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Abstract

To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing 
climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This 
challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramati-
cally impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumula-
tion and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene 
discovery via quantitative trait locus (QTL) cloning and structural–functional genomic strategies to reduce chalk, 
increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly 
discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality 
attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties 
with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging 
field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided 
for the development of environmentally robust rice varieties that possess improved grain quality.

Key words:  Chalk, functional genomics, genetics, grain quality, milling and head rice yield, stress tolerance, systems biology, 
systems genetics.

Introduction

The world’s rice (Oryza sativa L.) production is predicted to 
be severely affected by the global rise in temperature associ-
ated with climate change (Neelin et al., 2006). Furthermore, 
the global population is expected to grow to 9 billion by 2050 
(Godfray et  al., 2010). To feed the rapidly growing Asian 
population (projected to increase from 4.3 billion to 5.2 bil-
lion by 2050) that depends on rice as a staple food, paddy yield 
should not just be enhanced, but grain quality requirements 
need to be met to ensure consumer acceptance. Consumers 
primarily assess rice grain quality based on physical (milled 

yield, translucency, size, shape, and colour) and sensory prop-
erties, with a strong emphasis on cooking quality and aroma 
(Ebron, 2013). Environmental stresses not only affect milling 
yield, but they also lead to a significantly elevated propor-
tion of chalky grains which in turn alters starch and cooking 
quality (Cooper et al., 2003; Cheng et al., 2005b; Fabre et al., 
2005; Lanning et al., 2011, 2012; Li et al., 2011; Lanning and 
Siebenmorgen, 2013). Thus abiotic stresses, in particular high 
temperatures, have a negative effect on various grain quality 
traits (Fig. 1) and they also reduce sensory attributes (Chun 
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et al., 2009), which leads to a reduction in overall consumer 
acceptance. Excellent reviews are available that describe rice 
grain quality from a traditional biochemistry perspective 
(Champagne, 2008; Fitzgerald et al., 2008, 2009; Champagne 
et al., 2010; Cuevas et al., 2010; Huang et al., 2013; Liu et al., 
2013; Siebenmorgen et al., 2013; Zhao and Fitzgerald, 2013). 
However, the implications of abiotic stresses on grain quality 
and its associated molecular and physiological mechanisms are 
not yet fully understood. This review will focus on the impact 
of heat stress perturbations on grain quality with special 
emphasis on enhancing head rice yield (HRY; intact grain after 
milling) and reducing chalk (the opaque area in the rice grain).

Compared with that of other crops, the productivity of 
rice is more accurately measured after milling (Lyman et al., 
2013). Although annual world rice production reaches 750 
Mt of paddy (http://faostat.fao.org/site/339/default.aspx), 
the final milled rice yield (MRY; including head rice and bro-
ken grains) corresponds to 490 Mt. This implies that as many 
as 260 Mt year–1 are lost after milling (including hull and 
bran). Furthermore, the cost of broken rice is significantly 
undervalued in the world market. This can be avoided with 
the availability of rice varieties whose grains are not prone 
to breakage during post-harvest storage and processing. To 
improve food security and rice quality, rice breeders need to 
prioritize improving HRY (mass percentage of intact whole 
rice after milling) over MRY (mass percentage of milled rice 

including both whole grains and broken grains) at the global 
production level (Juliano, 1998, 2003). However, improving 
this parameter in rice varieties is complicated because it is neg-
atively affected by environmental stresses such as exposure to 
high night temperature, extreme day temperatures, and severe 
drought (Lyman et al., 2013; Siebenmorgen et al., 2013; Zhao 
and Fitzgerald, 2013; Usui et al., 2014). The significant envi-
ronmental effect on HRY is mostly due to high-temperature 
stress during the sensitive phase of gametogenesis (Cooper 
et  al., 2008; Jagadish et  al., 2010; Muthurajan et  al., 2011; 
Lyman et al., 2013). Milling quality attributes are also influ-
enced by unsynchronized flowering and seed filling, chemi-
cal properties of the rice grain, as well as abrupt changes in 
moisture content during harvest and storage (Juliano, 2007).

Chalk is one among many other variable parameters that 
influence MRY and HRY (Fitzgerald and Resurreccion, 
2009; Lanning et al., 2011). It is defined as the opaque por-
tion found in an otherwise translucent white endosperm that 
is associated with loose packing of storage starch and protein 
(Lanning et al., 2011; Lyman et al., 2013; Usui et al., 2014). 
The occurrence of temperature stress during the early to 
middle stage of seed development triggers non-uniform fill-
ing and impairment in storage biosynthesis, leading to chalk 
formation. The gaps formed due to aborted starch granule 
formation are thought to be responsible for making chalky 
grains more brittle and for forming fissures along the grain. 

Fig. 1.  The ontology of seed development covering import phase transitions. High temperature stress-induced perturbations occurring during seed 
development affect the grain quality, cooking quality, and eating quality of rice.

1738  |  Sreenivasulu et al.

http://faostat.fao.org/site/339/default.aspx


As a result, chalky grains crack easily during grain process-
ing, which reduces HRY as a consequence of the elevated 
amount of broken grains (Lisle et  al., 2000). Despite these 
generalizations, however, a clear association between chalk 
and breakage susceptibility during milling still needs to be 
empirically established.

The recent progress made in the area of genetics and 
genomics, and the body of knowledge surrounding the 
molecular and physiological mechanisms associated with per-
turbations to temperature stress during rice seed development 
in the light of how grain quality in rice is affected have not 
been systematically reviewed. In this review, we highlight the 
strategies to develop rice grains with improved grain quality 
particularly in improving HRY and minimizing chalkiness as 
key quality parameters to improve rice food security under a 
warmer climate by integrating the knowledge on genetics and 
genomics gained thus far using a systems genetics approach.

Unravelling the genetic basis of head rice 
yield and chalk

Rice HRY is a complex, multigenic trait genetically controlled 
primarily by the triploid endosperm and the diploid mater-
nal tissues (Pooni et al., 1992; Zhu and Weir, 1994). Several 
quantitative trait loci (QTLs) have been identified for mill-
ing quality in different rice mapping populations using seeds 
with variable grain shapes (Dong et  al., 2004; Jiang et  al., 
2005; Kepiro et  al., 2008; Yuan et  al., 2010; Nelson et  al., 
2011). In addition, 14 QTLs were recorded for grain fissuring 
(Septiningsih et al., 2003; Pinson et al., 2013). These previous 
studies revealed that grain size and shape are highly corre-
lated with HRY and quality (Zheng et al., 2007). Although 
increased grain length is negatively associated with HRY, tar-
geted improvement in grain width and thickness was shown 
to improve MRY and HRY (Siebenmorgen and Meullenet, 
2004). Thus, HRY in slender grains needs to be improved for 
consumers who prefer long grains.

The genome view of mapped grain quality QTLs suggests 
that the genetic regions responsible for HRY and chalk over-
lapped with grain size and shape QTLs on chromosomes 3, 
5, and 6 (Supplementary Fig. S1, Table S1 available at JXB 
online). Among the cloned genes related to grain size and 
shape, GS3, GW2, and GW5/qSW5 act as negative regulators 
of grain size, while GS5 and GW8 act as positive regulators 
of cell proliferation in rice. Genes associated with grain size, 
shape, and weight belong to selective proteolysis, and key reg-
ulators of cellularization and brassinosteroid signalling (Fan 
et al., 2006; Song et al., 2007; Shomura et al., 2008; Huang 
et al., 2013; Sreenivasulu and Wobus, 2013). Until now, the 
haplotypic variations that contribute to the stability of grain 
size under abiotic stress exposure in domesticated rice have 
not been explored. Furthermore, the underlying QTL regions 
for milling quality have yet to be fine-mapped and cloned to 
unravel the interconnections between grain dimension genes. 
Factors such as genotype×environment (G×E) interactions 
are known to affect rice milling quality (Gravois et al., 1991), 
and therefore a comprehensive understanding of MRY and 

HRY requires the identification of QTL alleles and/or G×E 
interactions. If  heterogeneity occurs in grain size and shape 
because of G×E interactions, mill settings need to be opti-
mized for every variety and production environment. Thus, 
achieving stability of grain dimension traits continues to 
remain important for the milling industry.

The genetic components underlying the inter-relation-
ships between various grain quality parameters and milling 
quality remain unclear. Interestingly, many QTLs for HRY 
overlapped with QTLs for regions of pre-broken brown rice 
kernels, seed density, amylose content (AC), kernel whiteness, 
and chalkiness on chromosome 6 (Fig. 2A). In addition, clus-
ters defined on chromosome 8 are emphasized as the main 
genetic basis for the effect of rice chalkiness, amylose, pro-
tein, and eating quality of cooked rice (Guo et al., 2007; Liu 
et  al., 2011). These different QTLs co-located on the same 
region influence various grain quality, cooking, and eating 
quality traits in rice. Fine-mapping these hotspot QTLs can 
offer a huge potential to identify high-value genes that could 
be tapped to improve milling, cooking, and sensory and pro-
cessing quality. This can be done by molecular breeding to 
address the demands of the rice industry and rice consumers.

Genetic basis of chalk

More than 140 QTLs were reported for the chalkiness trait 
across all 12 chromosomes, mostly among Asian cultivars 
(Tan et al., 2000; Li et al., 2003; Wan et al., 2005). In a recent 
study, several QTL clusters related to various chalk pheno-
types have been identified using five different mapping popu-
lations that are stable across two environments (Peng et al., 
2014a). The percentage of grain with chalkiness (PGWC) has 
been genetically mapped on chromosomes 5, 8, and 10, which 
explains 50.8% of the genetic variation (Liu et  al., 2012). 
Stable QTLs with a reproducible chalky phenotype across 
many environments have been fine-mapped to regions on 
chromosomes 8 and 9 (Wan et al., 2004, 2005). Furthermore, 
using a set of chromosome segment substitution lines devel-
oped from a cross between cultivar C-51 (chalky endosperm) 
and the recurrent parent 93-11 (translucent endosperm), 
two additional loci that control PGWC located on chromo-
somes 6 and 7 were detected and designated as qPGWC-6 and 
qPGWC-7, respectively (Zhou et al., 2009). The chalk QTL 
qPGWC-7 contains 13 genes related to several unknown pro-
teins, including COBRA-like proteins. The qPGWC-6 QTL 
map position is closer to the Waxy gene, and thus variable 
AC appears to affect chalk (Zhou et  al., 2009). Within the 
proximity of the Waxy locus, eight chalk QTLs have been co-
located (Peng et al., 2014a).

Chalkiness is reported to be influenced by multiple QTLs, 
though some of these QTLs may not be reproducible because 
the genetic backgrounds used in some of the studies to gener-
ate the bi-parental mapping populations are variable for grain 
quality parameters such as AC and grain width. So far, fine-
mapping studies identified the following as possible candidate 
genes responsible for chalk: pyruvate orthophosphate dikinase 
(Kang et al., 2005), starch synthase IIIa (Fujita et al., 2007a), 
UDP-glucose pyrophosphorylase (Woo et al., 2008), cell wall 
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Fig. 2.  The grain quality QTL hotspot in rice chromosome 6 and the effect of gene perturbation in the starch biosynthesis pathway. (A) Selected QTLs 
for grain quality traits on japonica chromosome 6 located in syntenic regions between indica and japonica reference genomes. Chromosome 6 is a grain 
quality hotspot as multiple grain quality QTLs related to amylose, chalk, head rice yield, gel consistency, gelatinization temperature, and grain dimensions 
and shape are co-located on both arms of the chromosome. The accession IDs of these grain quality QTLs are listed in Supplementary Table S1 at 
JXB online. (B) Gene perturbation in the starch metabolism pathway. Perturbations in the starch metabolism pathway involving starch synthase III and 
starch branching enzyme IIa and IIb lead to alterations in amylose–amylopectin composition and starch structure variation (Butardo, 2011). The proposed 
molecular and physiological mechanisms of chalk formation are a complex system associated with source–sink disturbances. However, the initial genetic 
evidence points to the disturbance of the storage pathways in developing seeds.

invertase (Wang et al., 2008), and H+-translocating pyrophos-
phatase (Li et al., 2014). How these genes interact to produce 
the chalky grain phenotype leading to grains susceptible to 
cracking and reduced milling potential or lowering HRY has 
not yet been studied.

Novel approaches can be employed to fast-track the design 
of novel rice ideotypes with superior grain quality and exhib-
iting chalk-free features under stress. The strengths of a 
systems genetics approach (combining systems biology and 
traditional genetics approaches) can be used to unravel struc-
tural–functional relationships by tapping the genetic diversity 
represented by rice core collections or the detailed informa-
tion that can be obtained from high-density mapping popula-
tions. As a proof of concept, we explored rice re-sequencing 
resources for synteny between japonica and indica subspe-
cies using the recently cloned chalk gene H+-translocating 
pyrophosphatase (Li et  al., 2014) as well as several grain 

quality QTLs identified on chromosome 5.  We found that 
they are located in collinear blocks (Fig.  3). Interestingly, 
hotspots for higher SNP frequency were observed either 
between the subtypes or within the indica re-sequencing 
genetic region (Fig. 3). Overlaying regulatory networks iden-
tified using a top-down systems biology approach using the 
PLANET database (Mutwil et al., 2011) suggested that the 
expression variation created between cereal species appears 
to cause functional divergence for the endosperm-specific 
H+-translocating pyrophosphatase gene responsible for chalk 
(Fig.  4). The derived gene regulatory network of the H+-
translocating pyrophosphatase gene in rice seems to control 
the selective proteolysis pathway (E3.SCF) during 4–6 days 
after flowering (DAF). On the other hand, its orthologue 
in wheat (Ta.1322.1.S1_x_at) regulates thousands of genes 
involved in starch biosynthesis and protease inhibitors dur-
ing seed filling (Supplementary Table S2 at JXB online). 
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Fig. 3.  Synteny between japonica chromosome 5 (OsJ5) and related 
chromosomes in indica (OSI1 and OSI5). This figure shows the syntenic 
blocks between chromosome 5 of O. sativa japonica with chromosomes 
1 and 5 of indica (innermost section of the figure). The bar plot shows 
SNP density in the genomic region based on SNPs common to five indica 
re-sequenced genomes. Blue lines represent SNP densities ≥5 per kb, 
while orange lines represent SNP densities <5 per kb. SNP density was 
calculated separately for every 100 kb. Mapped grain quality QTLs are 
shown next to the SNP density bar plots. Mapped QTLs whose lengths 
are between 1 Mb and 5 Mb are represented as lines, while fine-mapped 
QTLs (size <1 Mb) are represented as triangles. Genomic hotspots that 
have the highest SNP densities can be found on chromosomes 1 and 5 
of indica as well as japonica. These hotspots coincide with several grain 
quality QTLs, including the recently cloned chalk gene H+-translocating 
pyrophosphatase.

Such comprehensive information can be mined by combining 
genome-wide association studies (GWAS) together with gene 
co-expression networks through systems genetics approaches 
(Ficklin and Feltus, 2013), to clone both major and minor 
QTL-encoding genes of grain quality and characterize their 
functions from diverse populations for stress tolerance.

A molecular understanding of grain 
chalkiness under elevated day and night 
temperature and its relationship to seed 
storage metabolism

High temperature (35/30 °C day/night) reduces grain weight, 
AC, and flour gel consistency (GC) of rice grains (Lin et al., 
2010). If  the day temperatures are high beyond the critical lev-
els during the onset of fertilization and post-anthesis period, 

flag leaf photosynthesis decreases substantially, resulting in 
disturbed source–sink assimilate transport. As a result, high 
temperature not only decreases seed set but also affects grain 
quality (Jagadish et  al., 2010; Lyman et  al., 2013) due to 
reduction in endosperm sink strength and incomplete grain-
filling events (Fig.  1). Deterioration of grain quality under 
high temperature is accompanied by the altered expression of 
starch metabolism-related genes. Functional analysis of the 
rice GRAIN INCOMPLETE FILLING 1 (GIF1) gene that 
encodes a cell wall invertase (CWI) required to cleave sucrose 
into hexoses for carbon partitioning during early grain filling 
(Wang et al., 2008) has been successfully targeted to improve 
grain weight during domestication. However, GIF1 expres-
sion in wild rice is much wider during seed development and 
results in a grain weight reduction and enhanced chalkiness 
(Wang et al., 2008). Ectopic expression of GIF1 with the 35S 
or rice Waxy promoter resulted in smaller grains. In com-
parison with sucrose synthase-mediated sucrose cleavage, the 
GIF1 gene requires a higher ATP content to convert sucrose 
into hexoses (Sreenivasulu and Wobus, 2013), and thus it will 
remain as a rate-limiting step under stress conditions. Because 
of its role as a sink fine-tuning gene, GIF1 is an important 
factor in driving optimum storage and unimpaired quality 
even under stress.

Many elite rice cultivars are also susceptible to forming 
chalky grains under elevated temperature. Transcriptome 
analysis of contrasting lines differing in chalkiness showed 
that several key starch biosynthesis genes, such as granule-
bound starch synthase I (GBSSI), branching enzyme IIb 
(BEIIb), starch synthases, and debranching enzymes, and a 
cytosolic pyruvate orthophosphate dikinase gene were sub-
stantially repressed, while a starch-degrading alpha amylase 
gene was preferentially up-regulated under high temperature 
(Yamakawa et al., 2007; Liu et al., 2010). In addition, high 
night temperature affects the activities of many enzymes 
associated with the conversion of sucrose into starch syn-
thesis during grain filling (Counce et  al., 2005; Yamakawa 
et al., 2007; Yamakawa and Hakata, 2010). Reduced activi-
ties of ADP-glucose pyrophosphorylase and starch synthase 
enzymes have been correlated with reductions in grain weight 
and starch production at high temperatures (Singletary et al., 
1997). Transcriptome analysis, in conjunction with QTL 
browsing, suggested that many high-temperature-responsive 
pathways related to starch and storage protein metabolism 
are co-located along the chalk QTL regions (Yamakawa 
et al., 2008; Peng et al., 2014a). High temperature increased 
the accumulation of all classes of storage proteins (glutelins, 
prolamins, globulins, and protein disulphide isomerase) at 
the early filling stage, but it decreased prolamin accumula-
tion during maturation (Lin et al., 2010). Accumulation of 
prolamins and globulins was more sensitive to high tem-
perature than other seed storage proteins (Lin et al., 2010). 
Stress-responsive elements such as HSE (heat stress respon-
sive element), ARE (anaerobic induction element), ABRE 
(abscisic acid response element), and MBS (MYB binding 
site) were found to be enriched in the promoter regions of 
prolamin and globulin genes. This suggests that high tem-
perature deregulates the temporal patterns of prolamins and 
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Fig. 4.  The gene regulatory networks derived from co-expression data of seed development-specific genes. (A) The gene regulatory networks of the 
endosperm-specific H+-translocating pyrophosphatase gene cloned for chalkiness in rice derived using the PLANET database (Mutwil et al., 2011) seem 
to control the selective proteolysis pathway (E3.SCF) during 3–5 DAF (Supplementary Table S2 at JXB online). (B) On the other hand, its orthologue 
in wheat (Ta.1322.1.S1_x_at) regulates thousands of genes involved in starch biosynthesis and protease inhibitors during seed filling. These divergent 
expression patterns of H+-translocating pyrophosphatase genes between rice and triticale members are likely to trigger functional divergence during seed 
development.

globulins and reduces amylose, leading to the formation of 
chalk (Li et al., 2011).

It has also been observed that heat stress results in chalky 
grain production because of changes in starch structure 
(Yamakawa et  al., 2007; Yamakawa and Hakata, 2010; 
Patindol et al., 2014) which usually results in decreased amyl-
ose concentration (Chen et  al., 2008; Lanning et  al., 2012) 
and altered gelatinization temperature (GT; Cuevas et  al., 
2010) in many rice varieties. Alterations in starch structure 
primarily due to a reduction in AC lead to variation between 
translucent and chalky grains (Patindol and Wang, 2003). The 
presence of many air spaces within the loosely packed starch 
granules in the chalky grain prevents light transmission, 
which is visible as opaque regions along the translucent grain 
(Ashida et al., 2009). However, not all opaque grains can be 
considered as chalky. For example, glutinous rice grains are 
opaque white due to micropores within the polyhedral starch 
granules. In contrast, the incidence of chalk in non-glutinous 
grains is due to air spaces between spherical starch gran-
ules (Juliano, 2007). As shown in Fig.  2B, several mutants 

characterized from the starch biosynthesis pathway showed 
a pleiotropic effect of chalk (Fujita et al., 2007b; Yamakawa 
et al., 2007). For instance, starch synthase IIIa mutants (ss3a-
1 and ss3a-2) with elevated amylose and reduced amylopec-
tin resulted in loose starch packing with a chalky phenotype 
(Fujita et al., 2007b). Likewise, many other substandard starch 
grain (ssg) mutants affecting the starch granule structure 
exhibited chalky phenotypes (Matsushima et al., 2014). The 
chalky to opaque grains were produced when the activity of 
starch branching enzyme IIb (SBEIIb) was down-regulated in 
rice endosperm, and the extent of opacity was found to be 
directly proportional to the elevation in the proportion of 
long-chain amylopectin (Butardo et  al., 2011). In addition, 
even minor perturbations in the amylopectin fine structure 
affected during high night temperature can produce streaks 
of opacity in rice grains (Patindol et al., 2014).

Hakata et  al. (2012) reported that the involvement of a 
starch-hydrolysing enzyme, α-amylase, triggered grain chalki-
ness at high temperature. In developing seeds, high tempera-
ture induced the α-amylase genes Amy1A, Amy1C, Amy3A, 
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Fig. 5.  Schematic representation of the systems genetics approach to explore the potential of existing intraspecific variation for various grain quality 
traits on a genetic map using GWAS/QTL. Unravelling a holistic view of grain quality perturbation under stress requires the integration of knowledge from 
systems biology (regulatory networks and flux balance analysis), systems genetics, and comparative genomics to explore the perspectives of a genomics 
revolution in breeding to develop climate-resilient lines with superior grain quality.

Amy3D, and Amy3E, as well as α-amylase activity (Hakata 
et  al., 2012). Through an RNA interference (RNAi) strat-
egy, temperature-induced α-amylase gene expression is sup-
pressed, leading to fewer chalky grains (Hakata et al., 2012). 
This implies that the degradation of starch by amylase under 
elevated temperature is another layer of regulation respon-
sible for altering starch structure and grain chalkiness in 
rice. Furthermore, systematic metabolite profiling of starch 
mutants and selected lines from indica and japonica subspe-
cies differing in starch structure and amylose content reveals 
the importance of phospholipid complexes in starch structure 
and also emphasizes the mechanisms involved in white cores, 
opacity, and chalk formation (Kusano et al., 2012; Matsuda 
et al., 2012).

Based on the inferences drawn from the above studies, we 
conclude that chalk is the result of poor filling of starch gran-
ules in endosperm primarily affecting the amylose to amy-
lopectin pathway and, in addition, imbalances in the finer 
readjustment with the starch degradation pathway triggered 
under stress. The formation of chalky grain is also triggered by 
the disruption of the pH homeostasis in the endomembrane 
trafficking system during early endosperm development, 
leading to elevated amounts of small vesicle-like structures 
and a decrease in the number and size of protein bodies (Li 
et al., 2014). This results in the formation of air spaces among 
starch granules and protein bodies, which is responsible for 
the abnormal shape and spatial rearrangements of these stor-
age compounds, leading to chalky rice grains. Recent addi-
tional evidence also suggests that the plant-specific kelch 
repeat protein interlinks the role of Golgi-associated traffick-
ing involved in the storage protein sorting pathway, leading 
to the trigger of a floury endosperm and chalky phenotype 
with a preferential accumulation of glutelin precursor in the 
mutant grains (Ren et al., 2014). How the altered inter-rela-
tionships between storage starch and storage protein biosyn-
thesis affect the formation of the chalky phenotype, leading 

to an increase in the susceptibility to cracking and reduced 
HRY, needs further investigation.

Impact of starch metabolism under stress

Aside from improved HRY and reducing chalk, breeders 
should also focus on other important traits such as cooking, 
sensory, and processing quality to address the needs of the 
food industry and consumers. Up to 90% of the rice grain 
is starch (on a dry basis) and it is therefore a key contribu-
tor to many grain quality attributes. The cooking, sensory, 
and functional properties of rice are highly influenced by the 
quality and physicochemical properties of starch (Juliano, 
2007). It is therefore important to understand how different 
abiotic stresses can modify starch composition and accumu-
lation in rice endosperm in an era of abrupt and uncertain 
environmental fluctuations.

High-temperature stress during the grain-filling stage has 
deleterious effects on starch quality. Major genes involved 
in the starch biosynthetic pathway such as GBSS, SBEI, 
and SBEIIb are down-regulated in grains exposed to high-
temperature stress. Grains produced under high-temperature 
conditions also result in aberrant starch, with small gran-
ules and reduced amylose and amylopectin content, reflect-
ing a similar phenotype to that observed in floury-endosperm 
(flo) mutants (Kawasaki et al., 1996; Yamakawa et al., 2007; 
Satoh et al., 2003). The flo2 mutation in rice affected grain 
size, with a lower AC, and showed floury features because of 
the loose filling of starch granules with larger air spaces in 
the grain compared with their wild-type counterpart (Qiao 
et al., 2010; She et al., 2010). Mutations in other starch-bio-
synthesizing enzymes also exhibit similar characters to those 
of flo2 mutants (Nishi et al., 2001). She et al. (2010) identified 
the gene responsible for the flo2 mutant as OsCEO1, a novel 
regulatory cascade of endosperm organogenesis, and it may 
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have an important role in the response to high-temperature 
stress. Likewise, the FLO6 gene codes for an unknown protein 
that possesses a C-terminal carbohydrate-binding module 
that binds to the starch molecule, which alters the physico-
chemical properties of starch and thus alters complex granule 
formation (Peng et al., 2014b).

Both high night temperature and high day temperature 
affect grain quality by altering starch and storage protein 
properties (Li et al., 2011). Apart from Wx, numerous QTLs 
associated with AC and GC have been mapped on different 
rice chromosomes (Supplementary Fig. S1 at JXB online) 
(Aluko et  al., 2004; Sun et  al., 2006; Sabouri et  al., 2012). 
High temperatures affect GBSSI activity in rice (Cheng et al., 
2005c), and the response of GBSSI to temperature is due to a 
single nucleotide polymorphism (SNP) in the 5’ leader intron 
of the GBSSI gene sequence in rice and barley (Hirano and 
Sano, 1998; Patron et al., 2002). The GBSSI intron splicing 
is high in GT-SNP (AGGTATA) genotypes, resulting in high 
amylose accumulation (Inukai et  al., 2000; Mikami et  al., 
2008) even if  the temperature is altered. Under unfavourable 
environments, genotypes with alleles containing a TT-SNP 
(AGTTATA) in the leader sequence of the 5′ intron of GBSSI 
are not properly spliced, and hence GBSSI activity is low-
ered (Bligh et al., 1998). This ultimately results in a low AC 
in rice grains (Cai et al., 1998; Isshiki et al., 1998; Sato et al., 
2002). Thus, japonica cultivars appear to be more sensitive 
to high temperature with regard to amylose synthesis than 
indica cultivars (Inukai et al., 2000; Sun et al., 2011). High-
temperature stress also reduced Wx protein expression, lead-
ing to lowered amylose with altered starch viscosity and grain 
quality (Larkin and Park, 2003; Larkin et al., 2003). Some of 
these QTLs are associated with the stability of AC in various 
rice varieties grown in high-temperature conditions (Zhang 
et al., 2014). The chromosome substitution lines carrying the 
stable major QTLs for amylose (qHAC8a, qHAC8b, and/or 
qHAC4) have been linked to the high pre-mRNA splicing 
efficiency of the Wx gene. Thus, increasing the pre-mRNA 
processing of this gene is identified to be the key factor for 
maintaining stable amylose in rice seeds at high temperature 
(Zhang et al., 2014). It is therefore possible to combine the 
correct alleles to ensure proper mRNA splicing of the GBSSI 
gene in rice breeding strategies to maintain stable amylose 
biosynthesis under increasingly warming climatic conditions.

The effect of heat stress during seed development not only 
reduces AC but also modifies starch structure and thermal 
properties by affecting the gelatinization temperature (GT) 
(Lu et al., 2014). GT is associated with the activity of starch 
synthase IIa (SSIIa), the enzyme responsible for the elonga-
tion of amylopectin chains within the crystalline lamella of 
degree of polymerization (DP) 12–24 (Umemoto et al., 2004; 
Nakamura et al., 2005; Waters et al., 2006). Functional SNPs 
in the gene coding for SSIIa have been identified and can be 
used to group rice samples into high- and low-GT classes 
(Nakamura et  al., 2005; Waters et  al., 2006; Cuevas et  al., 
2010), which influences cooking quality. Apart from SSIIa, 
QTLs for GT were mapped on other rice chromosomes using 
different populations (Lanceras et al., 2000; He et al., 2006; 
Sabouri et al., 2012). Heat stress not only decreases AC but 

it also increases the overall proportion of longer amylo-
pectin chains in rice starch (Patindol et  al., 2014), possibly 
because of increased SSI and SSIIa activity (Umemoto et al., 
1999; Umemoto and Aoki, 2005; Yamakawa et  al., 2007). 
Although SSI preserves the elongation of A and B chains of 
amylopectin, reduced activity of SBEIIb and SBEI lowers 
the branching frequency of amylopectin (Jiang et al., 2003). 
Thus, reduced GBSSI and increased SSI activities under 
high temperature contribute to the lower ratio of amylose to 
amylopectin (Cheng et al., 2005a). These results point to the 
possibility that a decrease in amylose under heat stress may 
account for the loss of grain weight as well as impaired cook-
ing quality because of the alteration in starch properties. The 
inferences drawn above can help in engineering starch qual-
ity by maintaining an optimum amylose to amylopectin ratio 
even under stress.

Present state and future perspectives 
in designing climate-resilient rice with 
superior quality grain

Rice grain yield has been reported to decline by 6% and HRY 
by 9–14% for every 1 °C increase in temperature (Peng et al., 
2004; Welch et al., 2010; Lyman et al., 2013). This wasted 
food could have been made available to help the global food 
requirement considering that rice feeds roughly half  of  the 
world’s population. High night temperatures greatly influ-
ence milling quality by modulating endosperm morphol-
ogy, grain dimensions, and starch-metabolizing enzymes 
(Counce et al., 2005). This confounding evidence suggests 
that the global rise in temperature primarily affects HRY 
and key grain quality attributes such as seed storage bio-
synthesis and grain chalkiness. To enhance HRY and reduce 
susceptibility to chalk-mediated grain breakage under stress 
conditions, there is a need to (i) select better germplasm 
with reduced chalk under multienvironments as a source of 
inbreds; (ii) target both parents to have a similar AC and 
GT in creating hybrid vigour for stress tolerance with higher 
HRY as a prime target; and (iii) use marker-assisted selec-
tion strategies to reduce chalk in the lines suitable for stress-
prone environments. Events leading to chalk formation are 
associated mostly with reduced sink strength and imbal-
ances in carbon and nitrogen partitioning in a growing sink 
because of  photoassimilate limitation under stress. Thus, 
besides implementing strategies to enhance yield advantages 
through elevated grain number per panicle and a change in 
spike architecture with profuse secondary branches in the 
panicles (Sreenivasulu and Schnurbusch, 2012), source–sink 
relationships under stress conditions need to be fine-tuned 
(Supplementary Fig. S2 at JXB online). In addition, strat-
egies need to be developed to synchronize the ability of 
genotypes to stabilize HRY with reduced chalk under chal-
lenging environments.

Based on the inferences drawn from previous published stud-
ies, chalk appears to be the result of poor filling of starch granules 
in the rice endosperm, primarily affecting amylose and amylo-
pectin pathways and disrupting the spatiotemporal packing of 
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starch granules. Triggering of the chalky phenotype may also 
be due to imbalances in the finer readjustments with the starch 
degradation pathway during grain filling. However, susceptibil-
ity to cracking because of brittle grains must be overcome to 
mitigate HRY reduction, and its connected links to the chalky 
phenotype need to be thoroughly dissected. This is because the 
rice grain is very sensitive to even minor perturbations in starch 
structure, which does not necessarily result in brittle grains and 
a reduction in HRY in some instances. The definitive genetic, 
environmental, and physiological link between chalkiness and 
breakage susceptibility needs to be established. In addition, the 
connection between seed storage protein biosynthesis and starch 
granule formation has to be empirically tested to determine the 
role of carbon partitioning and allocation in the formation of 
brittle chalky grains that significantly reduce HRY.

Grain quality traits are controlled by many major QTLs, 
implying that the genetic mechanisms underlying quality 
traits are complex. More than 600 QTLs related to grain 
quality have been reported (see Supplementary Table S1 at 
JXB onlime) in the Gramene Genome Database (http://www.
gramene.org). Additional evidence gathered from meta-QTL 
mapping studies revealed that stable and major QTL genetic 
regions identified on chromosomes 3 and 6 have overlapping 
regions for chalky endosperm, AC, protein content, viscosity 
properties, and the integrated values of organoleptic evalua-
tion (Supplementary Fig. S1). It appears that this QTL clus-
ter is a novel gene resource for controlling rice grain quality 
traits. Cloned genes responsible for rice grain quality traits 
as well as fine-mapped QTLs form a strong base for genomic 
selection useful in efficient breeding for designing climate-
ready lines that are suitable according to regional differences 
in grain quality preferences. With a much lower sequenc-
ing price, genome re-sequencing has been used to accelerate 
breeding. The genetic and genomic information that can be 
harnessed from the 3000 whole genomes of cultivated rice 
relatives (3,000 Rice Genomes Project, 2014) will provide an 
opportunity to mine different alleles related to grain quality 
traits involved during adaptation to different climatic con-
ditions at the subspecies level. Because some useful grain 
quality traits might have been lost during the course of rice 
domestication, these developments in genotyping technol-
ogy can also be used to explore the genetic diversity of wild 
rice (Nock et al., 2011) to find useful genes for starch qual-
ity improvement under climate change scenarios. Structural 
and functional genomics resources available from millet not 
only offer the prospects of incorporating stress tolerance tar-
get traits in other cereals but also offer the value to explore 
the nutritional benefits (Muthamilarasan and Prasad, 2014). 
Such comprehensive augmented knowledge obtained that 
is related to climate-adapted allelic variation can be used to 
design superior grain quality for stress-prone environments. 
This can be achieved by exploring valuable alleles that can 
be targeted to fine-tune grain quality in high-yielding lines 
that are stable across a variety of stress-prone areas through 
genomics-assisted selection and marker-assisted breeding. 
On top of this, employing systems biology strategies such as 
regulatory networks and flux balance analysis, as well as sys-
tems genetics methods, can help to decipher the holistic view 

of grain quality perturbations to multiple abiotic stress fac-
tors (heat stress with drought, humidity, salinity, and elevated 
carbon dioxide), which co-occur in nature (Fig. 5).

Supplementary data

Supplementary data are available at JXB online
Figure S1. Summary of grain quality QTLs identified using 

bi-parental mapping populations depicted on rice chromo-
somes 3, 4, and 6.

Table S1. A summary of more than 600 grain quality QTLs.
Table S2. Selected super pfam families which are enriched 

in the vicinity of networks of H+ pyrophosphatase in rice and 
wheat species.
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