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Abstract

Purpose—To accelerate parameter mapping using a new paradigm that combines image 

reconstruction and model regression as a parameter state-tracking problem.

Methods—In T2 mapping, the T2 map is first encoded in parameter space by multi-TE 

measurements and then encoded by Fourier transformation with readout/phase encoding gradients. 

Using a state transition function and a measurement function, the unscented Kalman filter can 

describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. 

The proposed method was validated with a numerical brain phantom and volunteer experiments 

with a multiple-contrast spin echo sequence. Its performance was compared to a conjugate-

gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse 

sequence was developed based on this method to achieve prospective undersampling.

Results—Compared to the nonlinear inversion reconstruction, the proposed method had higher 

precision, improved structural similarity and reduced normalized root mean squared error, with 

acceleration factors up to 8 in numerical phantom and volunteer studies.

Conclusions—This work describes a new perspective on parameter mapping by state tracking. 

The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping.
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Introduction

Magnetic resonance imaging often relies on image contrast to reveal pathology, and it has 

proven to be a highly effective diagnostic technique even without quantitative measures of 

the underlying parameters producing the image contrast. Even so, quantitative tissue 

parameter mapping shows substantial promise for improving the characterization of 

pathologies such as tumor (1,2), stroke (3), cardiac edema (4) and Parkinson’s disease (5). In 

comparison to a conventional relaxation-weighted image such as a T2-weighted image, a 

quantitative parameter map can help to minimize user dependence, detect subtle differences 
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between tissues, improve specificity, and aid diagnosis when the pathology is uniformly 

distributed across the region of interest. The accuracy of basic parameter maps also limits 

the quantification of other MRI parameters. For example, an accurate T1 map improves the 

quantification of cerebral blood flow in arterial spin labeling (6).

To achieve accurate parameter estimation (7), several measurements are usually required 

along the parameter encoding direction (p-space) (8). For example, T2 mapping requires 

measurements at multiple echo times, and the resulting long acquisition times have slowed 

its adoption. Thus, an accelerated parameter mapping method is desirable.

Moderate acceleration factors of 2–4 can be achieved using conventional parallel imaging 

methods (9,10), but the intrinsic SNR penalty limits higher acceleration factors. Higher 

acceleration factors have been reported using compressed sensing methods (11) that enforce 

sparsity in k-space and p-space (12,13). One of the successful constraints for compressed 

sensing acceleration is model-based sparsity. This assumes that the image structures are 

similar for each measurement and signals from different pixels follow a similar evolution 

pattern in p-space. By enforcing sparsity in the domain of a T2 decay model, compressed 

sensing methods are used to recover images and improve T2 estimation. One approach 

recovers T2 weighted images by linearizing the T2 decay model. A dictionary is trained to 

represent T2 decay signals sparsely by a linear combination of only a few elements. This can 

be an orthogonal dictionary from principal component analysis (14) or an over-complete 

dictionary obtained using the K-SVD technique (8). Most of these methods estimated T2 

map in two steps: reconstruction of T2 weighted images from k-space data, followed by 

regression of the T2 map pixel by pixel in image space (Fig. 1a).

High acceleration factors can also be achieved by nonlinear inversion of the measurement 

function (15,16). These studies employed the conjugate gradient method to pursue the 

parameter map, where a nonlinear T2 decay model was solved as data fidelity term. This 

approach has two drawbacks: first, the nonlinear inversion is computationally complex when 

using multiple TE measurements; second, it requires regularization constraints to avoid 

noise amplification during iteration, which would otherwise limit accuracy.

In MRI, we do not measure the T2 map directly, but rather Fourier-encoded images that are 

nonlinear functions of local T2. Each acquired signal corresponds to samples of the T2 map 

in combined k-p-space. When we use multiple TEs to sample the signal decay curve, we are 

observing T2 in k-p-space at multiple encoding states. This is similar to the process of 

tracking the location of a moving object by multiple detectors. This viewpoint suggests that 

it should be possible to track the parameter of interest, T2, by considering it as the state of a 

dynamic process, while modeling k-p-space sampling using a measurement function related 

to this dynamic process (Fig. 1b).

The Kalman filter has been widely used in state tracking and parameter estimation. It is an 

efficient optimal estimator that uses the previous measurements to estimate the current state 

recursively. Recently, Sümbül et al. (17) and Feng et al. (18) successfully adapted it to 

dynamic MRI by exploiting spatial and temporal redundancy. As our prior work has shown 

(19), in parameter mapping, we can treat the parameter map as the state of a dynamic 
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system, model the parameter encoding and Fourier encoding steps in one measurement 

function, and use the Kalman filter to improve our estimate as more measurements are 

introduced. The classic Kalman filter is linear; for a nonlinear problem such as this, the 

unscented Kalman filter (UKF) (20) can be used to represent the non-linear measurement 

with third order accuracy.

The goal of this work was to explore a paradigm of state tracking for parameter mapping, 

which can provide optimal parameter estimation. An unscented Kalman filter based on a T2 

decay model was applied to accelerate T2 mapping in combination with parallel imaging. 

The proposed method was compared with a nonlinear inversion reconstruction using a 

numerical phantom and retrospectively undersampled volunteer data. Finally, an accelerated 

pulse sequence was developed to undersample k-p-space prospectively.

Methods

Kalman filter

The Kalman filter (21) is a recursive and efficient method for estimating the state of a 

system from noisy measurements, and it is optimal in the maximum likelihood sense for a 

Gaussian noise model. The Kalman filter describes a dynamic system using two equations: 

the state transition equation describes the evolution of the underlying system, and the 

measurement equation describes how the measurements of the system are related to the 

system state. The system state is updated recursively based on the measurements. The 

general Kalman filter can be expressed as follows:

[1]

where f is the state transition function; xk is the kth state of system.; wk−1 is the system 

noise, assumed to be white Gaussian noise with covariance matrix Q; h is the measurement 

function of state xk; zk is the measured data; vk is the measurement noise, also assumed to be 

white Gaussian noise with covariance matrix R; and k is the state index.

T2 Decay model in the Kalman filter

For the special case of T2 mapping, we observe the signal decay at a rate of T2 in p-space. 

Here we choose the T2 map as the system state, which is assumed to be constant in time, 

and let k be the index of each TE measurement. Therefore, the state transition function is

[2]

The measurement function h(xk, vk) describes the relationship between T2 and the acquired 

signal:

[3]

Zhao et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Uk is an undersampling pattern at the kth state, F is a Fourier transform operator and 

S is a coil sensitivity map. M(tk, xk) is the T2 weighted image at the kth state:

[4]

where tk is the echo time.

With constant echo spacing, the T2 weighted signal can be simplified as follows:

[5]

Here, we treat the shortest TE measurement from k = 1, so M(1) = ρe−Δt/T2. When the 

shortest TE is equal to the echo spacing Δt, ρ is then a proton density image. When the 

shortest TE is longer than Δt, ρ is a T2 weighted image. K is the echo train length.

Given the state transition function f and measurement function h, the Kalman filter 

estimation problem is now defined. The system state xk -- the desired T2 map -- can be 

estimated by the UKF, as described in the following section.

Unscented Kalman Filter

The basic Kalman filter uses linear state transition and measurement functions. It can be 

adapted to nonlinear models using various approximations. An early version of this 

approach was the extended Kalman filter (EKF), which linearizes the filter using a Jacobian 

matrix. The EKF has limited accuracy for highly nonlinear problems. The unscented 

Kalman filter represents the nonlinear model by the unscented transform, follows the state 

distribution using a deterministic sampling approach and achieves higher order 

approximation of the measurement.

The main difference between the UKF and the conventional Kalman filter is that the UKF 

does not use the T2 map directly in the tracking process, but instead generates a series of 

states around the target T2 state to represent its behavior in the dynamic system. This series 

of states are called sigma vectors χi and they are generated according to the variance of the 

T2 state:

[6]

where N is the dimension of the T2 state and Ti is the ith column of the matrix square root of 

the covariance matrix (N + λ)Pk−1:

[7]

λ is a scaling factor and α =0.01 describes the distance between xk−1 and the generated 

sigma vectors:
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[8]

As with xk−1, the sigma vectors χk−1,i propagate from the previous TE measurement to the 

current TE measurement by the function f:

[9]

Each sigma vector χk,i is measured, which yields the k-space signal ζk,i:

[10]

The estimated state  is represented by a combination of the current sigma vectors:

[11]

The measured signal z is estimated by a combination of ζ:

[12]

where

[13]

The difference between the acquired data zk and estimated data  is updated to correct the 

prediction in the next state xk:

[14]

G is the gain matrix and it is expressed as

[15]

where

[16]

[17]

Zhao et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[18]

β describes the prior knowledge of x. β = 2 is optimal for a Gaussian distribution (22).

The covariance matrix Pk estimates the error of current state xk:

[19]

[20]

The above steps (Eqs. 6–20) proceed recursively until all the measurements are included.

Two parameter estimation

We will refer to the above method as the single-parameter UKF method, because it estimates 

a T2 map with the assumption that ρ is known. A pre-scan to obtain a ρ map is feasible, but 

this requires additional scan time and could introduce measurement error. We can 

incorporate ρ into the estimated state, doubling the number of variables to be estimated and 

increasing the computational complexity. We will simply refer this two-parameter UKF 

method as the UKF method in following parts of this paper. In the UKF method, Eq. 2 

becomes:

[21]

As for the single-parameter UKF method, we assume the minimum TE map ρ is constant in 

time.

Parameter initialization

To reduce the size of the covariance matrix in the calculations, we first localize the image 

pixels using a 1D Fourier transform along the readout direction, as in Feng et al. (18). The 

minimum TE weighted ρ map is initialized by the measurement with the shortest TE in the 

UKF method. The T2 map is empirically initialized to a constant value, such as 80 ms.

Here we assume the estimated T2 map is real and the phase information is included in 

sensitivity maps, as in parallel image reconstruction with SENSE (9). Sensitivity maps can 

be estimated from low resolution images or a calibration scan. In the current method, we 

assume sensitivity maps are provided as prior knowledge; a discussion of how to estimate an 

accurate sensitivity map is beyond the scope of this work.

The initial estimation error covariance matrix P0 is empirically chosen as a diagonal matrix 

proportional to the noise level σ2 of the measured image, and the matrix is updated with each 
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TE measurement. The inaccuracy in P0 is thus corrected as more TE measurements are 

included.

The distribution of noise v is assumed to be a stationary process, which does not change 

during the scan. Its covariance matrix R becomes a diagonal matrix with each diagonal 

element equal to σ2I in the case of white Gaussian noise. This assumption is likely to be 

more reliable for T2 measurements of the brain than of the heart, because there is less 

motion and change in volume. To simplify the calculation, we assume that the noise from 

the multiple channels v1, …, vn follow the same distribution R. However, we empirically 

choose a small Q to stabilize the estimation. There should be little change between each 

state in T2. Tuning the parameters Q and R can improve the performance of the UKF.

Simulations

A realistic analytical phantom (23) was used to simulate the acquisition, reconstruction and 

parameter estimation process. We divided the brain into four regions-of-interest (ROIs) with 

T2s of 50, 80, 120 and 250 ms. The proton density M0 was normalized to 1. To simulate the 

multiple-TE measurements, 70 parameter encoding states were generated with echo spacing 

equal to 5 ms. These images were sampled by a Cartesian trajectory with a matrix size of 

128×128 with receiver phase following the Biot-Savart law (23). The generated data was 

contaminated by additive white Gaussian noise. SNR was defined according to the T2 

weighted image with the shortest TE measurement.

To evaluate the sensitivity of the proposed method to changes in experimental conditions, we 

evaluated estimated T2 maps while varying the noise level, the number of echoes, and the 

echo spacing. For these simulations, the data was fully sampled. In the noise tolerance test, 

T2 mapping acquisitions were simulated with echo spacing 5 ms, 70 echoes, and SNR 

varying from 10 to 100. In the test of the number of echoes, the acquisitions were simulated 

with SNR 50, echo spacing 5 ms, and the number of echoes varying from 10 to 100. In the 

test of echo spacing, the acquisitions were simulated with SNR 50, 32 echoes, and echo 

spacing varying from 3 ms to 10 ms.

To verify the performance of UKF methods with an accelerated acquisition, we 

retrospectively undersampled k-space by factors of 2, 4, 6, and 8 at each TE. Other 

parameters were SNR 50 and 70 echoes with echo spacing 5 ms. The proposed methods 

were compared to the nonlinear inversion method of Sumpf et al. (16), which uses a 

conjugate gradient (CG) method to perform the inversion. The same sensitivity map was 

provided as prior knowledge for CG and the proposed method. Both methods used the same 

undersampling pattern. As shown in Fig. 2c, the undersampling pattern includes a few 

central phase-encoding lines and a few outer k-space lines at each TE. This pattern is 

designed to contain the same number of phase encoding lines at each TE value, so that it is 

compatible with a multiple-contrast spin echo pulse sequence. Each color of dot represents 

data that is acquired during a single echo train.

At SNR 50 (σ = 0.02), one hundred realizations of k-space were performed for Monte Carlo 

simulations. Independent and identically distributed complex Gaussian noise was generated 
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and added to the k-space data. Each data set was undersampled with acceleration factors 2, 

4, 6 and 8, and reconstructed by the proposed method and Sumpf’s CG method.

The results were compared with the fully sampled noiseless T2 map and quantified by the 

structural similarity index (SSIM) (24) and the normalized root of mean squared error 

(NRMSE).

Experiments

T2 mapping data with multiple TE measurements were acquired on normal volunteers. All 

of the experiments were performed on a 3T Siemens Trio scanner with a 12-channel head 

coil. The study followed a human subject protocol approved by the University of Virginia 

with written informed consent from each subject.

A modified multiple-contrast spin echo sequence was used to acquire fully sampled data. 

Each phase encoding was acquired in one echo train at different TEs. The parameters were 

as follows: TR 2.5 s, slice thickness 5 mm, FOV 220 mm, matrix size 192 × 192, bandwidth 

500 Hz/pixel, 70 spin echoes, and echo spacing of 5.5 ms. The total scan time was 

approximately 8 minutes.

The volunteer data was retrospectively undersampled by factors of 2, 4, 6 and 8 with the 

same undersampling scheme used for the simulation. The signal from the first echo was not 

used, to avoid transient signal variation. We estimated the sensitivity map by combining 

undersampled data from multiple echoes (16). The UKF method and CG method were used 

to estimate the T2 and ρ maps. The results were evaluated using SSIM and NRMSE by 

comparison to the standard T2 map, which was obtained from fully sampled data and least 

squared error model fitting. Gray matter (T2 < 90 ms) and white matter (T2 = 90–150 ms) 

ROIs were defined to evaluate the relative performance of the methods in these regions.

To accelerate the acquisition, we adapted the undersampling scheme into a multiple contrast 

spin echo sequence to achieve prospective undersampling. After excitation, the sequence 

collected 70 spin echoes with echo spacing of 5 ms, with each echo designed to acquire a 

phase encoding value selected according to the undersampling scheme. For example, the 

first echo train collected the highest line in each k-space cluster, shown as the red dots in 

Fig. 2c. The second echo train collected the green dots and third echo train collected the 

black dots, and so on. Three experiments were performed: one collected fully sampled k-

space and the other two were undersampled prospectively by factors of 4 and 8. Other scan 

parameters were as follows: TR 2 s, slice thickness 5 mm, FOV 200 mm × 200 mm and 

image matrix size 128 × 128. With fully sampled k-space, the scan time would have been 

more than 4 minutes. With the accelerated sequence, the scan times were reduced to about 1 

minute and 30 seconds for undersampling factors of 4 and 8, respectively. The sensitivity 

map was estimated from undersampled data as above and T2 maps were estimated by CG 

and UKF methods.

The image reconstruction was performed in MATLAB 2012b (The MathWorks, Inc) with a 

4x GTX 680 Workstation (Amax Information Technologies, Inc). 12 CPU cores (Intel Xeon 

E5-2640 2.50GHz Processor LGA2011) were used for parallel computation.
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Results

Simulations

The accuracy of T2 estimation strongly depends on the SNR of the acquired signal. 

Compared with the noiseless T2 map, the results in Fig. 3a show that the estimated T2 map 

has reduced error and increased similarity as the SNR of the acquisition increases. The 

amount of available data is also essential to the quality of estimation. As shown in Fig. 3b, 

as the number of TE measurements increases, estimation errors are reduced and structural 

similarity is increased. Acquiring more than 70 TE measurements yields limited 

improvement in T2 map quality, so we used 70 echoes for the experiments. Figure 3c shows 

the results with different echo spacing. With constant echo train length, larger echo spacing 

resulted in longer TE and lower SNR in the late echoes. Therefore, larger echo spacing 

reduced image quality and the accuracy of T2 estimation, resulting in lower SSIM and 

higher NMRSE.

Figure 4 shows the results of Monte Carlo simulations of T2 mapping with the nonlinear 

inversion method and the UKF method. With an acceleration rate of 8, the mean T2 maps 

(top row) from 100 Monte Carlo simulations had negligible artifacts. The middle row shows 

the difference between the ‘true’ T2 map and the mean T2 maps of the two methods. The 

two methods have similar mean T2 values and these values are close to those of the true T2 

map, which demonstrates that both methods are accurate. There is little spatial blurring of 

the mean maps with either method. The standard deviation of the estimated T2 maps 

(bottom row) show that the UKF method resulted in more stable results than the nonlinear 

inversion method and thus more precise estimation of T2.

Figure 5 plots the quantitative results of the nonlinear inversion reconstruction and the 

proposed UKF method at acceleration factors of 2–8. Results are shown as the mean and 

standard deviation (×5) of the Monte Carlo simulations. The proposed method resulted in 

lower NRMSE error and higher similarity index. The proposed method also provided more 

stable performance with lower variance, as shown by the error bars.

Table 1 shows the mean NRMSE of the Monte Carlo simulations in four different ROIs with 

differing T2 values. As the acceleration rate (R) increased, the T2 estimation error increased 

in all ROIs, as expected. For each ROI and each acceleration rate, the proposed UKF method 

resulted in lower mean NRMSE than the CG method. The regions with shorter T2 values 

had higher mean normalized error with both methods.

Experiments

Volunteer results with retrospective undersampling are shown in Fig. 6. As in simulation, the 

UKF method estimated the T2 map accurately, based on comparison with fully sampled 

data. At an acceleration rate of 4, T2 maps from both methods had lower SNR and more 

error at the interfaces between cerebrospinal fluid and gray matter. The two methods show 

estimation errors in similar regions, which could be partly due to errors in the sensitivity 

map estimation. The map estimated with the CG method (NRMSE = 0.0544) had noticeable 

noise, as shown in the zoomed-in images along the middle row. The map estimated with the 
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UKF method had negligible artifacts and lower estimation error (NRMSE = 0.0425) than the 

CG method.

Quantitative metrics of the retrospectively undersampled T2 maps are shown in Fig. 7. As 

the acceleration rate increased, the estimation errors increased and structural similarity 

decreased. The UKF method resulted in lower NRMSE and higher SSIM at each level of 

undersampling.

Table 2 shows the NRMSE in gray matter (GM) and white matter (WM) ROIs. As in 

simulation, as the acceleration rate increased, the T2 estimation error increased using each 

method. For each region and each acceleration factor, the proposed UKF method resulted in 

lower NRMSE than the CG method. For each method, the WM region had somewhat higher 

error than the GM region, except for R = 8. This is generally consistent with the simulation 

results that showed higher error in regions with shorter T2.

Figure 8 shows T2 maps from accelerated acquisitions with the undersampled sequence. The 

two-parameter UKF method recovered T2 maps with undersampling factors of 4 (Fig. 8, 

center) and 8 (Fig. 8, right). Compared to the T2 map from fully sampled k-p-space (Fig. 8, 

left), the proposed method has lower SNR as expected, but few aliasing artifacts.

Discussion

In this work, we applied an unscented Kalman filter method to estimate parameter maps 

directly from highly undersampled k-space data. The method poses parameter mapping as a 

state-tracking problem in k-p-space. It uses MR parameters as the fundamental state space 

and the MR signal model as the measurement model. By monitoring the propagation of this 

dynamic system, the method yields quantitative parameter maps directly without image 

reconstruction. The method was applied to T2 mapping with undersampled k-space data. It 

achieved high accuracy in parameter estimation with undersampling factors of 2, 4, 6 and 8. 

The method yielded higher precision in simulation and experiment than a direct nonlinear 

inversion reconstruction. The proposed method was adapted into a multiple-contrast spin 

echo sequence and achieved prospectively accelerated acquisition.

The proposed method was applied to T2 map estimation in this study, but it could be applied 

to other parameter mapping problems, such as T1 mapping with a Look-Locker pulse 

sequence and T2* in functional MRI (25). Since the Fourier transform operator is linear, the 

nonlinearity of the signal model prior to the Fourier transform is the main limit on the 

performance of the UKF estimator. While this was not a significant limitation for T2 

mapping, it could be more of a limitation for other parameter estimation problems, such as 

perfusion-weighted imaging.

The proposed method can be used to estimate multiple parameters of a model 

simultaneously, as demonstrated by the two-parameter UKF method, where both T2 and ρ 

were estimated. However, a more complex model could reduce the accuracy of estimation 

and require more measurements.
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The accuracy of parameter estimation is limited by the number of measured states in p-

space. The Kalman filter yields the maximum likelihood estimate, which approaches the 

minimum variance estimate when the number of encoding states is large enough. Acquiring 

more measurements along p-space increases the estimation accuracy. However, the number 

of TE measurements in a multiple contrast spin echo sequence is limited by the readout 

bandwidth and SNR. The measurements with long TE are noisy and yield limited 

improvement of the estimate. The number of measurements in p-space can also be limited 

by the specific application and available scan time.

An alternate way to improve estimation accuracy is to improve the convergence of the UKF 

estimator. The first few iterations of a Kalman filter train the covariance P. A small initial P0 

can stabilize the propagation of the covariance matrix P and can also constrain the estimated 

values to be near the initial values. More accurate initialization of the T2 and ρ could help 

with convergence, although this may slow down the training of the covariance matrix.

The directly estimated T2 map is a real image, rather than a complex image as in 

conventional image reconstruction. Here, we assumed that the phase of the image is 

contained in the sensitivity maps and is constant with TE, so that the phase of the images at 

different echo times can be removed and later recovered using the sensitivity maps. When 

using multiple channel data, the UKF method adopts the features of SENSE parallel image 

reconstruction, which helps to improve the quality of the estimated parameter map. In a 

single coil measurement, the proposed method still performs better with a sensitivity map, 

because it provides phase information for data fidelity. The accuracy of the sensitivity map 

will directly affect the accuracy of the estimated T2 map. At high acceleration rates, it is 

difficult to estimate the sensitivity map accurately, which may result in bias in the T2 map. It 

should be possible to add sensitivity estimation to the UKF model, which would enable 

simultaneous estimation of a sensitivity map and a T2 map. However, this would also 

significantly increase the estimation complexity.

The accuracy of the estimated T2 map also depends on pulse sequence design. The multiple 

contrast spin echo sequence is time efficient compared to a conventional spin echo sequence, 

but acquired signal includes multiple signal pathways, which mixes stimulated echoes and 

indirect echoes (26–28). The accuracy is also limited by the performance of the refocusing 

RF pulses (29). Therefore, the T2 signal is not accurately modeled by a mono-exponential 

T2 decay model. Inaccuracy in the signal model could result in bias in T2 estimation. 

Additionally, in fully sampled k-p-space, the same phase encoding lines are acquired in one 

excitation, but in undersampled k-p-space some of the phase encoding lines are acquired in 

different echo trains. The order of phase encoding lines could introduce more variation in the 

quantification of the T2 map. In this work, our main focus was on the design of the 

parameter tracking algorithm, and additional improvements are possible with better 

sequence design.

The 1D simplification achieved by performing a 1D Fourier transform along the readout 

direction before the UKF reduces the size of the error covariance matrix P and improves the 

memory efficiency of the calculation. However, it also reduces the correlation information 

between different phase encoding lines, and thus does not capitalize on some potential 
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improvements in estimation accuracy. Without using this 1D simplification, the proposed 

method can be adapted to other trajectories, such as spiral and radial, with a nonuniform 

Fourier transform F in Eq. [3].

The proposed method computes T2 maps directly, without reconstructing T2-weighted 

images. For applications that require such images, a T2-weighted image can be generated 

based on the resulting T2 and ρ maps.

The performance of compressed sensing strongly depends on the undersampling pattern, and 

this is also true for UKF and Sumpf’s CG methods. We used simple undersampling patterns 

in this work. An optimal undersampling pattern design could improve the performance of 

both the UKF and CG methods, but this is beyond the scope of this paper. In this work, the 

UKF method proved to be more precise than the nonlinear inversion method, but more work 

is needed to determine whether this will be true in general. At a minimum, this work 

demonstrates that established methods of state tracking can be competitive with nonlinear 

inversion methods for MR parameter estimation. Much of the power of both classes of 

methods rests on their ability to incorporate prior information.

Conclusion

In this work, we described a new paradigm for parameter mapping based on the unscented 

Kalman filter. This method estimates the parameter map directly from the k-p-space data and 

provides accurate estimation of T2 maps at high acceleration factors.
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Fig. 1. 
T2 mapping paradigms. With multiple-TE measurements, a T2 map is conventionally 

processed as shown in (a). k-space data are reconstructed to T2-weighted images. The 

intensity of each pixel (blue dots) is regressed to the signal decay model (red line) and 

results in the local T2 value. The proposed method (b) tracks the T2 value in parameter-

space using the UKF, which produces the T2 map from the k-space data directly. The red 

line indicates the true T2 value. The blue line illustrates the tracking process, which 

approaches the true T2 value as more measurements are included.
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Fig. 2. 
T2 data sampling patterns in k-p-space. (a) and (b) show fully sampled patterns in k-p-space. 

Data is always fully sampled in the readout direction. (c) Undersampling pattern for the 

UKF with acceleration rate 4. Each color of dots indicates phase encoding lines that are 

collected during the same echo train when using the accelerated pulse sequence. Four of the 

echo trains (black, yellow, blue, and pink dots) collect fully-sampled data at the center of k-

space by collecting the same phase encoding at each echo. The other four echo trains collect 

undersampled data in the outer region of k-space, cycling through a set of phase encodings.
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Fig. 3. 
Performance of the UKF method as a function of SNR, number of echoes and echo spacing.
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Fig. 4. 
T2 estimation in Monte Carlo simulations with the nonlinear inversion method and the UKF 

method. Top row: True T2 map and the mean T2 maps from 100 Monte Carlo simulations of 

the two methods with an acceleration rate of 8. Middle row: Difference between true T2 map 

and mean T2 maps of Monte Carlo simulations. Bottom row: Standard deviation of the 

Monte Carlo simulations for the two methods. The color bar indicates T2 and standard 

deviation in ms. Both methods demonstrate good accuracy and minimal blurring, and the 

UKF method has superior precision.
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Fig. 5. 
Quantification of the error in the estimated T2 maps in simulation. With acceleration rates of 

2, 4, 6 and 8, the UKF estimation results in lower NRMSE (left) and higher similarity index 

(right). It also provided stable performance with lower variance (×5).
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Fig. 6. 
Top row: T2 maps from the nonlinear inversion method and the UKF method from a 

volunteer scan. Middle row: Zoomed-in views of the maps. With a retrospective 

undersampling factor of 4, the expected loss of SNR was the principal difference with the 

fully sampled map. The two methods resulted in similar regions of estimation error, but the 

nonlinear inversion method resulted in higher estimation error. Bottom row: Error maps 

calculated by comparison with fully sampled data. The color bars for the T2 and error maps 

are in ms.
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Fig. 7. 
Estimation errors with retrospectively undersampled volunteer data. The UKF method 

resulted in more accurate estimation than the nonlinear inversion method with lower 

NRMSE (left) and higher SSIM (right).
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Fig. 8. 
The performance of the UKF method with accelerated acquisition. Compared with the T2 

map from fully sampled k-space data (left), T2 maps and difference maps of UKF method 

are shown with acceleration rate 4 (middle) and acceleration rate 8 (right). The color bars for 

the T2 maps and error maps are in ms.
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Table 1

Mean NRMSE of Monte Carlo simulations in four different ROIs with differing T2 values.

ROI(T2) R=2 R=4 R=6 R=8

250ms
UKF 0.0173 0.0250 0.0306 0.0372

CG 0.0182 0.0260 0.0327 0.0394

120ms
UKF 0.0178 00256 0.0317 0.0387

CG 0.0186 0.0269 0.0334 0.0416

80ms
UKF 0.0209 0.0305 0.0378 0.0465

CG 0.0223 0.0328 0.0414 0.0521

50ms
UKF 0.0270 0.0395 0.0494 0.0593

CG 0.0297 0.0460 0.0620 0.0839
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Table 2

NRMSE of experimental T2 maps in gray matter (GM) and white matter (WM) regions.

ROI R=2 R=4 R=6 R=8

GM
UKF 0.0199 0.0394 0.0764 0.1134

CG 0.0231 0.0478 0.0903 0.1736

WM
UKF 0.0211 0.0437 0.0813 0.1118

CG 0.0252 0.0567 0.1070 0.1470
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