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Summary

Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human 

populations by link-tracing over their social networks. Inference from such data requires 

specialized techniques because the sampling process is both partially beyond the control of the 

researcher, and partially implicitly defined. Therefore, it is not generally possible to directly 

compute the sampling weights for traditional design-based inference, and likelihood inference 

requires modeling the complex sampling process. As an alternative, we introduce a model-assisted 

approach, resulting in a design-based estimator leveraging a working network model. We derive a 

new class of estimators for population means and a corresponding bootstrap standard error 

estimator. We demonstrate improved performance compared to existing estimators, including 

adjustment for an initial convenience sample. We also apply the method and an extension to the 

estimation of HIV prevalence in a high-risk population.
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1. Introduction

There is much interest in estimating features of hard-to-reach human populations. Such 

populations are characterized by the lack of a serviceable population sampling frame. In 

some settings, the target population is well-connected by a network of social relations. Link-

tracing sampling strategies such as snowball sampling (Goodman (1961) and others) and 

respondent-driven sampling (RDS) (Heckathorn, 1997) are often used to leverage those 

social relations to sample beyond the small subgroup available to researchers. In these 

settings, subsequent samples are identified and selected based on their social ties with other 

members of the target population. The statistical literature dealing with such strategies 

(Frank, 1971; Goodman, 1961; Thompson, 1990; Thompson and Frank, 2000), typically 

assumes an idealized setting in which the initial sample is assumed to be a probability 

sample from the target population. The applied literature such as Trow (1957) and Biernacki 

and Waldorf (1981), has traditionally recognized that this is impractical, and therefore 
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treated link-tracing samples (typically referred to as snowball samples, despite Goodman’s 

probabilistic framing) as convenience samples for which probability-based inferential 

methods are unfounded.

The work of Heckathorn and colleagues (Heckathorn, 1997, 2007; Salganik and Heckathorn, 

2004; Volz and Heckathorn, 2008) around the RDS specialization of link-tracing sampling is 

innovative in reducing the number of links followed per respondent, such that many waves 

of sampling are fostered, decreasing the dependence of the final sample on the initial 

convenience sample. The second main innovation of the RDS paradigm is in the respondent-

driven nature of the sampling process in which subsequent samples are selected by the 

passing of coupons by current sample members, thus reducing the confidentiality concerns 

often present in hard-to-reach marginalized populations. While this approach does reduce 

the dependence of the final sample on the initial sample, it is possible for substantial bias to 

remain based on the initial sample of seeds, as studied in simulations by Gile and Handcock 

(2010) and illustrated empirically by Johnston (2010). Current estimation methods (Gile, 

2011; Heckathorn, 1997, 2007; Salganik and Heckathorn, 2004; Volz and Heckathorn, 

2008), however, do not correct for biases introduced by seed selection. A common feature of 

networked populations is that social ties are often more likely to occur between people who 

have similar attributes than those who do not, a tendency called homophily by attributes 

(Freeman, 1996; Lazarsfeld and Merton, 1954; McPherson et al., 2001). Homophily 

exacerbates the effects of the initial sample. In this paper we present a novel approach and 

inferential frame to correct for bias introduced by seed selection in the presence of 

homophily. In particular, we treat the problem of estimation of the population proportion of 

a binary nodal covariate in populations with homophily on that covariate, based on a 

branching link-tracing sample beginning with seeds selected by a convenience mechanism.

There is a varied formal statistical literature on inference from link-tracing network samples. 

All of this work, however, involves the assumption that the initial sample is a probability 

sample drawn from a well-defined sampling frame, and that subsequent sampling is 

adaptive, or dependent on population characteristics only through their observed portions 

(Thompson and Seber, 1996). In the design-based framework, these works consider cases 

where sampling probabilities are known for all units in the analysis (Frank, 1971, 2005; 

Goodman, 1961; Thompson, 1992, 2006). Inference is then made without reference to any 

superpopulation model. In the likelihood frame, the literature treats cases where the adaptive 

sampling process is amenable to the model, and therefore the modeling can be conducted 

without explicit treatment of the sampling process (Handcock and Gile, 2010; Pattison et al., 

2012; Thompson and Frank, 2000). The traditional approach to RDS, originally due to 

Heckathorn (1997), represents an alternative to this paradigm. The assumption of the initial 

probability sample is replaced by an assumption of sufficient waves of sampling to 

adequately reduce the dependence of the sample on the initial sample.

In this paper, we concern ourselves with a case in which none of these approaches suffice. 

The sampling probabilities of the units are not known, making the traditional design-based 

approaches inadequate. The initial sample is not a probability sample, so the sample is not 

adaptive or amenable, and any likelihood inference must consider the sampling process as 

well as the population model. Such a joint modeling approach has been conducted in a few 
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works (Felix-Medina and Monjardin, 2006; Felix-Medina and Thompson, 2004; Frank and 

Snijders, 1994), but each of these requires an initial probability sample from some frame to 

allow for modeling of the sampling process. And while in some cases, the waves of 

sampling may be sufficient to suitably reduce the dependence on the initial sample, this is 

often not the case (Gile and Handcock, 2010), and we are interested in the cases when there 

is insufficient sample depth. In particular, we propose a model-assisted design-based 

approach, using an estimate of network structure (homophily) to reduce bias induced by the 

initial sample.

We begin in Section 2 by introducing respondent-driven sampling. In Section 3, we then 

present our Model-Assisted inferential approach. Section 4 presents a simulation study 

illustrating the removal of bias introduced by the initial convenience sample. An application 

to HIV prevalence estimation among injecting drug users in the Ukraine can be found in 

Section 5, and Section 6 presents a discussion and concluding remarks.

2. Respondent-Driven Sampling

2.1. Notation

We assume the target population consists of N people (nodes) with labels 1, …, N. Let the 

N-vector z represent a binary nodal outcome variable of interest. We refer to this variable as 

“infection status”, such that

We assume the target population is connected by a network of mutual relations with N×N 

adjacency matrix y:

and that this network forms a single connected component. Denote by di = Σj yij the nodal 

degree, or number of network ties or alters of node i. Let d = {d1, …, dN}. Denote by xi = Σj 

zjyij the number of network ties node i shares with infected nodes, and let x = {x1, …, xN}.

2.2. Sampling Procedure

We consider an RDS procedure of the following form:

0 An small initial sample is selected from the population members accessible to 

researchers, typically using a convenience mechanism. These are called the 

seeds and comprise wave k = 0 of the sample. They are typically 3–12 in 

number.

1 Each member of wave k is given a small number (typically 2–3) of uniquely 

identified coupons to distribute among their alters.
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2 Coupon recipients returning their coupons to the study center are subsequently 

enrolled in the study. A person previously recruited can not be recruited again. 

The wave number of a respondent is one more than that of their recruiter.

3 Steps (1) and (2) are repeated until the desired sample size, n, is attained.

This process has proved effective at recruiting large and diverse samples from many hard-to-

reach populations (Abdul-Quader et al., 2006), and has been widely used. It has been 

heavily used in the monitoring of disease prevalence and risk behaviors among high-risk 

populations such as sex workers, men who have sex with men, and injecting drug users 

(Malekinejad et al., 2008), largely in the service of the reporting requirements of UNAIDS 

for all countries with concentrated HIV epidemics (UNAIDS, 2008). It is also used by the 

US Centers for Disease Control and Prevention in the behavioral monitoring of injecting 

drug users and high-risk heterosexuals in 25 large US cities (Lansky et al., 2007), and has 

also been used in other populations such as unregulated workers (Bernhardt et al., 2009) and 

jazz musicians (Heckathorn and Jeffri, 2001).

We represent the full sampling mechanism by the random variables:

and let sk denote the observed sampling vector corresponding to the people sampled in wave 

k. Based on the sampling procedure, we exactly observe the elements of z, d and x 
corresponding to i : si = 1. A variant when x cannot be observed directly, as in the 

application in Section 6, substitutes an estimate of x based on observed referral patterns.

Further we assume each respondent distributes a number of coupons completely at random 

from among their alters, with the number determined by a common distribution.

2.3. Design-based Inferential Approach

We consider design-based estimators for the population mean . Because the 

sampling probabilities of the people selected through RDS are almost never explicitly 

known, we follow Volz and Heckathorn (2008), and Gile (2011) in constructing a model for 

the sampling process, and estimating sampling probabilities accordingly. We use a 

generalized ratio estimator of the form:

(1)

where estimated sampling probabilities π̂i = Si| ) are computed under an approximation 

to the true RDS sampling process. If the inclusion probabilities are known this estimator is 

referred to as the Häjek estimator (Hajek, 1971; Lumley, 2010), and typically performs 

better than the corresponding Horvitz-Thompson estimator (Särndal et al., 1992). The 
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estimators introduced by Volz and Heckathorn (2008) and Gile (2011) differ, and ours 

further differs, in their specification of the sampling process .

Most inference from RDS data approximates the sampling process as a with-replacement 

random walk on the space of graph nodes, with transitions along the edges or social 

relations, and sampling treated as a Markov chain at stationarity (Salganik and Heckathorn, 

2004; Volz and Heckathorn, 2008). The resulting inference involves sampling weights 

proportional to the self-reported degrees. These are the stationary distribution sampling 

probabilities of a with-replacement random walk on a connected network. While this is a 

useful first approximation, it has several limitations. First, as highlighted in Gile (2011), this 

type of inference does not respect the without-replacement nature of the sampling process, 

which can lead to biased estimates. Gile (2011) presents an approach correcting for this 

feature by substituting a without-replacement successive sampling approximation to the 

sampling process. Neither this, nor earlier estimators, however, address the fundamental 

issue of bias induced by the selection of the initial sample. Such bias is illustrated in Gile 

and Handcock (2010), as well as in the current paper, and correction for it is a key 

contribution of the present paper.

As with these earlier approaches, the first requirement of our sampling model is that it 

account for the different sampling probabilities by nodal degree. Unlike these other 

approaches, we further require our approach to account for the bias introduced by the 

selection of seeds in the presence of network homophily in the underlying population. This 

requires consideration of features of the social network, y, in particular the homophily of the 

relations.

We make no assumptions about the mechanism for selecting the initial sample and will 

condition on the seed characteristics throughout the analysis.

If the network y were fully known, we could use simulation to estimate the sampling 

probability

(2)

of each node, conditional on the selection of seeds, s0. Explicitly, we would repeatedly 

simulate RDS under sampling model  starting from s0 each time and compute the π̂i,y as 

the proportion of simulated samples containing node i. These could be used in (1) to form an 

estimator. Unfortunately, y is typically only partially known, and so we apply a model-

assisted approach.

3. A Model-Assisted Approach

Our approach is an extension of the model-assisted design-based approaches presented in 

Särndal et al. (1992). Existing work in this area uses a working model for the variable of 

interest, conditional on the auxiliary variables to construct estimators that are 

(approximately) design-unbiased, whether the model holds or not, and have smaller design 

variance if the model does hold. Our case is slightly different. The sampling process we 

consider is only locally defined, and originates at a sample with unknown distribution. We 
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therefore model the partially-observed auxiliary variable (the network) directly. We cannot 

guarantee design-unbiasedness, and use the working model form to recover approximate 

design-unbiasedness, rather than to improve efficiency. This is necessary because the impact 

of the seed characteristics on the subsequent sample is mediated by the structure of the 

underlying social network. We therefore assume a working superpopulation model from 

which the network was drawn and use it to estimate sampling probabilities conditional on 

the selection of the initial sample. This approach is also similar in spirit to non-response 

adjustment using propensity models in survey sampling (e.g., Särndal and Lundström, 

2005).

3.1. Network Working Model

The primary structural features of the network influencing RDS are the individual 

connectedness in the network, the differential connectedness by infection status, the 

homophily on infection status, and bottlenecks (an extremal form of homophily). These 

were identified in prior work (Gile, 2011; Gile and Handcock, 2010; Goel and Salganik, 

2009).

We consider models of exponential-family random graph model (ERGM) form (Frank and 

Strauss, 1986; Hunter et al., 2008; Hunter and Handcock, 2006), conditional on the set of 

nodal degrees (d) and infection statuses (z), and including a single additional parameter 

representing homophily on z. In particular:

(3)

where  is the number of ties connecting individuals 

inhomogeneous on infection status. Here c(η|z, d) = Σu∈ (z,d) exp(ηg(u, z)), and the space 

 (z, d) consists of all binary undirected networks consistent with d and z (the dependence 

on d and z is suppressed below).

The ERGM captures individual-level connectivity (degree), the overall connectedness of the 

respective groups (degree counts broken down by group) and homophily on the infection 

status (the count of cross-group ties). The combined effect of these features controls the 

level of clustering on infection status within the network. Hence the ERGM represents the 

structural features of the networked population that prior work indicates are most influential 

on the sampling process. Note that extreme bottlenecks could be missed. As we do not have 

direct information on them, they are not modeled explicitly, although some of their effects 

may be captured by the other terms in the model (e.g., via high homophily on infection 

status).

Note that this model form, as well as the simulation procedure to follow, requires 

specification of a population size NW. Ideally this value will be close to the actual size of the 

hidden population, N, but in our algorithm it represents a working population size parameter. 

Inaccuracy in this estimate may degrade the finite population adjustment of the estimator, 

but will not affect inference when the sample fraction (n/N) is small.

Gile and Handcock Page 6

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given this model form, we use the estimator (1) based on sampling weights assumed 

constant over equivalence classes by degree and infection status and estimated under the 

model:

with π̂i,y = Si| , y, s0), as in (2). Note that to treat these equivalence classes, we condition 

on the equivalence classes of the seed nodes selected, rather than the unique identities of 

those nodes.

We also do not know the network working model parameter η. However, the statistic g(y, z) 

is sufficient for η. Hence P(Y = y|z, d, g(y, z) = g̃, η) = P(Y = y|z, d, g(y, z) = g̃) and is 

uniform on  (z, d, g̃) = {y ∈  (z, d, g) : g(y, z) = g̃}. The estimator is then computed 

using sampling probabilities based on the network working model conditional on a value of 

g(y, z) estimated from the data:

(4)

These are the estimated probabilities used in our proposed estimator. This requires fitting a 

network working model to data sampled through RDS, which we address in the next section.

3.2. Fitting the Network Working Model

Thompson and Frank (2000) and Handcock and Gile (2010) provide an approach to fitting 

models of form similar to (3) to data sampled through link-tracing samples. Unfortunately, 

these approaches require a sample that is amenable to the model in question (Handcock and 

Gile, 2010). That is:

(5)

where *obs represents the observed part of *, and also that the sampling and model 

parameters are separable. This is equivalent to the conditions for ignorability according to 

Rubin (1976) and Little and Rubin (2002). Unfortunately, in the case of RDS, condition (5) 

is violated by the convenience sample of seeds, which may well depend on unobserved 

characteristics.

Therefore, we require a novel approach to model fitting. As d and z are unknown, we 

construct design-based estimators of them from estimates of the sampling probabilities πî. 

Specifically, let Tkl be the number of nodes of degree k and infection status l, k ∈ {1, …, NW 

− 1}, l ∈ {0, 1} and . We estimate T and g(y, z) by,

(6)
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(7)

where *) is the indicator function on *, and π̂i is assumed constant for all i : di = k, zi = l. 

Note that this requires the observation of {xi : Si = 1, i = 1, …, NW}, and that (7) is just the 

Horvitz-Thompson estimator for the number of cross-group ties, based on weighting the 

number of cross-group ties reported by each respondent. The factor of 2 reflects that each 

edge in the population could be counted by either incident node. We then estimate the 

network model conditional on g(y, z) = g̃(y, x) and the joint degree and infection status 

sequence implied by T̃. Details of this computation are given in the Appendix.

3.3. Algorithm

Note that the value of the network working model parameter, required to estimate π, in turn, 

depends on the value of π. We therefore apply an approach similar to self-consistency (Lee 

and Meng, 2007) to find a joint solution to (6) and (7), as well as to the equations:

(8)

This approach iterates between estimating the network working model parameter given 

values for the sampling probabilities, and then estimating the sampling probabilities given 

the network working model parameter. Explicitly, it is:

• Estimate π̂i proportional to degree di.

• Iterate the following steps:

– Compute design-based estimates of statistics T̃kl and g̃(y, x) using π̂ in (6) 

and (7).

– Simulate M networks according to the working ERG model corresponding to 

T̃ and g̃(y, x).

– Estimate π̂ by simulated RDS sampling from the simulated networks.

• Use the resulting estimated probabilities, π̂, to form the weighted estimator of the 

quantity of primary interest:

(9)

The iterative nature of this procedure is similar to that used for the successive sampling 

estimator of Gile (2011). This algorithm differs in the core process of estimating the 

inclusion probabilities. More details of this procedure are provided in the Appendix.
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The simulation procedure implicit in this estimation algorithm lends itself to a realistic 

bootstrap approach to standard error estimation. We present such a bootstrap in the next 

section.

3.4. Measure of Uncertainty: Bootstrap

Unlike earlier RDS estimators, the estimator given in (9) allows for estimators of uncertainty 

that account for the estimated network relational structure of the underlying population as 

well as incorporating several observable features of the sampling process. The former is 

because of the use of the network working model for the population over which the RDS 

sampling procedure operates. The latter is because our procedure enables the simulation of 

complex RDS designs. In particular, if we believe there is seed bias we can incorporate it 

into the sampler, and if there is measurable sampling bias (as in the application) we can 

incorporate that also. This allows the procedure to incorporate available information about 

the population and sampling and greatly improves the accuracy of the representation of the 

actual sampling process. The accuracy of the bootstrap depends directly on the quality of the 

approximation to the actual sampling process.

We propose a parametric bootstrap approach to obtaining confidence intervals, according to 

the following procedure:

a. For b = 1, … B, iterate the following steps:

i. Simulate a network Yb from the model given in (2) conditional on g̃(y, x)h 

and Th where h is the final iteration of the algorithm in the Section 3.

ii. Simulate one RDS sample SYb with parameter  from Yb.

iii. Compute an estimator μ̂MA(b) of μ based on the sample SYb using the 

algorithm in the Appendix.

b. Use the empirical distribution 𝒟 ̂(μ̂MA) of {μ̂MA(1), μ̂MA(2), … μ̂MA(B)} to estimate 

the distribution of μ̂MA under the estimated model form.

The distribution of 𝒟 ̂(μ̂MA) may then be used to form confidence intervals for μ which 

account for the full estimated relational structure as well as observable biases of the 

sampling process. We use the standard deviation of the resulting population of B bootstrap 

estimates as an estimate of the standard error of μ̂MA. B = 500 bootstrapped samples have 

been sufficient in our simulations. In our simulations, this procedure took about 90 seconds 

per sample on a single processor when NW = 1000 and 5 minutes when NW = 10000. 

Parallelization is straightforward and dramatically reduces elapsed time. A large additional 

speedup can be obtained by replacing step (c) with (c′) in which the class-specific inclusion 

probabilities  are not computed but replaced with those π̂i from the original data. While 

these estimates of the inclusion probabilities vary from bootstrap sample to sample, their 

uncertainty is a small part of the overall uncertainty. This reduces the procedure to about 1–

3 seconds per sample on a single processor. The simulation study in the next section uses (c

′).
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4. Comparing the Model-Assisted to Existing Estimators: A Simulation 

Study

Gile and Handcock (2010) present an extensive simulation study of RDS based, where 

possible, on a set of realistic characteristics of data from the CDC pilot study of RDS 

(Abdul-Quader et al., 2006). For comparison purposes, our simulation study uses simulated 

populations very similar to those in Gile and Handcock (2010). Our simulations consist of 3 

sub-studies: a primary study of estimator performance under conditions it is designed to 

address, a sensitivity analysis to mis-specification of the network model, and a simulation 

addressing the performance of the bootstrap uncertainty estimator.

4.1. Study Design

Our simulation study includes three levels of simulation:

• The generation of random networks according to specified network features

• The generation of simulated RDS samples from each network

• The estimation of infection prevalence from each set of simulated sample data.

We use variants of the network and sampling parameters to study the behavior of the 

proposed estimator. Parameter descriptions and levels are listed in Tables 1 and 2. We 

include the detailed mathematical expressions for the simulation parameters to aid 

transparency, however the primary study has a 2 × 2 factorial design, so that qualitative 

results can be systematically compared when the most important sources of bias are 

introduced.

To allow for comparability across simulation conditions, throughout our simulations, we 

maintain the same true recoverable prevalence, μ = 0.20, the same sample size n = 500, and 

the same mean degree d̄ = 7. We consider variations on the population size (hence the 

sample fraction), the degree of clustering or homophily on infection status, and differential 

rates of tie formation by infection status (or (differential) activity ratio, DA). The parameter 

levels considered are summarized in Table 1. Note that this parameterization of homophily 

corresponds to the factor by which the expected number of cross-group ties is deflated, 

beyond the expected level absent homophily. A (default) homophily value of 2 here is close 

to (default) level 5 in the parameterization of Gile and Handcock (2010).

Under each set of network parameters, networks are simulated according to an ERGM with 

model

(10)

where c(β|z) = Σu ∈ exp(βg(u, z)), and the space  consists of all binary undirected 

networks on N nodes. The sufficient statistics g(y, z) are given by:
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(11)

These three terms correspond to the unique cells of the 2 × 2 mixing matrix on z, and for a 

given number of nodes N and prevalence μ, are uniquely defined by d̄, H, and DA. Note that 

this model is similar to (3), but not identical. In particular, g3(·) of (11) is very similar to g(·) 

of (3). While (3) conditions on the fixed degree of each node, model (10) allows for 

stochastic variability in degrees around mean value parameters given by (11).

From each simulated network, a single RDS sample is drawn according to parameters in 

Table 2. A fixed number n0 of seed nodes are selected with probability proportional to 

degree (the best case for the earlier estimators), from either the full population or from the 

infected nodes only (to simulate extreme seed bias). The simulated process treats the case of 

two coupons distributed by each respondent completely at random among its previously un-

sampled alters. Two coupons are chosen for simplicity, and because it represents the 

sampling process better than either 3 (equating to the return of all coupons in typical 

practice) or 1 (resulting in non-branching chains).

For each simulation case, we simulate 200 networks with one RDS sample from each, and 

we compare five estimators, as summarized in Table 3.

4.2. Primary Results

We are especially interested in the performance of the proposed estimator under two forms 

of bias: finite population bias and bias induced by seed selection. Gile and Handcock (2010) 

and Gile (2011) show that finite population bias is induced in conditions of large sample 

fractions and differential activity. Gile and Handcock (2010) show that bias in the initial 

sample of seeds induces bias in the estimates in the presence of homophily. We therefore 

consider a 2 × 2 factorial simulation design based on these two features. The simulation 

conditions correspond to:

a. No finite population bias, No seed bias:

small sample fraction, no differential activity, no homophily, no seed bias.

b. Finite population bias, No seed bias:

large sample fraction, differential activity, no homophily, no seed bias.

c. No finite population bias, Seed bias:

small sample fraction, no differential activity, homophily, seed bias.

d. Finite population bias, Seed bias:

large sample fraction, differential activity, homophily, seed bias.
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Under the first condition, previous estimators have been found to perform well. In the first 

part of Figure 1, there is a small sample fraction (5%, N = 10000), no homophily on 

infection status (H = 1), the ratio of mean degrees by infection (DA) is 1, and seeds are 

chosen from the full population, so there is no bias induced by seed selection. In this case, 

none of the estimators considered exhibit bias, and the naive sample mean exhibits the 

lowest variance, although the variability is similar across estimators.

The second part of Figure 1 illustrates the case μ̂SS is designed to address. In this case, the 

sample fraction is large (about 50%, N = 1000), and infected nodes have mean degree twice 

than that of uninfected (DA = 2). In this case there is still no homophily (H = 1), and no seed 

bias. Here, the higher-degree infected nodes are over-represented in the sample, resulting in 

positive bias in the sample mean. Because of the assumed linear mapping from degree to 

sampling probability, μ̂SH and μ̂VH over-correct for this feature, resulting in negative bias. 

μ̂SS and μ̂MA appropriately adjust for the over-sampling of infected nodes, resulting in 

unbiased estimators without increased variance.

The third section of Figure 1 considers the case the new estimator, μ̂MA, is designed to 

address. There is homophily (H = 2), and all seeds are selected from among the infected 

nodes. This case treats a small sample fraction (N = 10000) and activity ratio 1 (DA = 1). 

Here, most of the earlier estimators exhibit substantial bias due to the selection of seeds, 

while the proposed estimator corrects for the selection of seeds. It is also of interest to note 

that μ̂SH also has negligible bias, and what bias there is is in the opposite direction from that 

of the other estimators.

The final case considers the joint effects of large sample fraction (N = 1000), non-unity 

activity ratio (DA = 2), homophily (H = 2), and biased selection of seeds (all infected). Here, 

the sample mean over-represents the higher-degree and initially sampled infected nodes. 

μ̂VH exhibits a strong negative bias, similar to that in the second case. The two effects jointly 

cause tremendous bias in μ̂SH. μ̂SS is affected by seed bias, although not by the sample 

fraction. Here, again, the proposed estimator correctly adjusts for all of these effects. 

Although in this example the effects of sample fraction/activity ratio are of larger magnitude 

than those of seed bias/homophily, in practice the relative magnitudes of these will vary 

across data sets.

4.3. Sensitivity to the network working model

The role of the network working model is to provide a (stochastic) representation of the 

networked population. This model is the basis of the improved representation of the RDS 

design leveraged by the proposed estimator. The complexity of real-world social networks is 

high, so that simple network models only capture a subset of this complexity. In this section, 

we address this sensitivity by applying the proposed method to simulated networks with 

more complex structure.

The ERGM in (3) is designed to represent two levels of network structure that are important 

to RDS. The first is the nodal level individual heterogeneity in the propensity to have social 

ties, measured by the nodal degrees. The second is at the dyadic level and captures the 

homophily, or propensity for ties to be between individuals with the same infection status, 

Gile and Handcock Page 12

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beyond that implied by the infection prevalence. As infection status is the primary outcome 

of interest, this homophily is the most important to capture. The model (3) does not capture 

third level triadic effects, those based on the structure of triads of relations between 

individuals. While these are tertiary to the monadic and dyadic effects, they can influence 

the RDS. Unfortunately RDS results in branching tree patterns of observations that limit the 

empirical information on these triadic effects. Hence the model (3) presumes that the triadic 

structure is fully produced by the modeled monadic and dyadic components.

The purpose of this section is to assess the sensitivity of the estimator to this 

misspecification of the triadic effects. Explicitly, we consider networked populations with 

higher levels of transitivity than specified in the network working model and compare the 

performance of the estimators. Transitivity is represented by the edgewise shared partner 

(alter) statistics, denoted EP0(y), …, EPNW−2(y), where EPk(y) is defined as the number of 

unordered pairs i, j such that yij = 1 and i and j have exactly k common alters. It is a measure 

of the shared “friendliness of friends”. The geometrically weighted edgewise shared partner 

(GWESP) statistic, conditional on the θ parameter, is

(12)

The GWESP is an aggregate measure of local clustering or the overall “inwardness” of ties. 

The parameter θ controls just how local the clustering needs to be. If θ = 0 an edge with one 

shared partner counts the same as an edge with two or more shared partners. If θ > 0 an edge 

with one shared partner counts less than an edge with two or more shared partners. So large 

values of θ mean that very tight clustering is highly weighted and loose clustering is 

emphasized less. These terms have been developed for ERGM by Snijders et al. (2006) and 

Hunter and Handcock (2006).

Real-world networked populations over which RDS will be applied may be expected to have 

higher levels of transitivity than that produced by monadic and dyadic effects. To investigate 

the relative performance of the estimator in populations with higher transitivity, we generate 

networks with monadic and dyadic statistics similar to those considered in the primary 

analysis but with higher transitivity as measured by the GWESP statistic. Because of the 

computational complexity of GWESP terms on large networks, and to test the correction for 

seed bias under model misspecification, we consider the populations with (N = NW = 1000), 

high homophily (H = 2), activity ratio 1 (DA = 1) and biased selection of seeds (all 

infected), a condition under which μM̂A is approximately unbiased.

We introduce elevated transitivity by inducing increased shared partnerships in the 

simulated networks. In particular, we add a gwespθ(y) term to model (10) to control the rate 

of shared partnerships of nodes sharing a tie (i.e. nested triangle structures), using sufficient 

statistic (12). We compute the expected value of this statistic in the original (No GWESP) 

condition, then inflate that value by a factor of 10. The new population of networks is 

generated from an ERGM with the resulting set of sufficient statistics: all other statistics are 

held at their previous values and the GWESP statistic set to the inflated value. In addition, 
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so as to not confound differences in transitivity and differences in degree distribution, we 

condition the GWESP model on the exact sequences of degrees in the No GWESP networks. 

The two levels of GWESP considered differ in the θ parameter of (12).

Figure 2 compares the same estimators as in Figure 1. The first panel presents a comparison 

condition in which GWESP is not elevated. The middle panel consider populations with 

gwesp0(y) ten times that in the original. A value of θ = 0 means that the statistic measures 

the number of pairs of people that are connected both by a direct edge and by a two-path 

through another person (that is, the number of edges minus the number of edges connected 

by no two-paths). As can be seen, the performance of μ̂MA is little effected by the increased 

transitivity. The right panel compares populations with ten times gwesp1(y). A value of θ = 1 

means that the statistic weighs up the connectedness of edges with more weight on the terms 

with more shared partners. In this case μ̂MA has modest positive bias (0.46%) and similar 

variance compared to the estimators on the original populations.

4.4. Evaluation of the Uncertainty Estimator

We illustrate the performance of the proposed bootstrap standard error estimator by 

comparing five critical cases. We treat the cases in Figure 1, as well as a case in which we 

expect the estimator to perform poorly. The initial sample can be selected either independent 

of infection status (denoted “No”in the bias column of Table 1) or all from within the 

infected subgroup (“Initial” bias). We also introduce referral bias where all infected alters 

are 20% more likely to be referred than uninfected alters (“Referral” bias). We induce 

referral bias in the absence of seed bias.

In each case, we use 500 bootstrapped re-samples for each of 200 simulated RDS samples. 

The parameters of the samples, observed standard errors of simulated estimators, average 

estimated standard errors, and coverage rates of nominal 95% and 90% confidence intervals 

based on the quantiles of the Gaussian distribution are given in Table 4.

The magnitudes of the average bootstrap standard error estimates are quite close to the 

observed values in the first four cases, and the coverage rates in the cases without referral 

bias are very close to their nominal values. The last row of Table 4 illustrates the poor 

performance of the estimator in the case of extreme referral bias. In this case, the estimator μ̂

MA has positive bias (4.23%), leading to lower coverage rates of the nominal intervals.

5. Application to HIV prevalence in Hidden Populations

We apply our estimator to data collected in 2007 among injecting drug users (IDU) in 

Mykolaiv, Ukraine. The HIV epidemic in the Ukraine is one of the most severe in Europe, 

and still growing. As of 2009, the adult HIV prevalence was estimated at 0.86% (Ukrainian 

AIDS Centre, 2009). Ukraine’s epidemic is most severe among injecting drug users and 

their sexual partners, who account for the majority of new infections (United States Agency 

for International Development, 2010). The data we consider here were collected as part of a 

series of studies of IDU across major Ukrainian cities in 2007 (Kruglov et al., 2008). We 

focus on the data collected in Mykolaiv because the contacts available to the researchers 

were part of an HIV-based program, and all seeds in this sample were HIV positive.
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This study began with 6 seeds and continued until wave 10, with 31 samples from wave 10, 

and a total of 260 samples. The average wave number was 6.1. The homophily based on 

HIV status for the population is estimated to be H = 1.98 and the activity ratio is estimated 

to be 0.72 (estimates computed using the R package RDS, Handcock et al. (2009)).

Although the size of the population was not known precisely, an estimated range of 

population sizes is available through scale-up and multiplier methods (Kruglov et al., 2008; 

UNAIDS/WHO, 2003). We chose a population size, N = 4000, near the low end of this 

range. The variability of population size estimates is quite large, with a point estimate closer 

to 8000 in 2008 (Berleva et al., 2010)). We used sensitivity analysis to verify that population 

size 4000 is sufficiently large that our estimates are insensitive to increased population size.

We compare estimates for this application based on the previous estimators (μ̂SH, μ̂VH, μ̂SS) 

as well as three variants of μ̂MA, summarized in Figure 3. Because computing μ̂MA involves 

simulating RDS with specified characteristics, we can consider different versions of the 

estimator, based on which features of the observed sampling structure are matched. We 

therefore compare three estimates based on matching the following features to the observed 

data:

a. Random Seeds: Do not match initial sample distribution. Treat initial sample 

proportional to degrees.

b. Correct Seeds: Match seeds to observed seeds in the data.

c. Seeds & Offspring: Match seeds to observed seeds in the data. Also, match the 

numbers of recruits (offspring) by wave and infection status.

The first (a) is used as comparison only, and does not adjust for seed bias. As illustrated in 

Figure 3, this results in an estimate very close to that given by μ̂SS and μ̂VH (μ̂VH = 0.844, 

μ̂SS = 0.843, μ̂MA = 0.845). Variant (b) is the standard variant developed in this paper, which 

results in the second estimate in Figure 3, μ̂MA = 0.837. This adjustment is in the direction 

we would expect, decreasing the prevalence estimate, corresponding to down-weighting the 

group over-represented in the seeds. The difference between (1) and (2) shows the impact of 

adjusting for seed bias in this setting. The modest magnitude of this adjustment can be 

partially attributed to the larger number of sample waves, relative to the homophily level. 

Also, in additional simulation studies (not shown here), seed selection biased in favor of the 

majority group resulted in less bias in estimates than seed selection biased in favor of 

minority groups. Therefore, the high observed prevalence likely also contributed to the 

smaller effect, compared to our simulation study.

The third condition (c) highlights the flexibility and possibilities for extensions of μ ̂MA. We 

note that in these data, infection groups differed in their recruitment behavior. Some 

differences in recruitment behavior have been referred to as differential recruitment 

effectiveness in Heckathorn (2007), as well as in Tomas and Gile (2011). This is a pattern in 

which one group systematically recruits more effectively than another group. In this case, 

however, the pattern was more complex. On average, infected and uninfected participants 

did not vary greatly in their recruitment effectiveness. However, uninfected participants in 

the early waves of the study recruited disproportionately few additional participants, as 
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illustrated in Table 5. Because of the branching nature of the sampling, this resulted in a 

dramatic under-representation of uninfected IDU in the survey. To correct for this, however, 

we needed to estimate and replicate offspring distributions varying by both infection status 

and survey wave.

We therefore applied a version of μ̂MA modified to reflect the empirical offspring 

distribution by wave and infection status. In most cases, this required simply assigning an 

offspring distribution equal to the empirical offspring distribution by wave and infection 

status. For uninfected recruiters in wave 3, we used averaged empirical values from waves 2 

and 4. For waves 10 and beyond, we replicated the empirical results from wave 9. Whenever 

a simulated recruiter did not have enough eligible alters to allow for the number of recruits 

selected from the appropriate distribution, we assigned any unfulfilled recruitments to the 

next active recruiters of the same infection status with fewer than 3 assigned recruits. This is 

straight-forward to apply in our model-assisted setting and illustrates how this approach 

allows the approximation to the sampling design to be improved using available 

information.

The results of this analysis are illustrated in the third bar of Figure 3. The resulting estimate, 

0.817, was substantially lower than the earlier estimates, suggesting the offspring 

distribution had a substantial impact on the resulting estimates.

6. Discussion

In this article we introduce a new approach to estimation based on RDS data that uses a 

working model for the underlying networked population to more accurately estimate the 

inclusion probabilities necessary for design-based inference.

We demonstrate that this approach allows us to correct for features addressed by earlier 

estimators, as well as features not previously addressed. In particular, differential sampling 

probabilities based on nodal degrees are addressed by the proposed estimator and also by 

earlier RDS estimators (Gile, 2011; Heckathorn, 2007; Salganik and Heckathorn, 2004; 

Volz and Heckathorn, 2008). Finite population effects are addressed by the proposed 

estimator and also by Gile (2011). In addition, our proposed estimator is able to adjust for 

the convenience sample of seeds, a feature not accounted for in any previous approach.

We apply this approach to obtain improved estimation of HIV prevalence in an IDU 

population in the Ukraine. We improve the approximation to the actual RDS process 

resulting in improved estimates, and compute associated measures of uncertainty. We also 

show the flexibility of the working model approach. It allows for additional information 

available in a particular application to be incorporated via the ERGM framework, and 

leverages recent advances in that area (Handcock et al., 2008; Snijders et al., 2006) to fit the 

models conditional on z and d.

Note that the finite-population correction of our approach requires the specification of a 

working population size. If the hidden population size is unknown, but sufficiently large, the 

estimator is not sensitive to the working population size. This is likely the case for most 
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RDS samples; Gile et al. (2012), for example, do not find appreciable finite population 

effects in any of several traits across 12 study populations in the Dominican Republic.

Another important assumption is the form of the social network working model. Our 

estimator relies on a simple model, not because we believe it to be strictly accurate, but 

because we expect it to capture the network features most important to the sampling process, 

and because it is feasible to estimate from the available data. Our sensitivity analysis 

suggests that the approach may still perform reasonably under some forms of working model 

misspecification, although its performance may be degraded in some cases.

Several extensions of this approach are possible. First, if data on the characteristics of all 

alters are not available, we may wish to estimate the sum of cross-group ties (g(y, x)) based 

on referral patterns. Such an estimate is used in the application to HIV prevalence estimation 

(Section 5).

Our approach can also be extended to include additional measurable features of the network 

working model or sampling process, such as homophily on neighborhood of residence or 

bias in the passing of coupons. We illustrate one such extension in Section 5, in which we 

observe an aberrant pattern of recruitment by infection status, and adapt the estimator to 

condition on this pattern. Note that the resulting estimate is very close to that given by μ̂SH. 

This is consistent with results in Tomas and Gile (2011) indicating that μ̂SH is not as 

susceptible to bias induced by differential recruitment effectiveness as μ̂VH or μ̂SS.

It is important to note that this estimator does not remove the need for strong assumptions 

regarding RDS data. One critical assumption is that we are able to measure all the important 

features of the underlying population and sampling procedure. Consider, for example, the 

case of biased sampling by an invisible characteristic: if drug users who are interested in 

quitting are more likely to participate in the study, this status may not be visible to their 

contacts. Thus recruiters could not be asked their numbers of potential quitter contacts, and 

the rate of recruitment of this group would be confounded with their number in the target 

population thwarting valid inference on their population proportion. A more mundane 

challenge arises from reporting inaccuracy. Gile et al. (2012) show that test-retest variation 

in degree reporting can induce important differences in estimates. There are also network 

structures on which this estimator, and all others currently available, may result in very poor 

estimates. In particular, populations with sub-groups that are disconnected or connected 

weakly are not conducive to inference based on assuming a random walk on a network. In 

such a case, the final sample would be (nearly) completely dependent on the composition of 

the initial convenience sample. If the groups corresponded exactly to a measured 

characteristic, such as street-based versus venue-based sex workers, a version of the 

proposed estimator would have an extremely large variance and variance estimate. If the 

grouping was latent, as in high risk verses low risk MSM, the sample would contain very 

little information about the relative sizes of the groups and the variance estimate would be a 

substantial under-estimate. Finally, the network models that may be fit to RDS data as 

currently collected are limited by the branching structure of the sampling. Ties between 

participants who do not recruit each other are not observed, making triadic terms such as 

those in Snijders et al. (2006) impossible to observe or identify in a model.
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The strongest contribution of the proposed method is its flexibility. It is able to retain the 

finite population corrections available in the successive sampling estimator of Gile (2011), 

and the robustness to differential recruitment effectiveness available in the Salganik-

Heckathorn estimator, while reducing bias due to the composition of seeds, and potentially 

adjusting for other measurable features of the study population or sample.

We intend to make code available for these procedures in the R package RDS on CRAN 

(Handcock et al., 2009; R Development Core Team, 2012).

Acknowledgments

The project described was supported by grant number 1R21HD063000 from NICHD, grant number MMS-0851555 
from NSF, and grant number N00014-08-1-1015 from ONR, and grant number SES-1230081 from NSF, including 
support from the National Agricultural Statistics Service. Its contents are solely the responsibility of the authors and 
do not necessarily represent the official views of the Demographic & Behavioral Sciences (DBS) Branch, the 
National Science Foundation, or the Office of Naval Research. The authors would like to thank the members of the 
Hard-to-Reach Population Research Group (hpmrg.org), especially Lisa G. Johnston and Corinne M. Mar, the 
Associate Editor and two referees for their helpful input, and also to thank Tetyana Saliuk of AIDS Alliance, 
Ukraine for the use of her data in the application.

References

Abdul-Quader AS, Heckathorn DD, McKnight C, Bramson H, Nemeth C, Sabin K, Gallagher K, 
Jarlais DCD. Effectiveness of respondent-driven sampling for recruiting drug users in New York 
City: Findings from a pilot study. Journal of Urban Health. 2006; 83:459–476. [PubMed: 16739048] 

Berleva, GO.; Dumchev, KV.; Kobyshcha, YV.; Paniotto, VI.; Petrenkon, TV.; Saliuk, TO.; Shvab, 
IA. Tech rep. International HIV/AIDS Alliance in Ukraine; 2010. Analytical report based on 
sociological study results estimation of the size of populations most-at-risk for HIV infection in 
Ukraine in 2009. 

Bernhardt, A.; Milkman, R.; Theodore, N.; Heckathorn, D.; Auer, M.; DeFilippis, J.; Gonzalez, AL.; 
Narro, V.; Perelshteyn, J.; Polson, D.; Spiller, M. Report. National Employment Law Project; New 
York, NY 10038: 2009. Broken laws, unprotected workers: Violations of employment and labor 
laws in americas cities. http://www.nelp.org/

Biernacki P, Waldorf D. Snowball sampling: problem and techniques of chain referral sampling. 
Sociological Methods and Research. 1981; 10:141–163.

Fattorini L. Applying the Horvitz-Thompson criterion in complex designs: A computer-intensive 
perspective for estimating inclusion probabilities. Biometrika. 2006; 93(2):269–278.

Felix-Medina MH, Monjardin PE. Combining link-tracing sampling and cluster sampling to estimate 
the size of hidden populations: A Bayesian-assisted approach. Survey Methodology. 2006; 32:187–
195.

Felix-Medina MH, Thompson SK. Combining link-tracing sampling and cluster sampling to estimate 
the size of hidden populations. Journal of Official Statistics. 2004; 20:19–38.

Frank, O. The Statistical Analysis of Networks. London: Chapman and Hall; 1971. 

Frank, O. Network sampling and model fitting. In: Carrington, JSP.; Wasserman, SS., editors. Models 
and Methods in Social Network Analysis. Cambridge: Cambridge University Press; 2005. p. 31-56.

Frank O, Snijders TAB. Estimating the size of hidden populations using snowball sampling. Journal of 
Official Statistics. 1994; 10(1):53–67.

Frank O, Strauss D. Markov graphs. Journal of the American Statistical Association. 1986; 81(395):
832–842.

Freeman LC. Some antecedents of social network analysis. Connections. 1996; 19:39–42.

Gile KJ. Improved inference for respondent-driven sampling data with application to HIV prevalence 
estimation. Journal of the American Statistical Association. 2011; 106(493):135–146.

Gile and Handcock Page 18

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nelp.org/


Gile KJ, Handcock MS. Respondent-driven sampling: An assessment of current methodology. 
Sociological Methodology. 2010; 40:285–327. http://arxiv.org/abs/0904.1855v1. [PubMed: 
22969167] 

Gile, KJ.; Handcock, MS. Manuscript. Department of Statistics, University of California - Los 
Angeles; 2013. Improved estimation for network model-assisted inference. 

Gile, KJ.; Johnston, LG.; Salganik, MJ. Diagnostics for respondent-driven sampling. 2012. ArXiv 
Preprinthttp://arxiv.org/abs/1209.6254

Goel S, Salganik MJ. Respondent driven sampling as Markov Chain Monte Carlo. Statistics in 
Medicine. 2009; 17:2202–2229. [PubMed: 19572381] 

Goodman LA. Snowball sampling. Annals of Mathematical Statistics. 1961; 32:148–170.

Häjek, J. Comment on a paper by d. basu. In: Godambe, V.; Sprott, D., editors. Foundations of 
Statistical Inference. Toronto: Holt, Rinehart and Winston; 1971. p. 236

Handcock MS, Gile KJ. Modeling social networks from sampled data. Annals of Applied Statistics. 
2010; 4(1):5–25. [PubMed: 26561513] 

Handcock, MS.; Gile, KJ.; Neely, WW. RDS: R Functions for Respondent-Driven Sampling. Hard-to-
Reach Population Methods Research Group; Seattle, WA: 2009. http://hpmrg.org/R package 
version 0.10http://CRAN.R-project.org/package=RDS

Handcock, MS.; Hunter, DR.; Butts, CT.; Goodreau, SM.; Morris, M. statnet: Software Tools for the 
Statistical Modeling of Network Data. Statnet Project; Seattle, WA: 2003. http://statnet.org/R 
package version 2.0http://CRAN.R-project.org/package=statnet

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M. statnet: Software tools for the 
representation, visualization, analysis and simulation of social network data. Journal of Statistical 
Software. 2008; 24(1) http://www.jstatsoft.org/v24/i01/. 

Heckathorn DD. Respondent-driven sampling: A new approach to the study of hidden populations. 
Social Problems. 1997; 44:174–199.

Heckathorn DD. Extensions of respondent-driven sampling: Analyzing continuous variables and 
controlling for differential recruitment. Sociological Methodology. 2007; 37:151–207.

Heckathorn DD, Jeffri J. Finding the beat: Using respondent-driven sampling to study jazz musicians. 
Poetics. 2001; 28:307–329.

Hunter DR, Goodreau SM, Handcock MS. Goodness of fit for social network models. Journal of the 
American Statistical Association. 2008; 103:248–258.

Hunter DR, Handcock MS. Inference in curved exponential family models for networks. Journal of 
Computational and Graphical Statistics. 2006; 15(3):565–583.

Johnston, LG. Starting RDS session iii: Seeds. 2010. http://www.lisagjohnston.com/respondent-
driven-samplin%g

Kruglov YV, Kobyshcha YV, Salyuk T, Varetska O, Shakarishvili A, Saldanha VP. The most severe 
HIV epidemic in Europe: Ukraine’s national HIV prevalence estimates for 2007. Sexually 
Transmitted Infections. 2008; 84(Suppl 1):i37–41. [PubMed: 18647864] 

Lansky, A.; Abdul-Quader, AS.; Cribbin, M.; Hall, T.; Finlayson, TJ.; Garfein, RS.; Lin, LS.; Sullivan, 
PS. Tech Rep Public Health Reports. Vol. 122. Division of HIV/AIDS Prevention, National Center 
for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention; 2007. Developing 
an HIV behavioral surveillance system for injecting drug users: the National HIV Behavioral 
Surveillance System; p. 48-55.17354527

Lazarsfeld, P.; Merton, R. Friendship as social process: A substantive and methodological analysis. In: 
Berger, M.; Abel, T.; Page, CH., editors. Freedom and Control in Modern Society. New York: Van 
Nostrand; 1954. p. 18-66.

Lee, TCM.; Meng, X-L. Self-consistency: A general recipe for wavelet estimation with irregularly-
spaced and/or incomplete data. 2007. http://arxiv.org/abs/math/0701196v1

Little, RJA.; Rubin, DB. Statistical Analysis with Missing Data. 2. Hoboken, New Jersey: John Wiley 
& Sons, Inc; 2002. 

Lumley, TS. Complex Surveys: A Guide to Analysis Using R. New York: Wiley; 2010. Wiley Series 
in Survey Methodology

Gile and Handcock Page 19

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/0904.1855v1
http://arxiv.org/abs/1209.6254
http://hpmrg.org/
http://CRAN.R-project.org/package=RDS
http://statnet.org/
http://CRAN.R-project.org/package=statnet
http://www.jstatsoft.org/v24/i01/
http://www.lisagjohnston.com/respondent-driven-samplin%g
http://www.lisagjohnston.com/respondent-driven-samplin%g
http://arxiv.org/abs/math/0701196v1


Malekinejad M, Johnston L, Kendall C, Kerr L, Rifkin M, Rutherford G. Using Respondent-Driven 
Sampling Methodology for HIV Biological and Behavioral Surveillance in International Settings: 
A Systematic Review. AIDS and Behavior. 2008; 12:105–130.

McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: Homophily in social networks. Annual 
Review of Sociology. 2001; 27:415–444.

Pattison, P.; Robins, G.; Snijders, T.; Wang, P. Conditional estimation of exponential random graph 
models from snowball sampling designs. Technical Report. 2012. http://sna.unimelb.edu.au/

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing; Vienna, Austria: 2012. http://www.R-project.org/

Rubin DB. Inference and missing data. Biometrika. 1976; 63:581–592.

Salganik MJ, Heckathorn DD. Sampling and estimation in hidden populations using respondent-driven 
sampling. Sociological Methodology. 2004; 34:193–239.

Särndal, C-E.; Lundström, S. Estimation in Surveys with Nonresponse. Wiley and Sons, Inc; 2005. 

Särndal, C-E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling. New York: Springer-
Verlag; 1992. 

Snijders TAB, Pattison P, Robins GL, Handcock MS. New specifications for exponential random 
graph models. Sociological Methodology. 2006; 36:99–153.

Thompson SK. Adaptive cluster sampling. Journal of the American Statistical Association. 1990; 
85:1050–1059.

Thompson, SK. Sampling. New York: Wiley; 1992. 

Thompson SK. Adaptive web sampling. Biometrics. 2006; 62(4):1224–1234. [PubMed: 17156298] 

Thompson SK, Frank O. Model-based estimation with link-tracing sampling designs. Survey 
Methodology. 2000; 26:87–98.

Thompson, SK.; Seber, GAF. Adaptive sampling. New York: Wiley; 1996. 

Tomas A, Gile KJ. The effect of differential recruitment, non-response and non-recruitment on 
estimators for respondent-driven sampling. Electronic Journal of Statistics. 2011; 5:899–934.

Trow, M. Right-Wing Radicalism and Political Intolerance. New York: Arno Press; 1957. Reprinted 
1980

Ukrainian AIDS Centre. Tech rep. Ministry of Health of Ukraine; 2009. National estimate of HIV/
AIDS situation in Ukraine as of beginning of 2009. 

UNAIDS. Tech rep. UNAIDS - Joint United Nations Programme on HIV/AIDS; 2008. 2008 Report on 
the Global AIDS Epidemic. http://www.unaids.org

UNAIDS/WHO. Tech rep. UNAIDS/WHO Working Group on HIV/AIDS; 2003. Estimating the size 
of populations at risk for HIV: Issues and methods. http://www.unaids.org

United States Agency for International Development. Tech rep. USAID/Ukraine; 2010. Hiv/aids health 
profile, october 2010. http://ukraine.usaid.gov/

Volz E, Heckathorn DD. Probability based estimation theory for respondent driven sampling. Journal 
of Official Statistics. 2008; 24(1):79–97.

Appendix: Estimation Procedure

This appendix details the estimation procedure of Section 3. Specifically, we propose the 

following algorithm to compute the new estimator μ̂MA of μ.

a. Estimate the following according to their empirically observed values:

• Sample size n

• Number of seeds nseeds, and degree and infection status of seeds, given by 

, where  represents the number of seeds with degree i 

and infection j, i ∈ 1… NW − 1, j ∈ {0, 1}.
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• Offspring distributions ps, where  = the proportion of the sample with i 

offspring, i = 0, 1,…, maximum number of coupons.

b. Estimate:

c. For r = 1… h:

i. Estimate:

ii. Compute the ERGM parameter η in the model (2) conditional on T̃r and g̃(y, 

x)r (Gile and Handcock, 2013). Denote the estimate by ηr. This step is 

conducted using the statnet R package (Handcock et al., 2003).

iii. Simulate M1 networks according to the distribution given by η̂r, T̃r, and g̃(y, 

x)r (Gile and Handcock, 2013).

iv. Simulate M2 RDS samples from each of the M1 networks in the previous 

step, according to sampling parameter  = {n, Tseeds, ps}. Let  represent 

the number of times a node of degree k and infection l is sampled, over all M 

= M1 × M2 samples.

v. Estimate  : Si = 1 in a manner similar to Fattorini (2006) and Gile 

(2011):

d. Let 

e. Estimate

The simulations in this paper are based on r = 3 iterations, each including M1 = 25 network 

samples and M2 = 20 RDS samples from each network. In general, we recommend at least 

M1 = 25, M2 = 20 and r = 3. Estimation time scales with sample size, population size, and 

M. In our simulations estimates with NW = 1000 require about 3 minutes on a personal 
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computer. The estimates with NW = 10000 require about 10 minutes on a personal computer. 

In practice, these parameters can be adjusted for desired precision in the solution to (7).

Gile and Handcock Page 22

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Comparison of performance of five RDS estimators under four conditions. μ̂SS and μ̂MA are 

based on a working population size N. Results from 200 simulations.

Gile and Handcock Page 23

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Comparison of performance of five RDS estimators when the network working model mis-

specifies the transitivity. The populations in the left panel do not have elevated transitivity. 

The middle panel networks have GWESP with θ = 0 elevated by a factor of 10, with respect 

to the left panel while the right increases the GWESP statistic with θ = 1 by a factor of 10. 

Results from 1000 simulations.
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Fig. 3. 
HIV prevalence estimates for injecting drug users in Mykolaiv, Ukraine, 2007. Three 

versions of μM̂A are considered, represented by the points with vertical error bars. Four 

estimators μ̂SH, μ̂VH, μ̂SS, and the sample mean, are represented as horizontal lines for ease 

of comparison with all three values of μ̂MA.
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Table 1

Parameters of simulated networks. Default parameters given in boldface.

Parameter Meaning Values

Number of nodes 10000, 1000

Prevalence 0.20

Mean degree 7

Homophily 1, 2

(Differential) Activity Ratio 1, 2

where N0 = N(1 − μ ), N1 = Nμ
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Table 2

Parameters of simulated RDS sampling. Default parameters given in boldface.

Parameter Meaning Values

Number of Seeds 10

Seed Selection Sequentially with probability proportional to degree from either: full population, infected 
nodes

Branching From each sampled node, up to ncup previously unselected alters are selected completely at 
random for subsequent sampling. ncup are selected whenever available.

2

Sample Size Sampling stops when n nodes have been sampled. 500
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Table 3

Five estimators compared in the simulation study.

Abbreviation Source Estimator

Mean Naive sample mean of zi μ̂

SH Salganik and Heckathorn (2004) μ̂SH

VH Volz and Heckathorn (2008) μ̂VH

SS Gile (2011) μ̂SS

MA Proposed Model-Assisted μ̂MA
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Table 5

Average number of successful recruitments per recruiter by wave and infection status of recruiter (with 

number of recruiters in parentheses). Uninfected recruiters were rare and unsuccessful in early waves, 

contributing to under-representation of uninfected participants in the sample. There were no uninfected 

participants in waves 0 (seeds) or 3.

Recruiter Recruiter

Wave Uninfected (N) Infected (N)

10 0.00 (7) 0.00 (24)

9 0.93 (14) 0.75 (24)

8 1.25 (8) 1.08 (26)

7 1.71 (7) 1.10 (20)

6 0.86 (7) 1.05 (20)

5 1.00 (4) 1.28 (18)

4 0.50 (4) 0.95 (21)

3 − (0) 1.67 (15)

2 0.00 (1) 1.07 (14)

1 0.00 (1) 1.15 (13)

0 (Seeds) − (0) 2.33 (6)

Total 0.89 (53) 0.99 (217)
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