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Abstract

We explore the use of the recently proposed “total nuclear variation” (TVN) as a regularizer for 

reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of 

the total variation (TV) to vector-valued images and has the advantage of encouraging common 

edge locations and a shared gradient direction among image channels. We show how it can be 

incorporated into a general, data-constrained reconstruction framework and derive update 

equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation 

studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced 

by the TVN leads to better preservation of image features at high levels of regularization, 

compared to independent, channel-by-channel TV reconstructions.
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1 Introduction

In recent years, great strides have been made in the development of iterative reconstruction 

algorithms for x-ray CT. Compared to the analytic algorithms that are employed on most 

clinical scanners, iterative algorithms offer a number of advantages [1, 2, 3, 4], including the 

ability to incorporate prior knowledge about the object into the reconstruction model [5, 6]. 

Typically, the “optimal” image is identified as the minimizer of a cost function containing a 

data-fidelity term and regularization. The latter term can help prevent overfitting to noisy 

data, select a unique solution to an ill-posed inverse problem, and encourage desired 

properties in the image (e.g. smoothness).
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The total variation is one of the most widely used regularizers in imaging inverse problems. 

It was originally proposed by Rudin, Osher, and Fatemi for noise removal [7], but it has 

since been applied to a multitude of other problems, including deblurring [8], demosaicking 

[9], super-resolution [10], and tomographic reconstruction [11]. The success of the TV is 

due to several reasons. It was designed with the explicit intention of preserving sharp 

discontinuities while suppressing noise, and it is one of few convex penalties with this 

property [12]. Additionally, others have shown that TV regularized reconstruction 

algorithms can sometimes yield accurate reconstructions from highly undersampled 

measurement data [11]. This phenomenon may be partially explained in CT by the fact that 

images tend to be approximately piecewise constant, and the TV promotes sparsity in the 

image gradients.

A topic that has received more attention recently is how to generalize the total variation to 

multi-channel images [13, 14, 15, 16]. A multi-channel image may be viewed as a stack of 

scalar images or as a vector field, where each point in space corresponds to multiple contrast 

values. This situation arises in many contexts, such as color imaging and spectral CT. The 

latter will be the focus of this work. The most straightforward way to generalize the total 

variation to multi-channel images is to sum up the total variation of the individual channels. 

This technique, which we refer to as “channel-by-channel” TV, has been employed for 

spectral CT reconstruction previously [6, 17]. A major theoretical disadvantage of this 

approach is that it penalizes each image channel independently, despite the fact that there are 

generally large inter-channel correlations. For example, a simple visual inspection of a pair 

of low and high kVp images from the same phantom sugggests that there is a high degree of 

similarity (See Figure 1). Contrast changes appear to follow the same pattern, edges are in 

the same locations, and textures are likely to be similar. If some of these properties could be 

captured by a generalized, TV-like prior, then perhaps it would be advantageous to 

reconstruct both channels in tandem.

It turns out that there are many ways to generalize the TV to multi-channel images, but we 

will focus on a specific choice, which has been referred to as the “total nuclear variation” 

(TNV) [16]. We had previously suggested the TNV prior [18], unaware that at least two 

earlier works had already discussed it in the context of color image restoration [15, 16]. The 

TNV penalty encourages all of the image channels in a multi-channel reconstruction to have 

common edge locations and for their gradient vectors to point in a common direction. 

Equivalently, we can say that it has a bias for image channels that have parallel level sets 

[19]. The notion that multi-channel images should have gradient fields that share a common 

direction has been discussed in several other works on color image processing [20, 21, 19].

The development of effective regularization strategies is particularly important for spectral 

CT for a variety of reasons. Since the detected photons are divided into multiple energy bins, 

the SNR of each channel is immediately reduced in proportion to the square root of the 

number of energy channels [22]. Further, the multi-energy data is typically used to derive 

quantitative, basis-material images through a process called basis-material decomposition 

(BMD), which may occur before [23], during [24], or after [25] the image reconstruction 

process. The ability to form quantitative images through BMD is perhaps the most 

compelling advantage of spectral CT. Unfortunately, the decomposition is usually quite ill-
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conditioned, which results in a substantial amplification of noise. This already poses 

significant challenges for protocols involving a two-material decomposition and will be even 

worse when trying to handle three or more basis materials [22]. Therefore, whether the 

BMD is performed in the sinogram domain or the image domain, it is important to mitigate 

as much noise as possible during the reconstruction. Several other works have proposed 

denoising methods which may be applied in the image domain [26] or the sinogram domain 

[27]. These approaches have the benefit of being fast and plugging into an already existing 

reconstruction framework, but we believe there will always be some advantages to building 

noise suppression into the reconstruction model. This allows the greatest flexibility in 

modeling physical and statistical factors in projection space while simultaneously enforcing 

priors in image space. Aside from noise suppression, multi-channel generalizations of the 

total variation may be particularly useful for reconstructing sparse-view photon counting CT 

data when detector limitations are the bottleneck in acquisition time [6].

In this work, we develop an iterative reconstruction model for jointly reconstructing multi-

channel spectral CT data with the proposed TNV prior. Using Chambolle and Pock's primal-

dual algorithm (CPPD) [28], we derive update equations for two different optimization 

programs. The first minimizes the proposed TNV subject to a constraint on the euclidean 

data-divergence, and the second minimizes the more primitive channel-by-channel TV with 

the same data constraint. This approach allows us to fairly compare these two generalized 

TV penalties over a variety of different smoothing levels, by adjusting a single parameter. 

We believe that in practice there may be good reasons for performing the basis-material 

decomposition either before or after the image reconstruction process, so we test the TNV in 

both domains. In the first simulation study, we consider a 5-bin photon counting system and 

jointly reconstruct the corresponding five logged sinograms. We will refer to the logged 

energy-bin data hereafter as the “energy basis.” In the second study, we investigate the 

impact of the TNV in the “material basis.” We simulate dual kVp data and perform a 

maximum-likelihood material decomposition to obtain a pair of bone and soft-tissue 

sinograms. We simultaneously reconstruct all four sinograms (low, high, bone, and soft-

tissue) using both the channel-by-channel TV and TNV optimization programs. We 

hypothesize that this hybrid approach of co-reconstructing the dual kVp data with the 

decomposed sinograms may help control noise in the material images by coupling them to 

the much higher SNR energy basis images.

2 Theory

2.1 Notation and definitions

In this section, we outline the notation that we will use for the remainder of the document. 

We adopt a somewhat unconventional set of indexing rules in order to maintain as much 

clarity as possible in describing algebraic operations on vectors with multiple dimensions of 

spatial and spectral information.

Single-channel images—Consider a discretized 2D image u ∈ I where I = ℝM·N is a 

finite dimensional vector space equipped with an inner product
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(1)

We use the convention u(i, j) to refer to a particular pixel, where i and j specify the row and 

column indices and u(i, j) ∈ ℝ is a discretized version of some continuous image function 

u(x, y). The quantity ∇u is a vector in the space G = I×I, where the operator ∇u : I ↦ G 

represents a discrete approximation to the gradient. At each pixel location we define the 

quantity (∇u)(i, j) ∈ ℝ2 as

(2)

Where

(3)

(4)

We also define an inner product in G,

(5)

Note that we use bold font to indicate that each spatial location (i, j) maps to a vector of 

values. Further, we will need a discrete divergence operator div z : G ↦ I, which is chosen 

to be the negative transpose of the gradient operator, defined by

(6)

Lastly, we define the mixed ℓ1/ℓ2-norm in G as

(7)

indicating that we take an ℓ1-norm over the spatial indices (i, j) and an ℓ2-norm of each 2-

vector z(i, j). This mixed-norm notation is often used in the literature on sparse regression 

and occasionally to compactly define the isotropic total variation [29],

(8)
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Multi-channel images—Now, we consider a discrete image u ∈ ℐ with L spectral or 

information channels,

(9)

where ℐ = ℝL·M·N·. The quantity u is a discretized version of some continuous vector field 

u(x, y), such as an RGB color image. We also define an inner product in ℐ,

(10)

where the subscript ℓ denotes a particular image channel. Since u is the discrete analog of a 

vector field, we can also define the discrete Jacobian, Ju : ℐ↦ , which generalizes the 

gradient operator to vector fields. In particular we have

(11)

At every pixel (i, j), the sub-matrix (Ju) (i, j) fully characterizes the first-order derivatives of 

u, with each row consisting of the gradient vector of one of the L image channels. The 

quantity Ju is in vector space =ℐ × ℐ = ℝ(L×2) (M · N) with an inner product

(12)

A element V ∈  is a discretized version of a tensor field V(x, y), so we use uppercase font to 

indicate that every spatial location (i, j) maps to a matrix. Again, we need an analog of the 

divergence operator Div Z :  ↦ ℐ that is the negative transpose of J. It is constructed to 

satisfy

(13)

We define the mixed ℓ1/nuclear-norm as

(14)
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where ‖Z(i, j)‖⋆ is referred to as the “nuclear norm” of matrix Z(i, j) and is equal to the sum 

of its singular values.

Linear imaging model—In this work we will assume that the reconstructed image u is 

related to the data vector g by the linear equation

(15)

where g is a vector in the vector space  ∈ ℝL · K, and K represents the total number of line 

integrals in our sinogram. The quantity g is formed by concatenating the sinograms of each 

channel, and the operator A : ℐ →  is similarly formed by concatenating the projector 

model of each of the L channels.

(16)

We define an inner product in ,

(17)

Just as with the image domain, we use subscripts to index over spectral channels and the 

index k in parenthesis to identifies a specific ray in the projection space.

2.2 The Scalar Total Variation

Total variation regularized CT reconstruction algorithms have been studied extensively due 

to the approximate gradient sparsity of CT images. Several works have demonstrated that 

such schemes may yield accurate reconstructions from highly undersampled projection data 

[30, 11, 31, 32, 6]. However, the success of these sparse-view reconstruction methods is 

highly task-dependent.

The anisotropic TV—The “anisotropic” TV is simply defined as the ℓ1-norm of the 

derivative of the image u,

(18)

where it is useful to think of the ‖·‖1 as a “sparsity-inducing” norm because it is a convex 

relaxation of ‖·‖0.

The isotropic TV—Somewhat more common is the “isotropic” TV, which is defined in 

terms of the gradient-magnitude image,
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(19)

This penalty function has similar properties to the anisotropic TV but is sometimes favored 

because it is rotationally invariant in the continuous setting. The anisotropic TV tends to 

favor horizontal and vertical edges [33].

2.3 Vectorial Total Variation

Now, we consider generalizing the TV to the ℳ-channel image u.

The channel-by-channel TV—The simplest way to extend the definition of the TV to 

this vector-valued image, u, would be to take the summation of the total-variation of each 

channel. This is given by

(20)

We will refer to this approach as the “channel-by-channel” TV because it imposes no 

coupling between image channels.

The Total Nuclear Variation—The proposed multi-channel generalization of the TV 

induces a tight coupling between image channels through a pixel-wise penalty on the rank of 

the Jacobian, Ju. This particular form, which we will call the “total nuclear variation” [16] is 

given by

(21)

where ‖(Ju)ℓ‖⋆ = ‖σ⃗‖, and σ⃗ is a vector of the singular values of Ju. This same form has been 

independently proposed by at least three different authors since 2013 [15, 16, 18]. These 

authors have pointed out several nice properties of the TVN. Similarly to the channel-by-

channel TV, it is convex and rotationally invariant when defined on the space of continuous 

images. Additionally, for a single-channel image, it reduces exactly to the usual isotropic 

TV.

However, unlike the channel-by-channel TV, the TVN couples the different image channels 

by encouraging common edge locations and alignment of their gradient vectors. We also 

point out the following interesting equivalence: two images have gradient fields that point in 

the same direction (up to a sign difference) if and only if they share the same set of level 

curves [19].

This gradient-coupling effect comes from the fact that the nuclear norm encourages rank 

sparsity in (Ju)ℓ [34, 35] by. If pixel ℓ lies within a constant-valued region of all of the 

image channels then this Jacobian matrix will be entirely null-valued, and all of its singular 

values will be zero. Further, if all of the gradient vectors of the various image channels are 

Rigie and La Rivière Page 7

Phys Med Biol. Author manuscript; available in PMC 2016 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parallel or anti-parallel, such as at a common edge, then the Jacobian will be rank one and 

thus have only one non-zero singular value. This is because parallel or anti-parallel vectors 

are not linearly independent. The fact that the TVN treats parallel and anti-parallel vectors 

the same means that it is robust to contrast inversions. The connection between singular-

value sparsity and gradient coupling is illustrated in Figure 2. In spectral CT, there may be 

edges that exist in some channels and not others, such as when imaging flowing contrast 

agents. This does not appear to present a problem for the TVN penalty because it primarily 

encourages common edge directions and not common edge magnitudes. Therefore, there is 

no bias toward falsely propagating edges into channels where they do not belong.

Converting to a “noise-balanced” image space—In spectral CT imaging it is often 

the case that certain channels are significantly noisier than others, and we have found that 

the total nuclear variation regularization is more effective if a noise-balancing transform is 

applied prior to reconstruction or denoising. Consider a two-channel image, ǔ, corrupted by 

zero-mean, Gaussian noise with variances  and  for channels 1 and 2, respectively. A 

common approach to denoising is to solve the following optimization problem:

(22)

The quantity ǔ is the original noise corrupted image, and u is the denoised image. In the 

data-fidelity term, each channel is inversely weighted by the standard deviation of the noise. 

This weighting scheme is statistically motivated because it ensures that as λ approaches 

zero, the likelihood of the resultant image, ℒ(u|ǔ), is monotonically increasing. We find that 

it is advantageous when using the TVN penalty to also incorporate this inverse standard-

deviation scaling into the regularization term. Therefore, we can define a new scaled image 

as u′ = (u1/σ1, u2/σ2)T and solve the following optimization problem:

(23)

The scaling ensures that the global noise levels are the same in both image channels, and the 

modified optimization problem effectively incorporates this scaling into the data-fidelity 

term as well as the regularization. For image reconstruction, the same type of scaling would 

be applied to the sinogram data. In general, the projection data will not have a uniform noise 

level within a single energy channel, so we use some average measure of channel noise to 

determine the global scale factor. We find that this noise-balancing procedure is an 

important step, as it improves the noise suppression in multi-spectral images with unequal 

noise levels. Note we can also write down an equivalent constrained optimization problem,

(24)
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where some mapping exists between λ and ε such that both schemes yield the same family 

of solutions.

3 Materials and methods

3.1 General reconstruction model

Assume we have a set of L sinograms, corresponding either to the directly measured energy 

channels of a spectral CT system or to the basis-material projections. We jointly reconstruct 

these channels by solving the following data-constrained optimization problem:

(25)

where g is the multi-channel projection data related to u by the discrete fan-beam projection 

operator A. The TV term refers to either the channel-by-channel TVS or the total nuclear 

variation TVN. The norm on the data constraint ‖·‖W is a weighted ℓ2 norm, defined by

(26)

This penalized weighted least squares (PWLS) data model is often used in CT reconstruction 

because when the weights are selected such that , the data fidelity term corresponds 

to the likelihood function for Gaussian data with covariance Kg. The single adjustable 

parameter ε controls the balance between data-fidelity and regularity. By fixing ε we can 

directly compare reconstructions using the naïve channel-by-channel TVS to our proposed 

TVN subject to the same data fidelity constraint.

3.2 The Chambolle Pock Primal Dual Algorithm

In this section, we will provide an overview of the first-order, primal-dual algorithm of 

Chambolle and Pock [28] and demonstrate how to apply it to our reconstruction model. For 

a tutorial on how to apply the CPPD algorithm to various CT reconstruction schemes, we 

refer the reader to Sidky et al [36].

The proximal mapping: In order to describe the CPPD algorithm, we must first introduce 

the concept of a proximal mapping. For a function f(x), the proximal mapping is defined by

(27)

It will also be useful to consider the proximal mapping of the scaled function λf, which can 

be written as

(28)
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The proximal mapping can be interpreted as a generalized projection operator because for 

the special case that f(x) is an indicator function, then it is a euclidean projection. For an 

extensive overview of the prox operator and applications, refer to Parikh and Boyd [37].

A general saddle-point problem: Let X and Y be two finite-dimensional, real vector spaces. 

The CPPD algorithm is designed to solve the saddle-point problem described by

(29)

where F(y) and G(x) are convex functions with very simple proximal mappings, and K is a 

general linear operator. In particular, the proximal mappings associated with F and G should 

have a closed form or be easily solvable to high precision. It turns out that many interesting 

image processing and reconstruction problems fit this description, including the 

reconstruction model described in the previous section. The CPPD update equations are 

summarized by Algorithm 1. The parameters θ,σ,τ can be thought of as step-size parameters 

that affect convergence speed but not the final solution. In this work, we use θ = 1.0 and 

. Though Chambolle and Pock only prove convergence when the strict inequality 

στ‖K‖2 < 1 is satisfied, we find that setting στ‖K‖2 = 1 causes no stability problems. A 

similar observation is made in [36]. The quantity ‖K‖ is the “spectral norm” of the operator 

K, which is equivalent to its largest singular value. As in [36] we use the power method to 

iteratively compute ‖K‖, which relies only on matrix-vector multiplications. The CPPD 

algorithm has close ties with several other popular algorithms, including ADMM, split-

bregman, and proximal-point. This is further discussed in [28].

Algorithm 1 CPPD Algorithm

1: Initialize: θ∈ [−1, 1], στ‖K‖2 < 1, x(0), x ̄(0)∈ X, y(0) ∈ Y ▹‖K‖ = σmax(K)

2: repeat

3:  y(k+1) = proxσF(y(k) + σKx(̄k))

4:  x(k+1) = proxτG(x(k) − τKTy(k+1))

5:  x̄(k+1) = x(k+1) +θ(x(k+1) − x(k))

6: until x(k+1), y(k+1) = x(k) y(k) ▹ stop when convergence criteria met

Applying the CPPD algorithm to VTV reconstruction: Now we will outline how the 

CPPD algorithm can be applied to the data-constrained optimization problem of (25). First 

we rewrite (25) as

(30)

where the indicator function δε(x) is defined by
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(31)

In the subsequent steps we will recast this objective into a saddle-point problem by dualizing 

the VTV and data-constraint terms. All of the following transformations follow from the 

definition of the Fenchel conjugate. More details on the Fenchel conjugate, also referred to 

as the Legendre transform, are in the appendix. First, we introduce an auxiliary variable q 
and rewrite the data constraint as

(32)

Similarly, we can rewrite the TV penalty function as an optimization over another auxiliary 

variable, z. For the channel-by-channel TVS, we have

(33)

where the definition of the set  is given by

(34)

The proposed TVN penalty function can be expressed as:

(35)

where the set  is defined by

(36)

The quantity Z(i, j) is an L × 2 matrix, with the same dimensions as the Jacobian derivative 

at pixel (i, j), and σmax is its largest singular value. These transformations, which are 

detailed in Appendix A, allow us to write our original VTV reconstruction model as a 

primal-dual, saddle-point problem,

(37)

where the indicator function is either δ  for the channel-by-channel TVS or δ  for the 

proposed TVN. We can directly apply the CPPD update equations of Algorithm 1 by making 

the following assignments.
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(38)

The resulting update equations are given by Algorithm 2. The operator Π /  is a 

Euclidean projection onto the set  or , and the Div operator is the negative transpose of 

the discrete Jacobian operator J. Note that the q-update is written in terms of the proximal 

map of the function Fq, which we define as Fq = ‖W(−1/2)q‖2. While there does not appear to 

be a closed-form expression for this proximal map, it can be reduced to a very simple scalar 

optimization problem as long as W is diagonal. This is detailed in the appendix along with 

an efficient method for performing the Euclidean projection in the primal variable update.

Algorithm 2 Data-constrained VTV Update Equations

1: Initialize:

2: repeat

3:  Z(k+1) = П / (Z(k) + σDū(k))

4:  q(k+1) = proxσεFq (q(k)+σ(Aū(k)−g))

5:  u(k +1) = u(k) + τ (Div Z(k +1) − AT q(k +1))

6:  ū(k+1) = u(k+1) + θ (u(k+1) − u(k+1))

7: until ▹ stop when convergence criteria met

3.3 Simulation studies

To investigate the impact of the proposed vectorial TV regularization, we performed two 

numerical simulation studies with the computerized XCAT phantom. In the first experiment 

we simulate an ideal, photon-counting system with 5 energy windows and directly 

reconstruct images corresponding to the log-normalized bin data. We will refer to this image 

basis as the “energy” basis because each image channel corresponds directly to the 

measurements of one energy window.

In the second experiment, we simulate an ideal, dual-kVp scan and perform what we will 

refer to as a “hybrid” reconstruction. As we will detail later, we first decompose the 80/140 

kVp data into a bone/soft-tissue “material” basis and then we co-reconstruct this synthetic 

data with the raw 80/140 kVp sinograms. The TVN penalty couples all four image channels 

so that the relatively noisy basis-material channels may benefit from the higher SNR energy-

bin channels.

3.3.1 Data generation

The XCAT shoulder phantom: All simulations used the same 2D pixelized shoulder 

phantom, which was generated from an axial slice of the XCAT phantom and is pictured in 

Figure 3. The XCAT software package was used to generated a set of bone and soft-tissue 

density maps on a 2048 × 2048 pixel grid. These density maps were then used as input to a 

Rigie and La Rivière Page 12

Phys Med Biol. Author manuscript; available in PMC 2016 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polyenergetic, distance-driven projector model to generate the simulated raw data that would 

be inputted to our reconstruction algorithm.

Ideal photon counting model: To generate the 5-bin photon-counting data, we used a 

realistic 120 kVp simulated x-ray tube spectrum with hard thresholds at 40,60,80,100, and 

120 keV. We did not model any physical factors in the detector response, so our bin 

response functions are perfect rect functions. Our simulated spectrum had virtually no 

emissions below 20 keV, so we can think of these bins as being evenly spaced. Using a 

distance-driven projector model, polyenergetic projections were computed with 896 detector 

elements per view and 400 views, and Poisson noise was added.

Dual kVp hybrid model: The other configuration we looked at was an 80/140 dual kVp 

acquisition with the same number of detectors and views as the photon counting simulation. 

We simulated realistic 80 and 140 kVp x-ray tube spectra to generate two sets of consistent 

projection data. This type of consistent, dual-kVp data can be acquired on many current 

scanners by performing two back-to-back scans. One could also approximate consistent, 

dual-kVp data with a fast kV-switching geometry by interpolating the missing views in the 

low and high kVp sinograms. Gaussian noise was added to approximate a compound 

Poisson noise model. From the noisy 80 and 140 kVp projection data, we synthesized bone 

and soft-tissue basis sinograms using a maximum-likelihood material decomposition. Since 

the material decomposition is performed in the projection space, it is ray-by-ray separable, 

resulting in a series of small optimization problems that we solve to high precision using 

Newton's method. In the “hybrid” study, we will co-reconstruct these 4 channels of data, 

consisting of our log-normalized, dual kVp data (energy basis) and the synthesized, 

material-basis data.

3.3.2 Preprocessing and reconstruction—Both the 5-channel photon-counting data 

and the 4-channel dual kVp hybrid data were reconstructed using the reconstruction model 

outlined in (25). For reconstruction, we used a 512 × 512 grid of 1 mm pixels and a matched 

projector/backprojector pair based on Joseph's method [38].

Computing data-weights: For the raw-basis projection data, we will use the data-weighting 

approach described by Bouman [2], which results in a diagonal W matrix, where the 

diagonal elements equal the pre-logged projection data. This is a quadratic approximation to 

the log-likelihood. For the synthetic, bone/soft-tissue sinograms, we estimate the variances 

using the Cramer-Rao lower bound [39] and weight by their inverse. This is similar to the 

approach described by Schirra [40] and Sawatzky [17], but we ignore the off-diagonal terms 

in this work for simplicity. The reason for omitting these terms is because the CPPD 

algorithm relies on the functions F and G in (29) having simple proximal maps, and we 

require this simplification to meet that criteria. This problem only arises in the data-

constrained form of the optimization problem. When solving the equivalent unconstrained 

optimization problem (as in [40, 17]), including the inter-channel noise correlations is 

straightforward. Generally, fewer algorithmic tools are available for solving the data-

constrained form, but we favor it for this work because it provides a mechanism for fairly 

comparing the channel-by-channel TV to the TNV.
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Tuning the data-constraint parameter: The only parameter that we will vary in our 

reconstruction model (25) is ε, which controls the trade-off between data fidelity and 

smoothness. In general, smaller values of ε will result in noisier images, while higher values 

allow the VTV term to find a smoother solution. At the extreme case of ε = 0, only images 

with projections that exactly match the measured data are allowed. There is also some finite 

value ε = εmax for which the algorithm will return an image of all zeros. In order to 

determine an interesting range for ε, we first compute a ground truth image utrue by 

performing FBP on noiseless, non-sparse projection data. Then we define a new parameter 

ε* which is defined by equation 39,

(39)

where g are the noisy projection data we wish to reconstruct. In this study we will select 

values of ε that satisfy ε = αε*, where α ∈ (0,1). We subjectively selected a range of α 

values that represent a range of solutions from under-smoothed to over-smoothed in order to 

demonstrate how the TVN compares to the channel-by-channel TV in various regimes.

As described earlier, the projection data were re-scaled prior to reconstruction, so that the 

average noise levels were approximately the same in every spectral channel.

4 Results

In the following section, we present the resulting images from our simulation study, 

comparing directly the channel-by-channel TV and the proposed TNV. In all of our 

comparisons, we refer to the reference image utrue, which is obtained by performing FBP on 

noiseless full-view data (1200 views).

4.1 Photon counting study

Here we present the results of performing a simultaneous reconstruction of the five photon-

counting bins after log-normalization, using both the channel-by-channel TVS and the 

proposed TVN. This is an example of performing a joint reconstruction on data in the energy 

basis because we did not perform a material decomposition. In this setup, bin 1 (0-40 keV) 

was the noisiest, due to significant attenuation below 40 keV. We find that the inter-channel 

coupling introduced by the total nuclear variation has the greatest impact on the noisiest 

channels, so we present reconstructed images from this energy bin, focusing on the ROI's 

indicated in Figure 4. The resulting images are depicted in figures 5 through 6. The image 

window was manually adjusted for each ROI to highlight the relevant structures but is fixed 

within a particular figure. In general, we find that the images reconstructed with TVN 

regularization suffer from less edge blurring as the smoothing parameter ε is increased. The 

profile plot in Figure 7 gives a closer look at how the TVN better preserves bony structures 

in the lowest energy bin image. We confirmed that these profiles were extracted from 

images of similar noise levels by measuring the sample variance in a nearby, uniform 

muscle ROI. This is expected because our data-constrained, reconstruction model allows us 

to select the noise level directly by tuning the ε parameter.
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4.2 Dual kVp Hybrid Study

In this study we co-reconstruct the synthetic soft-tissue/bone image channels with the raw 

80/140 kVp data. In general, the material decomposition greatly amplifies noise, so that the 

soft-tissue and bone images tend to have a much lower CNR than the raw 80 and 140 kVp 

images. This noise amplification is due to the ill-conditioning of the inversion step in the 

basis change, which is caused by the relatively poor spectral separation between basis 

materials. This poor spectral separation also explains the strong negative correlation 

between the synthesized material channels. We hypothesize that by coupling the high CNR 

raw image channels and the low CNR synthetic image channels, we may be able to improve 

noise suppression in the synthetic data. We call this technique of reconstructing the synthetic 

and raw data simultaneously "hybrid" reconstruction. We present ROI's from both the bone 

density image and the soft-tissue density image over a range of different ε values in Figures 

8 and 9. We find that using the TVN allows for a high degree of noise suppression (high 

values of ε) without significantly deteriorating bone or soft-tissue structures. However, when 

the naive channel-by-channel TV is used, these same e values eventually lead to significant 

blurring artifacts. We also point out that even though the soft-tissue, 80 kVp, and 140 kVp 

images have edges that are not present in the bone density image, the TVN coupling does not 

falsely propagate these edges into the bone channel.

5 Discussion

We have described a framework for jointly reconstructing multi-channel spectral CT images 

using a generalized vectorial regularizer. Specifically, we presented a multi-channel 

generalization of the total variation which couples the different image channels by 

encouraging their gradient vectors to point in a common direction. Preliminary results 

suggest that this coupling may allow for greater noise suppression with less blurring of 

image structures compared to the channel-by-channel TV. This regularization strategy can 

be used to reconstruct logged energy bin images, basis-material images, or even both 

simultaneously, such as in our hybrid reconstruction study. This hybrid approach may allow 

for better noise suppression in the synthetic material images, which typically suffer from 

elevated noise levels.

In this study, we only considered the case of multi-energy data with consistent rays to isolate 

the impact of the inter-channel coupling in the TNV. However, we suspect that by coupling 

the edge structure of the image channels, there may be additional benefits for data 

containing inconsistent rays. For example, in a fast kV switching system each energy 

channel contains slightly different geometric information about the object, due to the fact 

that the projection views are interleaved, and we hypothesize that the TNV penalty may 

allow some of this information to be shared between image channels during the 

reconstruction. In future work we will investigate the impact of the TNV penalty on 

configurations with inconsistent rays.

A final important note about this study is that the numerical XCAT phantom we used is 

piecewise constant. We expect our proposed TNV penalty to suffer from many of the same 

artifacts and limitations as the conventional TV penalty when applied to more realistic data, 

such as “staircasing” [41] and loss of contrast [42]. However, other works have 
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demonstrated that TV can still perform somewhat well on data with low frequency structures 

and complex textures when balanced appropriately with the data-fidelity term [11, 43]. Any 

convex regularizer is likely to introduce unacceptable biases when over relied on. Some of 

these limitations of the TV have been addressed for scalar images by other authors, for 

example by considering higher-order spatial derivatives [44] or with non-convex 

generalizations of the TV [45, 46]. We expect that these improvements can also be extended 

to the multi-channel TNV but this is beyond the scope of this work.

Appendices

A Deriving the saddle-point problem

To derive the saddle-point formulation of our optimization problem, we used two 

fundamental results of convex analysis to “dualize” the data fidelity constraint as well as the 

VTV term. The transformation of the VTV term follows straightforwardly from the 

definition of the so-called “dual-norm,” which is defined by

(40)

Every norm ‖·‖ has an associated dual-norm ‖·‖′, that obeys this relationship. The ℓ2 norm 

utilized in the scalar TV is self-dual, while the nuclear norm and spectral norm form a dual 

pair.

Dualizing the channel-by-channel TV

The channel-by-channel TV can be written as

(41)

The definition of the dual-norm allows us to rewrite this expression as

(42)

which is equivalent to (33).

Dualizing the proposed TVN

The proposed TVN is

(43)

Substituting the definition of the dual-norm, we get
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(44)

which is equivalent to (35). We have used the fact that the spectral norm (maximum singular 

value) is dual to the nuclear norm.

Dualizing the data-fidelity term using the Fenchel conjugate

To dualize the data-fidelity term, we make use of the Fenchel conjugate. For a convex, 

lower semi-continuous function f, the conjugate f* is defined by

(45)

where it is also true that (f*)* = f. Using this definition, it is easy to show that the following 

functions form a conjugate pair,

(46)

where δε(x) is the indicator function, defined by (31). This along with the definition of the 

Fenchel conjugate leads directly to Eqn. 32.

B The proximal map of εσ‖ W−1/2q‖2

The update equations for Algorithm 2 involve evaluating the proximal map of εσFq = εσ‖ 

W−1/2q‖2, which does not admit a closed form. However, we will now show how it can still 

be efficiently evaluated using a simple root-finding procedure. First we explicitly write out 

the proximal mapping as

(47)

Next, we compare this optimization problem to a slightly easier problem,

(48)

and note that for some choice of ε and λ, these objectives both have the same set of level 

curves. We can find the solution to this problem by setting the gradient equal to zero, and for 

a symmetric weighting matrix W, it is given by

(49)
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If the gradient of this easier problem is equal to that of the original problem, then q* must be 

an optimizer of the original problem as well. Momentarily, we ignore the non-differentiable 

point q = 0, and set the gradients equal, which yields

(50)

In this work, we will only consider the case where W is a diagonal matrix, which allows us 

to simplify this expression.

(51)

The index j is a linear index over every element of q. Now, we just need to perform a 1D 

search for a positive value of λ that satisfies this equation, which can be done very 

efficiently using Newton's method or a variety of other algorithms. Once this root, λ*, is 

found, we simply plug it back into (50):

(52)

Note that because of the non-differentiability of ‖W−1/2q‖2 at q = 0, there will not always be 

a solution to equation 51. Specifically, if σε>‖W1/2q′‖2, then there is no viable root. In this 

case, we need not perform the root-finding procedure, because the optimum must occur at q 
= 0.

C Implementation of the projection operators Π /

Π  Now, we will describe the Euclidean projection onto the set  defined in (34). Consider 

projecting Z ∈  onto . We can define this operation element-wise on each vector Zℓ(i,j) ∈ 

ℝ2 corresponding to the ℓth spectral channel and the pixel-location (i,j). The projection of 

this element is given by

(53)

For every image channel ℓ and pixel location (i,j), we simply project the vector Zℓ(i,j) onto 

the unit ball.

ΠN The projection onto set  defined by (36) is slightly more complicated. We define this 

operation element-wise on each ℳ × 2 matrix Z(i,j). This time we need to threshold the 

singular values of Z(i, j). This projection can be succinctly described by
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(54)

where UΣVT is the SVD of Z(i,j), and

(55)

is the thresholded version of Σ. To form Σp the singular values on the diagonal of Σ are 

simply thresholded so that their magnitude does not exceed 1. An equivalent projection 

formula that leads to a much more computationally efficient solution is given by

(56)

The quantity Σ† is the pseudo-inverse of Σ. Since we are only working with 2 spatial 

dimensions the matrix V will by a 2 × 2 square matrix. Therefore, to compute the projection 

according to (56) we only need to compute the eigenvalues and eigenvectors of a 2 × 2 

matrix, for which a very simple closed form is available. This can also be done very 

efficiently for 3D images, where V will be 3 × 3. Because of this, the update equations that 

result from the proposed vectorial TV are only trivially more expensive than the channel-by-

channel TV, and the projection/backprojection operations are likely to swamp this 

difference.
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Figure 1. 
These 80 kVp (left) and 140 kVp (right) reconstructions of the numerical XCAT phantom 

suggest that images derived from common projection data acquired with different energy 

spectra are correlated. In particular they appear to have a very similar edge structure.
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Figure 2. 
This illustrates the relationship between the directionality of the gradient vectors of a 2-

channel image and the singular values of its Jacobian. When both channels are constant 

valued, both singular values of the Jacobian are zero (a). If the gradient vectors are parallel 

or anti-parallel, one singular value is non-zero (b). Both singular values will be nonzero if 

the gradients have unique directions (c).
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Figure 3. 
The 2D XCAT shoulder phantom used for all simulations studies, depicted at 60 keV (a) for 

reference. The projection data were generated using bone (b) and soft-tissue (c) density 

maps with the appropriate mass-attenuation curves.
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Figure 4. 
XCAT reference image, with ROI's indicated in yellow
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Figure 5. 
Bin 1 (0-40keV) image, bone ROI/window comparison with channel-by-channel TV (top) 

and TVN (bottom). Grayscale window in cm−1 [0.30, 0.85]. The reference image utrue is an 

FBP reconstruction of the fully sampled (1200 views) noiseless data.
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Figure 6. 
Bin 1 (0-40keV) image, soft-tissue ROI comparison with channel-by-channel TV (top) and 

TVN (bottom). Grayscale window in cm−1 [0.30, 0.35]. The reference image *utrue is an 

FBP reconstruction of the fully sampled (1200 views) noiseless data.
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Figure 7. 
This is a vertical profile through the 0-40 keV, bone-ROI image with ε = 0.0016ε*. The 

TNV regularized reconstruction shows slightly better preservation of bony structures. The 

noise levels were estimated from a nearby ROI in a uniform muscle region (σTVS = 0.0025, 

σTVN =0.0022).
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Figure 8. 
Bone basis image, bone ROI comparison with channel-by-channel TV (top) and TVN 

(bottom). Grayscale window in g/mL−1 [0.00, 0.52]. The reference image utrue is an FBP 

reconstruction of the fully sampled (1200 views) noiseless data.
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Figure 9. 
soft-tissue basis image, soft-tissue ROI comparison with channel-by-channel TV (top) and 

TVN (bottom). Grayscale window in g/mL−1 [0.80, 1.07]. The reference image utrue is an 

FBP reconstruction of the fully sampled (1200 views) noiseless data.
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