced. We provide a full list of 

trimmed data values in Table S1 of the supplementary information.

Data retrieval and template generation

Our previous work relied on manual download and analysis of data files. This required an 

amount of time and effort that are a barrier to regular updates of the training database. 

However, the relatively small number of RNA entries in the BMRB makes it important to 

keep adding new entries to our training database to ensure broad coverage of possible RNA 

sequences and secondary structures. Automation of the data retrieval and template 

generation has allowed us to develop a routine protocol (Fig. 1) for regularly updating the 

database. In the first update since our previous work we’ve significantly increased the 

number of BMRB entries. The current automated protocol relies on having available PDB 

files and so not all entries could be analyzed automatically with the current protocol. We 

should note that while PDB files are used for determining features such as the secondary 

structure, we are not making direct use of 3D coordinates in the prediction model.

Of the 254 BMRB entries automatically downloaded, twenty-one were missing PDB IDs, 

eleven were not compatible with the DSSR program, and two had invalid PDB entries. 

Additional entries were automatically dropped from the analysis, when, for example, the 
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software couldn’t make an exact match of the sequence in the BMRB entry with that in the 

PDB file. The final analysis used a total of 187 files, a significant increase from the 126 used 

in our original analysis. The list of BMRB entries that were considered and the status of 

each is shown in Supplementary Table S2. Replacing the analysis done by an experienced 

person with the automated routines could result in errors in the analysis. Before proceeding 

with the use of the full database, we compared the analysis done with the automatically 

generated template with that resulting from the original manual analysis. To do this, we 

performed the chemical shift modeling calculations on the original manual template versus 

the automatically generated template for only the original 126 BMRB entries. In this way, 

any differences in the calculations would only be based on the differences of the analysis 

and template creation and not on any extra BMRB entries.

Training the prediction model using our new scripts and the new SVR regression fitting, but 

with the manual attribute template from our previous publication (Barton et al. 2013) yields 

similar results to that obtained previously. We previously reported the analysis of 3758 

hydrogen shifts in A-form helical regions with an overall rms deviation of 0.056 ppm. Our 

new procedure, but with the same template, used 4066 shifts and resulted in an overall rms 

deviation of 0.052 ppm. The new protocol uses a somewhat greater number of shifts in part 

because of new attribute categorization code and the details of the computerized 

identification of attributes.

Table 1 compares the manual and automated analysis for both hydrogen and carbon nuclei 

in more detail. The analysis with the manual template used a total of 11,953 hydrogen nuclei 

and 5559 carbon nuclei, while the automated template used 12,354 and 5559 respectively. In 

calculating the overall rms predictions we did the calculation separately for atoms in 

canonical and non-canonical helical regions, other regions, and for all atoms together (see 

Table 1 footnotes for definitions of the categories). The training and validation protocol was 

run using the manual and automated templates. The cross validated rms (xrms) was 

calculated during the prediction analysis and done without dividing into the three categories. 

The error in prediction as measured by the rms deviation between measured and calculated 

shifts was essentially the same when using the automatically generated template in 

comparison to that using the completely manual template. For the hydrogen nuclei analyzed 

with the manual template, the rms for the canonical, non-canonical, other and all atoms were 

0.05, 0.06, 0.09, and 0.08 ppm, respectively. Using the automated template for hydrogen 

nuclei resulted in the same values (within 0.01 ppm) indicating that our automated template 

generation generates comparable results to the manual analysis. Comparison of the carbon 

nuclei also showed good agreement between manual and automated templates. Using the 

manual template the rms values for the canonical, non-canonical, other and all-atoms were 

0.41, 0.42, 0.79 and 0.68, respectively. Analysis with the automated template agreed within 

0.02 ppm. The cross-validated rms for the analysis of hydrogen nuclei was 0.12 ppm with 

either the manual or automated template. The cross-validated rms for carbon is of course 

higher than that for hydrogen, but the manual and automated templates were both 0.80 ppm. 

The above results confirm that our largely automated attribute analysis procedure is 

producing results similar to that obtained by tedious manual analysis.
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Increase in shifts and attributes

Using the automated analysis and the expanded list of BMRB entries greatly increased the 

total number of shifts in the database (Table 1). The new automated downloading and 

analysis protocol results in a database with 58 % more hydrogen nuclei and 74 % more 

carbon nuclei. Increasing the size of the database was accomplished without significant 

increase in prediction error. The cross-validated rms for all hydrogen shifts was increased by 

only 0.01 ppm to a value of 0.13 ppm, and carbon prediction rms was increased by only 0.03 

ppm to 0.83 ppm.

The SVR models resulting from training on the chemical shift database yields prediction 

values even if the exact set of attributes is not present in the training database, but it is of 

course expected that prediction quality will be better if there are examples in the database. 

Accordingly it is relevant to determine the increase of unique attributes relative to our 

previous publication. The numbers of unique attributes for the manual, automated, and 

automated-plus were 1750, 1671, and 2389, respectively. We expect that fewer attribute 

combinations are available in the automated process in comparison to the manual analysis, 

on the original list of BMRB entries, because the automated analysis does not yet take into 

account some attributes that can be identified with careful manual analysis. Increasing the 

database size, however, significantly increased the number of unique attributes because of 

the greater variety of RNA molecules included. And the good results described above 

indicate that we have an appropriate set of attributes.

Nucleotide base environments

In our previous publication we restricted the analysis to only residues that were within A-

form helical regions. This was done, in part, because we expected that the linear analysis of 

chemical shifts used was less able to model more varied conformations, and because of the 

difficulty in manually analyzing all regions. In the current study we expanded this to include 

all regions of RNA secondary structure as defined using dot-bracket notation. As indicated 

in Table 1 this dramatically increases the total number of shifts that can be used for training 

and prediction. Approximately two-thirds of the hydrogen (12,851 of 18,774) and carbon 

(6486 of 9642) shifts are in regions labeled other. Predictions in these regions are not as 

good, as measured by the rms prediction error, as those in unperturbed helical regions, but 

are still in a range (0.11 ppm for hydrogen and 0.88 ppm for carbon) that should be very 

useful for aiding in the assignment of RNA spectra. Plots of the predicted versus measured 

values for hydrogen and carbon for the full dataset list are shown in Fig. 5. This figure 

shows the data for the canonical, non-canonical and other shifts (see Table 1 for category 

descriptions) plotted separately. Some shifts in the canonical hydrogen plot (Fig. 5a) appear 

to be outliers that might be expected to have been trimmed in the outlier procedure. That 

procedure trims shifts whose prediction errors are 3 times the rmsd. Since the rmsd is 

calculated from the analysis of all shifts some shifts that might otherwise be trimmed are 

retained. Further refinements of our code could be done to calculate the rmsd for trimming 

for individual categories.

The actual SVR regressions are done on each atom type separately and the number of shifts 

and cross-validated RMS are shown for each atom in Table 2. Most hydrogen atoms are 
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predicted with an rms error near the mean value of 0.13. The largest prediction error (0.20 

ppm) was found for the H2 proton of adenine. Prediction errors for most carbon atoms were 

similar to the mean value of 0.83, but the values for the C3′ carbons appeared noticeably 

higher with an average value of 1.29 ppm (Table 3).

Ring current shift calibration

Chemical shifts are ultimately determined not by the somewhat abstract set of attributes we 

use in this analysis, but by specific physicochemical interactions. In RNA the apparent 

currents induced in aromatic rings largely dominate these effects. Empirical calibration of 

the magnitudes of the ring-current shifts and other contributions to RNA chemical shifts has 

been hampered by the lack of high quality structural data. Calibration of similar mechanisms 

in protein chemical shifts has generally been done by using NMR derived chemical shifts 

combined with structural information calculated not from the NMR structures, but rather 

from structures derived from X-ray crystallography. The great difficulty of obtaining 

appropriate crystals of RNA has meant that there is not a large set of X-ray structures with 

NMR chemical shifts available for performing the calibration.

One method of calibrating the ring-current shifts has relied on quantum-mechanical 

calculations of the effect of aromatic rings on a proton positioned in various orientations 

relative to the ring. These calculations form the basis of the Shifts program (Xu and Case 

2001). One of the possible issues in translating these calibrations from the idealized 

simulation environment to predicting shifts in actual RNA molecules is the fact that RNA 

molecules can be highly dynamic (Bothe et al. 2011). Ring current effects are then likely to 

be averaged over a variety of conformations.

As an alternate approach to calibration we’ve used a high-resolution X-ray structure of RNA 

as the source of structural information, and chemical shifts predicted using the methodology 

of this paper. By doing this we can take advantage of the multiple available assigned shift 

sets that are used in training our model. The chemical shift was calculated as an intrinsic 

chemical shift plus a contribution from the nearby aromatic rings. The ring-current 

contribution was modeled as a value calculated using the individual ring current factors for 

each ring type as calculated by Case (1995), but with the contribution scaled by an 

adjustable factor. The output of the linear least squares analysis of the data is a new set of 

intrinsic shifts for each proton, and a single overall scaling parameter. The best fit was 

obtained with a scaling factor of 0.53. This analysis is strictly empirical, but the scaling 

factor less than 1.0 suggests that the magnitude of the ring current effect is overestimated in 

the quantum mechanical calculations of model systems relative to that observed in 

dynamical RNA structures in solution. Our analysis was set up to also allow the contribution 

of individual ring types to be calculated. The rms deviation of predicted from measured 

shifts for the analysis done using a single adjustable scale factor with the target factors from 

Case (1995), and that using adjustable values for each ring type were both 0.10 ppm. The 

lack of an improvement in fit indicates that there is no statistical justification in using the 

additional parameters and so we only use the scaled Case parameters. Obtaining calibrations 

for individual ring factors would likely require using additional structural models.
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Evaluation of chemical shift predictions ought to be done relative to an appropriate baseline, 

which we consider to be simple prediction based on the average chemical shift for a given 

atom and nucleotide type. Predictive models that are based on secondary or tertiary 

structures should result in a significant improvement. We’ve compared various models by 

predicting the shifts of a set of BMRB entries with corresponding PDB models that were 

previously used (Frank et al. 2013).

Figure 6 shows predictions on these 16 different PDB models. Predictions were done using 

the simple average shift from the BMRB data, the ring current shift model as implemented 

in NMRViewJ using both the original parameters from Case and our re-calibrated intrinsic 

shifts and scaling factor, and the values predicted using the secondary structure based SVR 

model. The average RMS for each prediction type is also indicated. Simple prediction with 

BMRB averages gives an overall RMS of 0.27 ppm. With this set of structures, and our 

implementation of the ring-current shift model, no improvement in prediction quality is 

obtained with the original Case parameters. The rms we determined (0.33 ppm) is similar to 

that (0.35 ppm) reported by (Frank et al. 2013) using the SHIFTS (Dejaegere et al. 1999) 

program itself suggesting that our implementation of the model is valid. We obtain a 

significant improvement in the prediction quality using our ring-current calculation code, 

but with the empirical recalibration of the parameters (rms = 0.22 ppm). A somewhat 

surprising result is that the secondary structure based prediction using our current SVR gives 

a significant improvement in prediction quality (rms = 0.13 ppm) relative to the 3D structure 

based ring current calculation. This is likely in part due to the fact that NMR 3D structures 

of RNA are not always of high quality in part because their calculation depends significantly 

on force field parameters (Tolbert et al. 2010) and there is a virtually complete lack of X-ray 

structures with corresponding NMR chemical shift sets. Additionally dynamics are not 

included in the 3D shift predictions and may significantly affect the average shifts.

Recently, two new algorithms for 3D shift prediction were described. The first is a “black 

box” approach based on a large number of descriptors used in a random forest training 

algorithm (Frank et al. 2013). The second algorithm is based on simple calculation based on 

inter-atomic distances in a 3D structure and is therefore easier to implement within 

molecular dynamics simulations to aid in structure refinement (Frank et al. 2014). Prediction 

quality was described in this paper (Frank et al. 2014) in terms of the mean absolute error 

(mae), rather than the rms deviation and was shown to be better, as analyzed on all bases in 

a set of PDB files not used in the training, than that using either the SHIFTS (Dejaegere et 

al. 1999) or NUCHEMICS (Cromsigt et al. 2001) programs that are based on ring current 

shifts. The lack of a squared term in the mae (as compared to rms) gives less weight to 

values with large deviations. Using the mae minimizes the effect of outliers caused by 

errors, but may deemphasize prediction quality in non-helical regions where prediction may 

be more difficult. Our recalibrated ring-current model, on the set of PDB structures reported 

here, gives a similar prediction error (mae = 0.17) compared to that previously reported 

(Frank et al. 2014) (mae = 0.15) indicating that even without using 3D structural information 

we can obtain good prediction quality.
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Conclusions

The present study shows that high quality predictions can be made for both proton and 

carbon chemical shifts in RNA molecules using information that is primarily derived from 

the nucleotide sequence and secondary structure. In particular, we did not train our 

predictive models based on coordinates from 3D models, in part because RNA structure 

determination relies heavily on force field parameters used during refinement, and many of 

the deposited RNA structures have helical properties that deviate significantly from 

expected values (Tolbert et al. 2010). Prediction models calibrated in this way can be used 

early in the NMR analysis process to aid in the assignment of new sequences. We’ve 

implemented the prediction tool within NMRViewJ (Johnson and Blevins 1994) where it 

can be used both to aid in the manual assignment of RNA molecules and to validate 

assignments. High quality predictions will also be useful in automated tools that are under 

development in our own and other labs (Aeschbacher et al. 2013; Krahenbuhl et al. 2014; 

Sripakdeevong et al. 2014; van der Werf et al. 2013).

The relatively small number of chemical shift depositions for RNA molecules makes it 

important to continue training the prediction model as new data becomes available. The 

implementation of the automated procedure described here makes the protocol very simple 

and should facilitate this ongoing process. Comparison with our previous manual procedure 

indicates that the automated protocol gives excellent results. Expansion of the training 

dataset has significantly increased the number of training attributes in the database and 

should thereby improve the prediction quality on novel sequences. We expect that further 

improvements in our analysis scripts will allow a higher percentage of available BMRB 

NMR-STAR files to be used automatically.

Observation of outliers and referencing errors, even in relatively recent depositions indicate 

that more attention can be paid to ensuring the quality of deposited data. Incorporation of the 

prediction tool within NMRViewJ should facilitate the validation of chemical shift 

assignments.

The prediction model here is based on qualitative descriptions of the nucleotide sequence 

and base pairing, and yet quantitative physicochemical effects such as ring-current shifts that 

depend on 3D structure and dynamics ultimately determine chemical shifts. A fundamental 

problem in using structure based shift models is the need to calibrate the models using very 

high quality 3D structures. Calibration of structure-based chemical shift models for proteins 

is commonly done with shifts derived from NMR analysis, but with the structures derived 

from X-ray crystallography (Shen and Bax 2010). Unfortunately there are very few X-ray 

structures of RNA with corresponding chemical shift sets so this approach is not yet 

feasible. Our recalibration of ring-current shifts using an X-ray structure combined with our 

secondary-structure based model shifts shows that 3D based predictions can be improved. 

Even with this improvement our secondary structure based models predict the shifts with 

higher accuracy. This suggests that the quality of 3D based RNA structure predictions could 

be significantly improved with an increased availability of better structural models.
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Fig. 1. 
Flow chart for the automated data retrieval and analysis process. Steps enclosed in the 

shaded box represent the automated protocol used for fetching data and attribute generation. 

Steps within the dashed box are involved in modeling the data. The SVR boxes encompass 

using the SVR algorithm to train a model, predict shifts and calculate rms errors. Output at 

the last step includes saving the results of the tenfold cross validation
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Fig. 2. 
A representation of the math matrices used for calibrating ring-current shift parameters. The 

first and last shaded regions represent the matrix A and vector b that are input into the 

Singular Value Decomposition (SVD) algorithm to solve the equation Ax = b for the vector 

x (representing the contribution of each term). The actual matrix A used has additional rows 

for the remaining atoms in the structure, and additional columns for additional atom types 

(for the A and U residues), and the vector b has additional rows (for the additional atoms). 

The final column, labeled Factor, represents the sum of product of the geometric factors and 

ring current intensity parameter (Case 1995) calculated for all aromatic rings near the 

corresponding atom. All the other columns of the matrix are set to 0, except the column that 

represents the atom type for that row
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Fig. 3. 
Plots of the deviation between measured and predicted values (δpred – δmeas) for three 

different BMRB entries. The plots are from calculations done without using our offset 

correction and trimming protocols, so represent fits to the raw chemical shift data. Data is 

taken from prediction runs using all BMRB entries, not just those illustrated. a BMRB entry 

5705, b BMRB entry 18,975, c BMRB entry 5932. The dashed line corresponds to the 

common error of 2.7 ppm (Aeschbacher et al. 2012)
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Fig. 4. 
Plots of predicted versus measured values for the C3′ and C2′ atoms. Data is taken from the 

output of a prediction run done with the offset correction protocol, but without any trimming 

of outliers
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Fig. 5. 
Plots of predicted versus measured values for the complete set of atoms obtained with the 

automated procedure described here. a, c and e are hydrogen shifts, and b, d and f are 

carbon shifts. a and b are canonical shifts in helices, c and d are non-canonical shifts in 

helices, and e and f are other shifts (see Table 1)
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Fig. 6. 
Plot of the root mean squared (rms) prediction error for proton chemical shifts for 16 

different RNA molecules. Structures were taken from the indicated PDB entries. Four 

different methods were used to calculate predicted values. The values for bars labeled 

BMRB are from setting the prediction value to the mean shift of the corresponding atom 

type as taken from data at the BMRB (Ulrich et al. 2008). RC are from a ring current shift 

calculation within NMRViewJ (Johnson and Blevins 1994) using parameters from (Case 

1995), RC-Cal are also a ring current calculation within NMRViewJ, but with the calibrated 

ring-current parameters described here, and SVR prediction are from the output of the SVR 

calculation described here
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