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SUMMARY

Avoiding temperatures outside the physiological range is critical for animal survival, but how 

temperature dynamics are transformed into behavioral output is largely not understood. Here, we 

used an infrared laser to challenge freely swimming larval zebrafish with “white-noise” heat 

stimuli and built quantitative models relating external sensory information and internal state to 

behavioral output. These models revealed that larval zebrafish integrate temperature information 

over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after 

the end of a bout. Our results suggest that larval zebrafish compute both an integral and a 

derivative across heat in time to guide their next movement. Our models put important constraints 

on the type of computations that occur in the nervous system and reveal principles of how 

somatosensory temperature information is processed to guide behavioral decisions such as 

sensitivity to both absolute levels and changes in stimulation.
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Introduction

While temperatures in the environment constantly change, animals need to keep their 

internal temperature within a tight physiological range. Zebrafish are endemic to shallow 

waters, which are subject to large temperature fluctuations caused by differences in sunlight-

intensity (Engeszer et al., 2007). They detect changes in temperature and modify their 

behavior to maintain appropriate body-temperature. From three days post fertilization (dpf) 

larval zebrafish robustly avoid both hot and cold temperature (Gau et al., 2013) and increase 

their swim intensity in response to changes in water temperature (Prober et al., 2008). Like 

other vertebrates they mainly detect ambient temperature via neurons in the trigeminal and 

dorsal root ganglia (Patapoutian et al., 2003; Sagasti et al., 2005), in particular neurons 

expressing the transient receptor potential channel TrpV1 (Gau et al., 2013).

In spite of growing cellular- and molecular-level understanding of temperature sensation, 

little is known about how perception of temperature is transformed into behavioral output in 

larval zebrafish and other vertebrates in general. However, knowing these sensorimotor 

transformations is crucial to understand the computations performed by the nervous system 

to guide behavioral decisions in response to temperature changes (Clark et al., 2013). We 

therefore set out to characterize the “temporal receptive field of heat perception” in larval 

zebrafish. Specifically, we defined the timescales over which they integrate temperature 

information and their sensitivity to absolute levels and changes in this somatosensory input. 

To probe the temporal dynamics of heat sensation, we developed a setup that allows us to 

quickly and precisely heat freely swimming larval zebrafish by means of an infrared laser 

while extracting behavioral parameters with high temporal precision. Larval zebrafish 

initiate discrete swim bouts with variable speeds and turn angles (Budick and O'Malley, 

2000), which allowed us to build models relating sensory input to swimming in a similar 

way as otherwise used in neuroscience to relate sensory input to neuronal firing. In this 

context, we utilized a “whitenoise” heat stimulation paradigm to identify stimuli that 
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preferentially trigger swimming behavior in 9–11 dpf larval zebrafish. By fitting generalized 

linear models that relate both temperature input and bout history to the probability of swim 

initiation we showed that larval zebrafish mainly integrate temperature information in a 

time-interval of 400 ms preceding a swim bout. Within this 400 ms window zebrafish 

compute a sum and a difference across temperature in time, making swim initiation sensitive 

to both absolute as well as changes in temperature. Fitting models to different swim types 

based on distance moved revealed differing temporal receptive fields. This indicates that 

larval zebrafish differentially weigh sensory input before committing to different swim 

trajectories.

Results

A setup to deliver precise heat stimuli to larval zebrafish

Probing dynamics of heat perception requires delivering stimuli to freely swimming larval 

zebrafish with high temporal precision, while the large thermal capacity of water makes it 

impractical to heat the whole behavioral arena. We therefore built a setup using a 980 nm 

infrared laser to directly heat pigmented larval zebrafish (Figure 1A). Since this approach 

only delivers energy to a small volume of water without heating the remainder of the 

chamber, passive cooling on stimulus offset is expected to be quick as well.

We tracked larval zebrafish at 250 Hz using custom written software to extract their position 

and heading angle in real time. We used this information to control a pair of galvanometric 

mirrors that kept the laser beam centered on the fish and at the same time controlled the 

output power of the laser.

Because of their pigmentation we expected that larval zebrafish would be directly heated by 

our laser rather than indirectly via absorption by the surrounding water. To test this 

prediction we used a thermal imager comparing heating of agarose droplets that were either 

empty or contained an embedded larval zebrafish. The presence of larval zebrafish in the 

droplet increased magnitude and slope of the temperature rise in response to a laser pulse 

(Figure S1A) indicating that we indeed directly heat the fish. Embedding a 4 mm long, 840 

µm diameter thermistor in droplets led to similar heating profiles as embedding a larval 

zebrafish. We therefore estimated the temperature changes caused by our laser by parking 

the beam on a thermistor submerged in the experimental chamber. By delivering steps of 

laser power we determined heating kinetics (Figure 1B) and estimated the steady-state 

temperature of the fish to be 8.8 °C above the baseline temperature of 22 °C per watt of laser 

power. The halftime of temperature rise and decay was on the order of 700 ms indicating 

that we have good temporal control over the fish temperature. The measured temperatures 

are overall in good agreement with observed behavioral effects. Namely, power levels above 

1400 mW for extended time were noxious to larval zebrafish, as evidenced by long strings 

of escape movements followed by a reduction in baseline movement for prolonged time 

periods. These noxious effects are expected at temperatures above 34 °C (Gau et al., 2013).

Comparing temperature falloff within the 5 mm diameter laser spot with per-frame distances 

traveled by larval zebrafish during bouts suggests that the fish only has minimal control over 

experienced temperature (Figure 1C) especially since fish are heated directly by the laser 
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rather than via the surrounding water. Furthermore, heat delivered to the periphery of the 

spot is minimal and hence baseline water temperature did not change over the course of our 

experiments.

With these baseline parameters established, we turned to behavioral experiments. Fish 

reacted to step increases in laser power (Figure S1B–D and Movie S1). Aligning swim speed 

based on laser onset across 40 fish (Figure 1D) shows that larval zebrafish reacted quickly to 

laser onset, especially for higher laser powers. In response to 1450 mW power steps, fish 

often performed an initial escape maneuver of large magnitude within 50 ms after laser 

onset evidenced by a peak of activity followed by a short period of quiescence before a 

general increase in swim activity (Figure 1D, S1D). On average, fish responded 830 ms after 

stimulus onset for 1450 mW and after 980 ms for 600 mW steps in power. This increase in 

swim-vigor declined with similar kinetics as cooling after laser offset. These results 

demonstrate that laser heating can induce behavioral changes with high temporal precision.

Larval zebrafish avoid hot temperatures and we wanted to know whether we could replicate 

this in our setup. We therefore exposed larval zebrafish to a radial gradient of laser power 

from 0 mW in the center to 1084 mW power at sample at the edge of a 11 cm diameter dish, 

corresponding to a virtual temperature gradient from 22 °C to 32 °C (Figure 1E, left panel). 

In the absence of laser stimulation, larval zebrafish performed thigmotaxis, that is they 

tracked the wall of the chamber. Preference changed under gradient conditions and fish 

spent significantly more time closer to the center of the chamber as evidenced by a leftward 

shift in the cumulative distribution of time spent at each radial position (Figure 1E, right 

panel; p = 0, k = 0.41, 2 sample KS test). When fish were subjected to gradient conditions, 

bout frequency and displacement increased in a graded manner with increasing radius and 

hence laser power (Figure S1E–F). This modulation of behavior likely forms part of a heat 

avoidance strategy as fish did not actively direct swims towards the center (Figure S1H). 

The observed effects argue that our setup delivers aversive heat stimuli to larval zebrafish 

that are interpreted similarly to heated water conditions (Gau et al., 2013).

In summary the laser setup delivers temporally precise heat stimuli enabling us to implement 

a variety of experimental protocols, including both open-loop experiments, such as random 

laser stimulation, as well as closed-loop experiments, such as laser avoidance.

A protocol to probe temporal properties of heat processing

Having demonstrated that our setup can present larval zebrafish with salient heat stimuli, we 

wanted to probe the temporal structure of heat processing using a random temperature 

stimulation protocol. Such protocols are well suited to identify the structure of ideal stimuli 

triggering a response, in our case swimming of larval zebrafish.

We presented 100 fish with randomly fluctuating laser power levels and recorded their 

behavior at the same time (Figure 2A) extracting 241,513 swim bouts during stimulation 

periods. Each stimulation lasted for one minute followed by a one-minute rest period as this 

length minimized habituation to the stimulus (Figure S2A). We changed the laser power on 

average every 200 ms, drawing new power levels from a Gaussian distribution. This resulted 
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in temperatures on average 7 °C above baseline (Figure 2B, μ = 29 °C, σ = 1 °C) and a 

stimulus autocorrelation time of 960 ms (Figure 2C, S2B).

Swim bout intervals decreased during stimulation compared to resting, evidenced by a 

rightward shift in the cumulative distribution of interbout intervals (Figure 2D). This is in 

line with previous reports that swim activity increases with increasing temperature (Prober 

et al., 2008). The median interbout interval decreased from 804 ms during resting to 432 ms 

during laser stimulation (distribution shift: p = 0, k = 0.33, 2 sample KS test). Other swim 

parameters such as bout displacement and turn angle changed as well but to a lesser extent 

(Figure S2C–D). In particular almost all bouts during stimulation were regular swims rather 

than fast escapes (Figure S2E) since we kept power levels below 1400 mW at sample for 

more than 95% of experimental time. Keeping power levels below the noxious range kept 

fish healthy allowing us to collect many swims per fish. However, this approach comes with 

the caveat that our study did not characterize responses to noxious heat stimuli.

We cross-correlated the delivered laser power and the fish’s swim speed to reveal timescales 

over which laser power dynamics influence swimming. Figure 2E shows that increases in 

swim-speed are correlated with both increases in laser power as well as a rapid decline in 

power just before the onset of a swim. This suggests that transient increases in laser power 

in a 500 ms window can drive swimming. At the same time auto-correlation of bout starts 

(Figure 2F) revealed that swim initiation is reduced for about 300 ms after the start of a 

previous bout. This auto-correlation indicates that bout initiation is a history dependent 

process with a refractory period which is also present during resting phases (Figure S2G).

Swim initiation is sensitive to heat level and changes in temperature

Cross-correlations indicate that both temperature sensation and bout history influence swim 

initiation. We therefore sought a way of integrating these phenomena into a model to 

describe sensorimotor transformations from heat perception to behavioral output. We fit 

generalized linear models to our data that relate temperature and the timing of the last bout 

to swim initiation. These models are akin to models relating sensory input and spike history 

to neuronal firing ((Paninski, 2004), see Figure 3A and Materials and Methods for details).

By design, our models consist of two filters (Figure 3A), one for the transformation of 

sensory input (Figure 3B) and one revealing the influence of the time of the previous bout 

on the probability of swim initiation (Figure 3C). The sensory filter reflects the fact that 

larval zebrafish mostly consider temperature information in a 400 ms time window to guide 

swim initiation, which is revealed by comparison with a model derived from randomly 

shuffled data (Figure 3B). The sum of all filter coefficients is positive, which means that the 

fish increases its response with increasing temperature. Notably, we observe a trough of 

negative coefficients just before the large peak in the filter at 300 ms, suggesting that the 

filter effectively computes a positive derivative across heat in time around 350 ms before the 

start of the bout (Figure 3B). Swim initiation is therefore sensitive to both absolute 

temperature levels as well as increases in temperature.

The model’s bout history component indicates that bout generation is gated by a refractory 

period of 240ms after a previous bout was initiated (Figure 3C). A consequence of the 
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individual components of the model is that bout probability is predicted to increase with 

increasing temperature and that this increase is suppressed by the refractory period (Figure 

3D).

To test how well our model would generalize to new data we used a cross-validation 

approach. We randomly split our data into training sets of 80 experiments and test sets 

consisting of the remaining 20. We fit the model on each training set using it to predict 

response probabilities in the test set. Binning by probability we correlated predicted and 

observed bout counts, resulting in a correlation with r = 0.997 ± 0.002 while the slope of a 

linear fit between observed and predicted bout occurrences was 1.01 ± 0.07 indicating that 

the model generalizes very well to new data. Additionally, we used the cross-validation sets 

to assess the model’s performance as a classifier by receiver-operator-curve analysis. This 

analysis revealed that the model will rank a randomly chosen timepoint in which a bout 

occurred more highly than a randomly chosen timepoint between bouts in 71 ± 1% of cases, 

demonstrating that the model can classify bouts versus inter-bouts effectively.

The structure of the sensory filter suggests that the sensory system shows reduced sensitivity 

to fast fluctuations and adaptation to slow fluctuations in the heat stimulus. Specifically, the 

Fourier transform of the filter (Figure 3E) indicates that fish are especially sensitive to heat 

fluctuations around 3Hz. Since our “white-noise” stimulus did not probe all frequencies 

equally (Figure S2B) we tested this prediction by exposing an additional set of 50 fish to 

small, amplitude matched, laser fluctuations at 1, 3 as well as 6 Hz (Figure S3A–B). The 3 

Hz stimulus indeed resulted in significantly greater modulation of response probabilities 

than the 1 or 6 Hz stimuli, while the average bout frequency was around 1.3 Hz in all cases 

(Figure 3F and Figure S3C–D; 3 vs. 1Hz, p = 8×10−4; 3 vs. 6 Hz, p = 6×10−6; bootstrap 

hypothesis test). The observed changes in response magnitude are different from the 

predictions based on filter structure (dashed black lines versus responses at 1 and 6Hz in 

Figure 3F) but this difference is not unexpected given the non-linearity of the system and the 

effect of bout history on swim initiation. In summary, our models show that fish integrate 

heat information over a limited timeframe of 400 ms and that movement initiation is both 

sensitive to absolute heat levels and changes in temperature.

Sensory information is differentially weighted to guide motor output

Larval zebrafish execute swim-bouts of different speeds and with different turn magnitudes 

(see traces in Figure 2A for examples) and these differences are controlled by different 

motor centers (Huang et al., 2013; Severi et al., 2014). We therefore wondered whether we 

could detect differences in sensory processing depending on swim speed or turn angle. To 

this end we fitted models relating temperature sensation and bout history to the initiation of 

bouts with differing swim kinematics.

To test whether distance moved within swim bouts effected the fish’s receptive field, we 

divided bouts into three bins according to their displacement (27,543 bouts each bin; Short 

bout = 0.9 mm, Medium bout d̄ = 1.7 mm, Long bout d̄ = 3.7 mm; inset in Figure 3G); these 

bins contain bouts in which fish achieve increasing instantaneous speeds during swims 

(Figure 3G). Fitting generalized linear models to these three categories revealed a 

continuous modulation of the temporal receptive field (Figure 3H). In particular, we 
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observed a sharpening of the peak in the filter increasing the weighting of sensory 

information close to the bout start, as evidenced by an increase in the filter maximum 

together with the zero-crossing of the filter moving closer to the bout start (Figure 3H). 

Furthermore, we observed modulation of a negative filter component just before the bout 

start where coefficients become more negative for longer bouts. This indicates that drops in 

temperature proximal to a bout start bias larval zebrafish towards fast, extended swims.

Apart from the temperature filter there is also a slight modulation of the bout history 

component of the model, namely a stronger suppression of longer bouts after short bout 

intervals (Figure 3I). Since longer bouts are the result of faster swims (Figure 3G) and likely 

require a larger energy investment, we wondered whether there is a global difference in how 

larval zebrafish weight sensory information depending on a future choice of bout speed. To 

this end we fitted models on groups of bouts with increasing average displacements 

(N=25,000 bouts in each group) and calculated the respective areas of the temperature and 

history filter. A larger area causes the filter to be more sensitive to departures from the ideal 

stimulus and we therefore used the filter areas as measures of “importance” of the respective 

information in bout selection. The area of the temperature filter is correlated to bout 

displacement (r = 0.93) while the area of the bout-history filter shows a strong anti-

correlation (r = −0.93). Overall, there is a more than 1.5 fold increase in the temperature 

filter area with increasing bout displacement and a slight decrease of the bout-history filter 

area (Figure 3J).

A similar analysis subdividing swims based on their turn magnitude revealed no consistent 

modulation of the temperature filter preceding different turns (Figure S3E–G). However, we 

note that turning seems to be insensitive to temperature drops before the start of a bout 

(Figure S3F). The strongest observable effect was that large turns are suppressed for 

intermediate inter-bout intervals (Figure S3G). Turn modulation also does not show a shift 

in weighting sensory versus history information as the areas of both model components 

show a decline with increasing turn magnitudes (Figure S3H; r = −0.77 for temperature filter 

and r = −0.98 for history filter). Cross validations, performed in the same manner as for the 

general bout model, indicate a similarly good generalization for all category models (Table 

S1). In summary we have shown that receptive fields differ for different bout types, 

especially for the modulation of displacement of individual swims. These differences argue 

that larval zebrafish weigh sensory information in order to select movement types.

The models accurately predict bout initiation and intervals

To determine the power of our models in predicting bout initiation outside the context of 

“whitenoise” presentation, we ran a second set of stimulations. These consisted of repetitive 

presentations of a 15 s long temperature stimulus. This stimulus was derived by 

concatenating 6 scaled, two-second-long, bout triggered stimulus averages interleaved with 

gaps at mean stimulus intensity (Figure 4A inset). The repetitive presentation allowed us to 

construct a peristimulus time-histogram (PSTH) of bout initiation probabilities and compare 

it to model instantiations in response to the same stimulus. Comparing model predictions 

and the PSTH across 50 fish (grey and brown lines in Figure 4A) reveals that the bout 

initiation model is good at capturing response dynamics induced by the varying temperature 
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stimulus. We wanted to test whether this prediction accuracy relies on the filter structure. To 

this end we constructed a second, artificial model in which we replaced the sensory filter 

with a flat line integrating to the same value as the true model while fully preserving the 

history filter of the original model. We termed this model “boxcar model”. This model will 

report the same steady state bout probabilities as depicted in Figure 3D. However, the 

boxcar model fails at capturing the response dynamics, demonstrating that the structure of 

the temperature kernel is crucial for accurate prediction of behavior (dashed pink line in 

Figure 4A). Overall, across multiple bootstrap variates, the true model always has a higher 

correlation to the observed behavior than the boxcar model (r̄model = 0.70, r̄boxcar = 0.44).

Next we sought a way of determining whether our model captures the statistics of bout 

initiation well, in other words, whether it can explain interbout intervals observed during the 

experiment. For this analysis we made use of the time-rescaling theorem, which allows us to 

re-map observed swim intervals using the response probabilities predicted by the model for 

each individual timepoint. If our model reflects the true bout initiation process, the 

remapped latencies should be uniformly distributed on the interval [0, 1). Comparison of 

expected and observed quantiles of this distribution is shown in Figure 4B (grey line). The 

juxtaposition to the identity line revealed that the model is indeed nearly complete in 

capturing the bout initiation process. This performance, however, crucially relies on the bout 

history component of the model as a comparison model refit without this component fails to 

reproduce the observed bout latencies (Figure 4B, orange line). In particular, a model that 

assumes purely sensory driven bout-initiation overestimates short latencies, due to a lack of 

a refractory period.

The displacement and turn category models also had good power in predicting bouts of the 

same category during playback (Figure 4C–D). However, predictive power was lower than 

for the model predicting initiation of all bouts, which is expected since the category models 

are each derived from a much smaller number of bouts (on the order of 12 %). In addition, 

we could use the playback period to test whether the observed differences in the model 

filters carry meaning. If they do, we would expect bouts in a given category to be better 

predicted by their own model type than by a different category model. For displacement 

modulation, long bouts during playback are indeed significantly better predicted by the long 

bout model than the short bout category model (99.8% of bootstrap variates; Figure 4E), 

while large turns on the other hand are not significantly better predicted by the large turn 

model than the straight bout model (better in only 80.3% of bootstrap variates; Figure 4E). 

Similar results are obtained when the intermediate models (medium bout model and small 

turn model) are used to predict bouts from the more extreme categories (data not shown).

Apart from predicting average fish data we wondered how model predictions of single fish 

data would compare with fish-to-fish variability of responses. Behavior during playback 

periods was variable with an average correlation of r̄ = 0.32 between fish considering all 

bouts. Model predictions of individual fish behavior had an average correlation of d̄ = 0.33 

to single fish data indicating that our model has the same predictive power over single fish 

behavior as knowing the response of another fish. Correlations for bout category models 

were overall lower, as expected, and fish-to-fish correlations were often lower than 
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correlations between the model and individual fish (Figure S4). This indicates that our 

model does not fully capture fish variability but rather predicts an average behavior.

In summary our model of heat-driven swim initiation is accurate in predicting behavioral 

responses outside the “white-noise” stimulation context. Furthermore, it encompasses most 

information that is necessary to describe the observed behavioral parameters. Playback 

validation also revealed that differences in bout category models are meaningful as 

prediction accuracy improves if a model from the same category as the predicted bout is 

used.

Discussion

A major goal in neuroscience is to understand how nervous systems generate appropriate 

motor outputs in response to sensory information. Recent advances in imaging and recording 

techniques allow observing large parts of the nervous system in behaving animals, making it 

possible to relate sensory stimuli and motor output to neural activity (Ahrens et al., 2013; 

Giocomo, 2014; Portugues et al., 2014). However, to understand these large datasets, it is 

important to know how sensory information is transformed into behavioral output and which 

sensory features are relevant for guiding motor actions. Models of input-output 

transformations have led to important insights into processes as diverse as contrast 

adaptation in the retina (Baccus and Meister, 2002) and bacterial chemotaxis (Block et al., 

1982). During thermotaxis, E. coli, C. elegans and Drosophila larvae respond to temperature 

changes by changing the bias between turns and straight runs and studies of these 

sensorimotor transformations suggest that this modulation depends on both absolute levels 

as well as changes in temperature (Clark et al., 2007; Klein et al., 2015; Paster and Ryu, 

2008; Ryu and Samuel, 2002).

In the present study we investigated the transformation of thermosensory information to 

swim initiation in freely swimming larval zebrafish. Random white noise stimuli have been 

used to map receptive fields of diverse neuronal types such as visual receptive fields in the 

retina (Sakai et al., 1988) or spectro-temporal as well as spatial receptive fields in auditory 

neurons (Hermes et al., 1981; Jenison et al., 2001). Here we use a similar stimulus set to 

relate thermosensory input to behavioral output, effectively mapping the temporal receptive 

field of heat perception in larval zebrafish. By fitting generalized linear models relating 

thermosensory input to swim bout initiation we could demonstrate that larval zebrafish 

integrate temperature information mostly over short timescales of 400 ms to decide on bout 

initiation (Figure 3B). These timescales do not seem to vary with interbout interval and are 

considerably shorter than recently reported for Drosophila larvae, which seem to integrate 

temperature over multiple seconds to decide on changes in their run mode (Klein et al., 

2015). However, with inter-bout-intervals on the order of 1 s in unstimulated fish, the 

observed integration time seems well matched to behavioral output (Figure 2D). Also 

humans will report temperature changes within 700 ms after reaching perception threshold 

(Yarnitsky and Ochoa, 1991), a timeframe that may reflect integration times similar to larval 

zebrafish. The temperature filter of our model indicates sensitivity to both absolute heat 

levels and changes in temperature effectively leading to fast responses after a step-change in 

temperature followed by adaption. Fast timescale adaptation is common in sensory systems 
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and has been observed in bacterial chemotaxis (Block et al., 1982), mammalian 

thermosensory fibers (Duclaux and Kenshalo, 1980; Schepers and Ringkamp, 2010) and 

recently also in thermosensory projection neurons in adult Drosophila (Frank et al., 2015; 

Liu et al., 2015). This computational makeup endows larval zebrafish with the ability to 

react to temperature changes over a wide range of absolute temperatures and may help 

explain why very small temperature changes on the order of 0.1 °C can be used as 

conditioned stimuli in fish (Bull, 1936).

By subdividing swim-bouts according to covered distance or associated turn angle we could 

show that temporal receptive fields differ depending on swim types (Figure 3G–J and Figure 

S3E–H). This indicates that different bout types are preferentially triggered by different 

stimuli. We observed incremental changes in the temporal receptive field when considering 

bouts of different displacement. Notably, there is a clear increase in a second negative lobe 

proximal to the bout start for swims of larger displacement while the area of this lobe is 

smaller for large turns compared to straight swims. This might indicate that if fish performed 

a reorienting maneuver that led to improved, cooler conditions, they subsequently perform a 

long straight swim, a strategy that potentially aids in heat avoidance. Globally we observed a 

shift in model sensitivity towards sensory information over bout history with increasing bout 

displacement, which suggests that fish undertake more energy intensive maneuvers only 

after appropriate sensory input. This is not the case for increasing turn magnitude, however. 

Turn angle changes only require modulation of the first tail undulation (Huang et al., 2013) 

contrary to modulations in swim speed (Severi et al., 2014), hence the increase in energy 

investment is likely smaller for increasing turn magnitude than for increasing displacement. 

Overall the observed changes in receptive fields are small and likely only reflect changing 

biases in sensory processing rather than causing changes in bout displacement such as those 

observed in our gradient experiment (Figure S1F).

Larval zebrafish avoid cold as well as hot temperatures (Gau et al., 2013) and in theory our 

receptive fields may reflect these two opposing phenomena. However, given the average 

temperature of our stimulus (29 °C) with a lower limit of 22 °C it is unlikely that we probed 

any cryophobic responses. It is important to note that the derived filters likely reflect the 

synthesis of multiple parallel computations with potentially differing “ideal stimuli”. This 

effect may for example be reflected in the changes observed in the negative lobe proximal to 

bout start upon changes in bout displacement. These changes may reflect changing 

dominance between circuits preferentially responding to heating versus circuits 

preferentially responding to cooling. An example for such parallel processing lines was 

recently uncovered in the Drosophila nervous system where thermosensory projection 

neurons preferentially signal ON and OFF responses independently (Frank et al., 2015). 

Parallel channels like these may underlie the complex filters we observe that relate sensory 

input to motor output on a whole-organism level.

In summary, our study reveals how thermosensory information is transformed into 

behavioral actions in larval zebrafish (Figure 4F). We identified the temporal receptive 

fields of heat perception and derived models that accurately capture behavioral responses to 

dynamic temperature stimuli. In total, we showed that larval zebrafish integrate temperature 

information over fast timescales, making them react quickly to temperature changes. Our 
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models also suggest that zebrafish increase weighting of sensory information over internal 

state when selecting more energy-intensive maneuvers. These models put important 

constraints on the computations that are carried out by the nervous system and will assist in 

designing functional imaging experiments that can further delineate the neuronal circuits 

underlying these sensorimotor transformations.

Materials and Methods

All experiments were conducted on 9–11 dpf zebrafish larvae of an outcross between TL 

and AB wild types, fed powder food from day 5 onwards. All experiments followed the 

guidelines of the National Institutes of Health and were approved by the Standing 

Committee on the Use of Animals in Research of Harvard University.

Behavioral apparatus

While larval zebrafish were freely exploring their arena in the dark we acquired images at 

250 Hz extracting their position and heading angle in realtime using custom written 

software. This position information was used to set the angles of a set of two scan-mirrors 

such that the beam of a 980nm laser was centered on the center of mass of the fish object at 

all times. The power of the infrared diode laser was controlled according to the behavioral 

paradigm. A similar setup was recently used to exogenously activate neurons in freely 

walking Drosophila adults (Bath et al., 2014).

A fish-sized thermistor was used to derive a simple model relating laser power to 

temperature in order to fit models relating temperature rather than laser power to behavior. 

See Supplemental Materials for a detailed description of the setup and temperature 

calibration.

Behavior

Experiments were conducted in the dark in a circular arena made of clear acrylic with a 

diameter of 11 cm and a water depth of 4 mm.

WHITE NOISE—After a 10 minute long habituation phase fish were stimulated for 1 

minute followed by a 1 minute long rest period. These cycles were repeated 44 times per 

fish.

In pure white-noise experiments (N = 50 fish) the stimulus consisted of laser power values 

drawn randomly from a Gaussian distribution (μ = 1200 mW, σ = 450 mW). Power levels 

switched on average every 200 ms with switching times drawn from a Gaussian distribution 

as well (σ = 48 ms).

Another experimental set (N = 50 fish) included playback periods. For these fish every 1 

minute stimulation period was divided into four 15 s long stretches. The first and third 

stretch consisted of white noise stimulation as above while the second and fourth consisted 

of a fixed sequence of laser powers to assess model performance.
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For analysis purposes our temperature model was used to convert laser power traces to fish 

temperature traces. All models were fit on temperatures rather than laser powers. The 

autocorrelation time of the temperature stimulus was defined as the time where the 

autocorrelation decays to 1/e and was estimated according to (Thompson, 2010).

See supplemental materials and methods for a description of the other behavioral protocols.

DATA ANALYSIS—Fish that completed all trials were included in the analysis. 

Occasionally fish would stop moving during the assay or would not move at normal 

frequency during an experiment’s habituation phase. Such experiments were stopped and 

not used for analysis.

Extracted fish positions and heading angles were used to identify periods of swimming 

(bouts) and intermittent rest phases (inter-bouts) and to assign overall displacement and turn 

angles to all bouts (see Supplemental Methods for details). Only white-noise stimulation 

phases of experiments were considered for model fitting. To describe the behavior both in 

relation to temperature input and previous bout time, generalized linear models were fitted 

to the data, assuming a binomial distribution for the output (bout vs. no bout) and using a 

logistic function as the link.

Our models predict the probability of a bout to occur in a time bin (40 ms) given the heat 

stimulus experienced by the fish in the past second u⃗(t) and given the timing of the fish’s last 

bout in the past two seconds n⃗(t). Bout history was limited to 2 s since less than one percent 

of bouts during stimulation phases occurred more than 2 s after a previous bout start. The 

models are composed of two filter kernels as per equation (1), the temporal receptive field of 

heat perception k⃗ as well as the history term h⃗, which encompasses refractive periods or 

bursting in bout generation.

(1)

Given the response r(t) to sensory heat perception and internal bout state, the bout 

probability is then given by a simple logistic transformation of the response:

(2)

See Supplemental Materials for further details and fitting of bout category models and Table 

S2 for the constant terms.

MODEL VALIDATION—For model cross-validations the data was split randomly into a 

training set containing 80% of our experiments and a test set consisting of the remaining 

experiments. Models were fitted on the training set and two metrics were computed on the 

test set to assess model performance. First, the models were used to predict probability of 

bout occurrence for each time point in the test set. Binning time points by predicted 
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probability the number of expected bouts in each probability bin was determined and the 

correlation as well as the slope of the fit between these predicted numbers and the real 

number of bouts per bin in the test set were computed. Second, the classifier performance of 

our model was estimated by computing the area under the ROC curve for classifying bout 

versus inter-bout frames in the test set.

The time rescaling theorem was employed (Brown et al., 2002) to test how accurately our 

general bout model can predict bout latencies, see Supplemental Materials for details. The 

playback periods were used to test how well our models predict responses to changes in 

temperature. Specifically, the models were used to predict the probability of bout initiation 

according to (1, 2) and then bouts were instantiated according to these probabilities. Since 

the history part of our models depends on general bout occurrence rather than specific 

categories, when instantiating bout categories, the model predicting all bouts was used to 

instantiate bouts as well. The average of 100,000 instantiations was then compared to the 

PSTH derived from experimental data. Fish were found to be overall more active during 

playback than white-noise stimulation periods even though the average temperature is the 

same (1.1 fold increase in bout frequency). Since models are derived from the white-noise 

periods, predicted probabilities were corrected by this factor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A setup for heating freely swimming larval zebrafish with high temporal and spatial 
precision
(A) Schematic of the laser tracking setup. Note that the schematic is not to scale, mirrors 

were ~47 cm above the dish resulting in scan angles < 7 degrees at all times. Inset depicts a 

typical larval zebrafish (10 dpf) with the laser spot centered on the centroid (black circle) of 

the fish.

(B) Analysis of heating dynamics. The beam was parked directly on the center of a 4 mm by 

840 µm thermistor submerged in the same chamber used for experiments. Top panel shows 

Haesemeyer et al. Page 16

Cell Syst. Author manuscript; available in PMC 2016 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



change in temperature during 4 s long heating steps. Bottom panel indicates the respective 

cool-down after the laser turned off. Line color indicates laser power at sample.

(C) Spatial heating extent at 1000 mW. The beam center was parked at the indicated 

distances from the thermistor and the temperature 4 s after heating onset was determined. 

The plot shows the fraction of maximum temperature reached at each distance (red line) and 

the fraction of fish that displace more than that distance within one camera frame during a 

movement (black line). Text at dashed line indicates that heating at 0.22 mm distance is 83 

% of maximum and only 2 % of swim bouts resulted in a per-frame displacement larger than 

0.22 mm.

(D) Behavioral response of larval zebrafish to 2 s long steps of the indicated laser power at 

sample. Traces indicate average swim speed across fish aligned to power onset (red and blue 

curve) or aligned to random time-points (green curve, control). Shaded regions indicate 

bootstrap standard error. Dashed black lines mark the on- and off-set of power respectively 

(N = 40 fish).

(E) Average radial distribution in power gradient experiment. Left panel shows the power at 

sample delivered to larval zebrafish based on their radial position. Right panel shows 

cumulative distribution of time spent during the experiment at each given radius averaged 

across fish. Black curve indicates cumulative distribution while the laser is off and red curve 

indicates cumulative distribution in response to power gradient depicted on the left. Shaded 

regions indicate bootstrap standard error (N = 25 fish).

See also Movie S1 and Figure S1.
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Figure 2. White noise heating paradigm
(A) Example traces illustrating laser input and extracted behavioral parameters. A 5 s long 

example from the middle of one trial of one experiment is shown. Top panel shows the at-

sample laser power (dashed red line) and the temperature calculated based on the heating 

model (solid black line). Middle panel shows instant speed profile of the larval zebrafish and 

bottom panel reveals changes in heading direction due to turns. Arrows indicate example 

swim parameters.

(B) Histogram of temperature values in each 40 ms timebin across all experiments.

(C) Autocorrelation of the temperature stimulus. Autocorrelation time is 960 ms.
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(D) Cumulative distribution of interbout intervals across all experiments. The dashed black 

line is the cumulative distribution of inter-bout-intervals during resting, the solid red line 

depicts the cumulative distribution during laser stimulation. The rightward shift of the curve 

indicates a shortening of inter-bout-intervals during stimulation and hence an increase in 

bout frequency. (N = 88,349 bouts during resting and N = 241,433 bouts during stimulation 

phases).

(E) Cross correlation of power at sample and instantaneous speed at different indicated lags.

(F) Autocorrelation of bout starts (y-axis clipped at 4×10−3). The autocorrelation trace is flat 

for ~ 80 ms around timepoint 0 because of a hard threshold in allowed minimal bout 

duration.

(E–F) Dotted black lines indicate 0 lag and 0 correlation respectively. Both correlations are 

derived from all stimulus trials of the same example fish as depicted in panel A.

See also Figure S2.
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Figure 3. Generalized linear models of bout initiation in response to heat
(A) Schematic of the derivation of the generalized linear model (left panel) and its makeup 

(right panel). Left: All traces are discretized into 40 ms time-bins. The input to the model 

consists of the stimulus history over the last second as well as the timing of the previous 

bout within the past 2 seconds. The bout timing is used as the output in order to derive 

model coefficients by logistic regression. Time at which a bout occurred is labeled in red. 

Data shown is a 250 ms slice of one experiment. The panel on the right illustrates how the 
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sensory filter k(t) and the history filter h(t) create a response which is transformed into a 

bout probability via a logistic nonlinearity.

(B) Coefficients of the temperature responsive part k(t) of the generalized linear model 

(GLM, grey) versus time before a bout. The blue trace indicates coefficients obtained from a 

control consisting of rotations of the temperature trace relative to the bout start times. Δ 

indicates filter part sensitive to increases in temperature in time while Σ indicates the 300 ms 

long main integrative part of the filter.

(C) Coefficients of the bout history responsive part h(t) of the GLM (grey) as well as 

shuffled control (blue) versus time before a bout. R indicates 240 ms refractory period after 

previous bout initiation. Shaded area in (B) and (C) indicates the bootstrap standard error. 

(N = 241,513 bouts)

(D) Heat map indicating the predicted probability of bout initiation based on the given 

constant temperature and time since the last bout.

(E) Plot of the Fourier transform of the sensory filter depicted in (B). Grey line indicates 

magnitude in dB of the filter at each frequency (log-log plot). Colored circles indicate 

frequencies tested behaviorally.

(F) Response magnitude across 50 fish that were stimulated with amplitude matched 

temperature fluctuations at 1 Hz, 3 Hz and 6 Hz. Error bars indicate bootstrap standard error, 

N = 450 trials each. Dashed black lines indicate predicted response magnitude given the 

response at 3 Hz based on the filter magnitudes at 1 Hz and 6 Hz respectively. (Average 

magnitudes: 3.4 × 10−3 at 1 Hz, 7.6 × 10−3 at 3 Hz, 2.9 × 10−3 at 6 Hz. Comparison of value 

predicted by frequency response to 1Hz, n.s., p = 0.13, comparison of value predicted by 

frequency response to 6Hz, n.s., p = 0.16, bootstrap hypothesis test).

(G)–(I) GLMs for bouts of different displacement (N=27543 bouts in each group).

(G) Average speed profiles during “Short”, “Medium” and “Long” bouts. Inset depicts 

endpoints of different bout categories if the fish were facing left (black circles delineate 2,4 

and 8mm of displacement for orientation).

(H) Coefficients of the temperature responsive part k(t) of displacement category GLMs 

versus time before a bout.

(I) Coefficients of the bout history responsive part h(t) of displacement category GLMs 

versus time before a bout. Shaded areas in (H) and (I) indicate bootstrap standard errors.

(J) Absolute area of Temperature (yellow) and bout-history (blue) filter for groups of 25,000 

bouts with the indicated average displacement relative to the area of filters with the lowest 

displacement (indicated by dashed grey line).

See also Figure S3.
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Figure 4. Generalized linear models accurately predict swimming behavior
(A) Comparison of predicted and actual bout probabilities in playback periods. Grey line 

indicates the response predicted by the generalized linear model given the temperature 

fluctuations during the playback phase. Brown line indicates actual response probabilities 

across 50 zebrafish during playback (peri-stimulus-time-histogram). Dashed pink line 

indicates response predictions for an alternate model with a flat temperature filter but the 

same history filter as the true model. This “Boxcar” model is constructed such that its 
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response to steady state temperatures is the same as that of the general bout GLM. Inset 

depicts the temperature stimulus during playback trials.

(B) Comparison of expected and empirical quantiles of interbout interval distributions after 

application of the time rescaling theorem. Rescaling based on the prediction of the full 

model is shown in grey, a model that is heat responsive but lacks a history component is 

shown in orange. Dashed line marks the identity, which is the expected fit of a model that 

perfectly captures observed inter-bout-intervals.

(C, D) Comparison of predicted and actual bout probabilities in playback periods. Red and 

blue lines indicate the response predicted by the long bout and large turn generalized linear 

models respectively. Black lines indicate actual response probabilities across 50 zebrafish 

during playback for the respective bout category, filtered with a window size of 125 ms. 

Shaded area indicates bootstrap standard error.

(E) Comparison of correlation of predictions during playback periods versus true response 

probabilities between the model derived from the given bout-type (y-axis) and a comparison 

model (x-axis) for 10000 bootstrap samples each. Grey cloud compares the performance of a 

boxcar model with the general bout model in predicting general bouts. Red cloud compares 

the performance of the “Long-bout” model and the “Short-bout” model in predicting long 

bouts. Blue cloud compares the performance of the “Large-turn” model and the “Straight-

bout” model in predicting large turns. Crosses indicate the mean correlation with bars 

depicting bootstrap standard errors.

(F) Schematic depiction of how temperature history and self-generated behavior influence 

bout decisions in larval zebrafish.

See also Figure S4.
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