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Abstract

Sensors are becoming ubiquitous in everyday life, generating data at an unprecedented rate and 

scale. However, models that assess impacts of human activities on environmental and human 
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health, have typically been developed in contexts where data scarcity is the norm. Models are 

essential tools to understand processes, identify relationships, associations and causality, formalize 

stakeholder mental models, and to quantify the effects of prevention and interventions. They can 

help to explain data, as well as inform the deployment and location of sensors by identifying 

hotspots and areas of interest where data collection may achieve the best results. We identify a 

paradigm shift in how the integration of models and sensors can contribute to harnessing ‘Big 

Data’ and, more importantly, make the vital step from ‘Big Data’ to ‘Big Information’. In this 

paper, we illustrate current developments and identify key research needs using human and 

environmental health challenges as an example.
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1. Introduction

1.1. Background

Models have become widely used and indispensable tools to assess effects of environmental 

factors on human and ecosystem health. Applications include, but are not limited to, the 

modelling of environmental processes, such as the emission, dispersion and environmental 

fate of pollutants in atmospheric (e.g., Vieno et al., 2010, 2014), terrestrial and aquatic 

environments (e.g., Wu et al., 2014a, b; Perelman and Ostfeld, 2013), the quantification of 

human exposures to these pollutants (e.g., McKone, 1993; MacIntosh et al., 1995), the risks 

and public health burdens from exposures to environmental pollutants (e.g., Lim et al., 

2012; Schlink et al., 2010, the dynamics of biomarkers in relation to drugs and pathogens, 

and the efficacy of efforts to control the consequences of these processes on human health 

(e.g., May et al., 2008; Wu et al., 2014b), and the quantification of stakeholder mental 

models for optimal decision making (Wood et al., 2012; Voinov et al., 2014; Boschetti, 

2015). Models have important uses in examining the accidental or natural release of 

chemicals, radionuclides, volcanic ash, or pathogens in the environment. Generally, both 

physical process-based and statistical models are calibrated and validated against observed 

environmental data, which have traditionally been obtained from few, typically sparsely 

distributed routine monitoring stations, or from costly short-term field measurement studies. 

In both cases, the spatial and temporal performance of models is evaluated against relatively 

few directly measured data points.

Conversely, the capabilities and availability of cheaper, more sensitive and sophisticated 

sensors for gases, particulates, water quality, noise and other environmental measurements 

have improved and are enabling researchers to collect data in unprecedented spatial, 

temporal and contextual detail (Stocker et al., 2014). These sensors range from bespoke 

devices designed for specific applications, to those found on more mainstream personal 

devices, such as smartphones. In some cases, people may act as environmental sensors by 

reporting what they see, hear and feel by participating in the crowdsourcing of 

environmental conditions (Salathe’ et al., 2012). By leveraging widely available computing, 

networking and sensor technologies, many new sensor systems are relatively low-cost 
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compared with technologies used in established monitoring networks. Low-cost sensing has 

the potential to broaden the scale of environmental measurements, both through improving 

the feasibility of larger scale monitoring networks and by empowering non-traditional 

researchers, such as community groups, environmental justice organizations and citizen 

scientists to participate in collecting environmental, biological and clinical data. Hence, new 

sensors may potentially solve the limitations of traditional environmental monitoring by 

improving data collection in currently under-monitored areas, including urban areas with 

large spatio-temporal variations in pollutant concentrations and exposures, as well as rural 

areas and developing countries where few conventional monitoring sites may be available. 

One challenge of ubiquitous sensing is a potential explosion of data collected by multiple 

groups for different purposes, with differing accuracy, precision and hence data quality. 

Advances in data science and data fusion are vital to enable researchers to make best use of 

the vast amounts of additional, heterogeneous measurement data. Environmental models 

will potentially play an important role in integrating these data as inputs to refine and 

quantify important environmental relationships and processes (Banzhaf et al., 2014; Galelli 

et al., 2014). Models may also benefit from having new data to use as calibration, validation, 

and assimilation points to improve the outputs of increasingly complex and downscaled 

models. Documenting, understanding and implementing quality assurance and quality 

control processes that are responsive to heterogeneous sensor data will be critical if they are 

to be used for modelling. Modellers are not only users of sensor data, but can also help to 

inform the sensor community by identifying existing modelling uncertainties, sensitivities, 

and constraints that could benefit from improved empirical data, so as to guide what, when 

and where sensors should measure. Ultimately, data from both sensors and models provides 

evidence to policy decision-makers, hence the role of stakeholders and their interaction with 

the scientific community is a vital area for discussion in this context.

1.2. Approach

This paper presents the potential benefits and opportunities available to the modelling 

community through improved adoption and integration of sensor technologies. For the 

purpose of this paper, we use the term ‘data’ to specifically identify raw and unprocessed 

observations specifically, and ‘information’ to illustrate data that has undergone validation, 

quality assurance/quality control (QA/QC) and (objective-based) interpretation to be used 

for decision making. Finally, as ‘Big Data’ does not have a concise and generally accepted, 

scientific definition to date (the moving target presented by defining a volume of data that is 

pushing the boundaries of current processing capabilities), we adopt the widely used 

definition by Doug Laney and applied by industry (e.g. SAS, 2015), which stipulates ‘Big 

Data’ as being determined by the three Vs, volume, velocity and variety. These three aspects 

are important when monitoring a wide variety of data and are therefore highly relevant to the 

purposes of this paper.

We discuss cases in which models may benefit from large datasets emerging from new 

sensor networks, particularly in terms of increased model accuracy through better 

calibration/validation and global uncertainty/sensitivity analyses (Saltelli et al., 2010), while 

also benefiting groups designing, deploying, and analysing data from sensor networks. 

Figure 1 presents a conceptual framework in which both the sensing and modelling 
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communities play integral roles in information science, with this science ultimately 

operating within and informing policy. Critically, missing from this conceptual diagram are 

the details of data management, processing and flows.

The environmental monitoring community produces data that are subject to QA/QC, which 

then could be used on their own as empirical data related to environmental processes. 

However, data could also flow to the modelling community as inputs and calibration and 

validation points for modelling. The combination of quality data and a validated conceptual 

model that incorporates state of the science understanding of environmental and disease 

processes can be explored via simulation, scenario, and global sensitivity and uncertainty 

analyses to produce information relevant for policy and planning. In this framework, we 

acknowledge that all measurement data are subject to error, and can benefit from QA/QC to 

filter the data for errors and anomalies leading to the use of models for data synthesis. 

Models can also vary in complexity and accuracy, however, even spatial and temporal 

smoothing of data can serve as a useful, yet relatively simple, form of model to aid in 

visualizing temporal trends and spatial gradients relevant to many environmental processes. 

The combined use of data and models at different spatio-temporal scales can serve to 

identify scale-dependent and universal relationships between potential causal factors and 

outcomes of interest.

Conceptual models can be extended to be more sophisticated, coupling separate sub- or 

component models of pollutant emissions, fate and transport, multiple routes of exposure 

and dose-response relationships to assess health impacts, and might utilize a variety of 

sensor data to inform the processes and relationships coded into each sub model. At different 

points in our model framework, there are uncertainties in the sensing, data collection, and 

modelling processes that ultimately affect the confidence with which we are able to apply 

information to the planning and policy process. Thus, the information required should 

ultimately be the driver of any step, rather than what raw data can be generated, and global 

sensitivity and uncertainty analyses can guide information creation and model and 

surveillance network design. We are guided by the following key questions, which are 

addressed in the remainder of the paper:

1. How can modellers best make use of the ‘Big Data’ emerging from current and 

next-generation smart sensor networks?(Section 2)

2. What are the key challenges for model-sensor integration across temporal and 

spatial scales? (Section 3)

3. Can model-sensor integration improve the quantification of uncertainty by 

addressing issues of precision and accuracy in current exposure assessment 

techniques for health impact assessment? (Section 4)

4. Can integrated model-sensor approaches improve understanding of the associations 

and causality of environmental determinants for human health effects? (Section 5)

5. What are the critical research questions and knowledge gaps that can improve 

progress with model-sensor integration? (Section 6)
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6. How can sensor and model outputs be best communicated to a wide variety of 

potential decision makers and stakeholders? (Section 7)

While answering these questions in detail is outside of the scope of a single paper, we will 

provide examples of applications and approaches which can contribute to a better, more 

comprehensive integration of sensors and models in the subsequent sections.

2. The emergence of ‘Big Data’ and what it means for modelling

One of the most important questions posed by the advent of ‘Big Data’ that integrate 

modelling and smart sensors is: How can modellers make best use of the additional data? In 

order to answer this question, we discuss the potential paradigm shift precipitated by the 

availability of ‘big data’, we examine the potential benefits ‘Big Data’ offers to the field of 

modelling and we highlight the importance of considering the implications of ‘Big Data’ on 

quality assurance and control processes.

2.1 How can smart sensor networks change the game

Today’s earth systems science is an archetype for how sensing and modelling systems might 

be integrated in near real-time. Global climate models are available and interconnected with 

sensing data systems, and are currently used for science and policy purposes. Satellite and 

surface-based measurement campaigns have adopted standards and recognized practices for 

data collection, metadata documentation, production of data products and access to data and 

products via the Internet (e.g., U.S. Geological Survey Global Earth Observation System of 

Systems (GEOSS) atmospheric, land cover, land- and sea surface temperature, albedo, and 

other remotely sensed products, National Centre for Atmospheric Research (NCAR) and 

World Meteorological Organisation (WMO) databases for global surface monitoring data). 

The aforementioned standards and practices are critical, due to the volume of data that is 

produced by these sensing systems and the speed with which they become available. For 

example, the National Aeronautics and Space Administration’s (NASA) Earth Observing 

System and Data Information System (EOSDIS), as of September 2013, contained 9.8 

petabytes of data and served 1.7 million users (EOSDIS, 2014).

Consequently, the modelling community has incorporated these data. The MM5 Community 

Model (http://www2.mmm.ucar.edu/mm5/) and Community Multi-scale Air Quality Model 

(CMAQ, http://www.epa.gov/AMD/Research/RIA/cmaq.html) meteorology and air 

pollution modelling groups routinely make use of existing monitoring data, both for model 

input, calibration, and validation. Moreover, these groups routinely develop solutions to the 

challenges of sensor fusion and the merging of data collected from different instruments 

with different spatial and temporal resolutions, and as a result they are able to up/downscale 

their models to best fit available data and answer policy questions. The hydrological 

sciences provide another example in which there are already large datasets and initiatives 

underway to develop data-driven modelling methods, such as the Panta Rhei - Change in 

Hydrology and Society initiative (http://distart119.ing.unibo.it/pantarhei/).

While established Earth System Modelling (ESM) demonstrates that even complex data-

model coupling is possible, new, rapidly developing movements like Smart Cities and 
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Citizen Science are potentially game-changing in terms of the amount, variety, and 

improved spatial temporal resolution of sensor data that can potentially be integrated into 

models. Urban processes, such as roadway traffic, are already monitored regularly using 

sensors, producing data useful for traffic demand management. Unlike the aforementioned 

ESMs, there is great potential to couple these real-time data with real-time models to create 

“closed-loop” control systems, allowing for sensed data to result in immediate actions (Hilty 

et al., 2014). Although this has yet to be fully realized, some applications, such as 

congestion-driven road and parking pricing schemes, are candidates to employ models based 

on real-time traffic sensor data. Next-generation semi and fully autonomous vehicles may 

also rely heavily on sensor systems for efficient routing and collision avoidance.

Additionally, citizen crowdsourcing of information is now commonplace. Some examples 

that many may be familiar with include internet-based services, such as the Great Internet 

Mersenne Prime Search (GIMPS, http://www.mersenne.org/) or the internet-based protein 

folding activity FoldIt (http://fold.it/portal/). Similar examples are used widely by the 

general public, for instance Yelp (http://www.yelp.com), where users both provide and make 

use of reviews of restaurants and other establishments, or the online retailer Amazon, which 

provides users with peer-reviews of items for sale. A range of crowdsourcing efforts for 

environmental variables, including weather, traffic, noise, radiation, and air quality has 

recently emerged. The Safecast group (http://blog.safecast.org/) is an example of a citizen 

sensing project aimed at collecting environmental data that emerged in response to the 

concerns about radiation exposures after the earthquake of March 11, 2011, in Japan and 

catastrophic system failure at the Fukushima Daichi nuclear power plant. The UK Biological 

Records Centre (BRC) utilises citizen science based on mobile applications to conduct 

country-wide surveys on ladybird occurrence (http://www.ladybird-survey.org/

recording.aspx). Finally, the International Cooperative Programme on Effects of Air 

Pollution on Natural Vegetation and Crops (ICP Vegetation) has recently launched a mobile 

app to record location and time of ozone related plant damage (http://

icpvegetation.ceh.ac.uk/record/mobile-app-ozone-injury).

The large numbers of mobile device users provides additional opportunities to quantify the 

time-location patterns of many individuals, which in the past has been a challenge for 

exposure assessment. While there are ethical concerns related to privacy, increasingly, 

mobile users are allowing third parties access to their location data when there is perceived 

value in doing so. The increasing use of location-based services (e.g., map and navigation 

applications, such as Google Maps and Apple Maps), nearest friend (e.g., Foursquare) and 

service-finding applications (Uber, Next Bus, bank ATMs, etc.) are examples of such cases.

While the above systems illustrate the pervasiveness of modern sensors and computing that 

are producing huge amounts of data, many are proprietary, have not been designed with 

model integration in mind, and lack the standards and protocols (Laniak et al., 2013) to 

enable them to be coupled with other sensor data or models. Enabling the successful use of 

such data in order to achieve scientific breakthroughs will depend on approaches taken 

towards the accessibility, integration and analysis of large datasets (Horsburgh et al., 2009).
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2.2 How can models benefit from ubiquitous sensing

Models are often viewed as ‘black boxes’ that obscure complexity and lack transparency, 

instead of ‘tools to think with’ (McIntosh et al., 2007). However, models should be seen as 

technologies that can help in any step of the scientific process of understanding and solving 

complex systems problems. Considering the current advancements in theory and 

computational power, models should be seen as virtual reality technologies for a global 

system science in which sensors serve the fundamental sensing function for (i) 

understanding system dynamics, (ii) early detection and response to system malfunctions, 

and (iii) building resilient systems via enhanced adaptive management approaches that learn 

from past events and associated decision alternatives. We particularly emphasize the 

primary roles of physically-based systems models – for instance based on reaction-diffusion-

dispersal processes and information theory (Shannon and Weaver, 1949; Vespignani, 2012; 

Quax et al., 2013; Hill et al., 2011) - versus statistical/data-driven models (Wu et al., 2014b) 

for robust investigation of causal relationships between the environment and populations and 

system design to minimize systemic health burdens.

The additional data provided by ubiquitous sensing will enable both physically-based and 

data-driven models to be calibrated and validated over a wider range of inputs and outputs, 

thereby increasing model performance. In addition, these data will enable new information 

and relationships to be discovered using data-driven modelling and analysis approaches. In 

many instances, there will be more data than can be utilised by physically-based modelling 

approaches, and data-driven approaches can be used to extract the information that is locked 

up in these large datasets (Galelli et al., 2014). This information can be used to enhance 

understanding, develop predictive and forecasting capability and improve physically-based 

models (Maier et al., 2010; Wu et al., 2014a).

2.3 The importance of data quality assurance and quality control with increasingly dense 
and complex sensor networks

QA/QC processes are critical to the dissemination and utilization of sensor data, but are also 

highly dependent on the application and the perceived or real-harm that might arise from 

public use of the data. First, recognizing that all measurement is prone to some degree of 

error, the quality of sensors used and the data produced should be documented. Second, data 

that fall outside reasonable ranges should be identified through the QA/QC process. 

However, this can be challenging with new emerging sensor deployments, for which it may 

be difficult to distinguish between data that are erroneous and data that are correct but have 

never observed before, because previous measurements were too sparse to identify extreme 

values and stochastic phenomena. Third, modellers will need to consider how measurement 

error may affect the error of their model predictions.

The public has become accustomed to forecasts of phenomena, such as skiing conditions, 

precipitation and typhoon storm paths and generally has an understanding, developed over 

time, of the reliability of this information without requiring a public disclaimer each time 

this information is disseminated. Hence, the public is disinclined to seek remedy when 

forecasts prove to be flawed and the public experiences inconvenience or loss because of 

actions undertaken in response to these forecasts. QA/QC are typically undertaken by those 
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providing the technical analysis and simulation modelling behind these forecasts in the form 

of a comparison with alternate models and analytical approaches. While expert analysts may 

have their own internal metrics of what constitutes acceptable deviation from parallel 

forecasts, ideally, more quality data will help modellers identify models that produce valid 

forecasts.

The dissemination of erroneous data can cause real harm or could be used against the agency 

reporting the data in future litigation. In places where litigation is a common means of 

resolving resource management or protection conflicts, this real or perceived concern may 

limit the willingness of potential data providers to share. One example of addressing this 

issue is with hydrologic time series management software, which is capable of performing 

continuous error processing of real-time sensor data and taking data censoring actions based 

on an established set of rules and procedures. Although this does not entirely eliminate the 

human factor in data processing, it does make this more efficient and significantly reduces 

the processing time leading to dissemination of real-time sensor data. There are a number of 

commercial software vendors such as Kisters Inc. (http://www.kisters.net/) based in 

Germany (WISKI and HYDSTRA) and Aquatic Informatics in Canada (AQUARIUS), as 

well as public agencies such as the US Army Corps of Engineers (DATAVUE), that offer 

real-time quality assurance processing capability.

3. Key challenges associated with issues of scale

As more data become available from sensors, the scales at which measurements are made 

potentially change. This will require rethinking about the scales, the objects and processes 

we model. It will also require creative thinking about fusing data available at different 

scales, which may potentially change the scale of inference we make on environmental 

processes.

3.1 Spatio-temporal resolution

Applied challenges, such as the prediction of the associations, causes or consequences of 

environmental pollution for global health, require interfacing of phenomena that occur on 

very different scales of space, time, and managerial organization (Levin, 1995). However, 

patterns that are unique to any range of scales will have potential unique causes and 

biological consequences. The key to prediction and understanding lies in the elucidation of 

mechanisms underlying observed patterns. Typically, these mechanisms operate at different 

scales than those on which patterns are observed; in many cases, patterns are better 

understood as emerging from the collective behaviours (interactions) of smaller scale units 

coupled with scale-dependent constraints. Examination of such phenomena requires the 

study of how pattern and variability change with the scale of description, and the 

development of laws for simplification, aggregation, universality and scaling. With such 

laws, it is easier to move from one scale to another and from one region to another without 

the necessity to run the model multiple times. In general, a priori there is no single spatio-

temporal scale or resolution at which population health issues should be studied. Whereas 

disease usually affects the individual, public health challenges require different approaches. 

The scale and resolution of analysis should be related to the objective of the problem of 

interest, considering the scale of validity of control strategies. However, scale should always 
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consider the population as a whole in solving complex system issues and detecting ‘true’ 

causality and connectivity among system components (Rose, 1985; Helbing, 2013).

3.2 Coupling and integration

The integration of satellite and ground-based sensing provides an example of how data and 

models can be coupled at different spatio-temporal scales. Because of the different types of 

measurements obtained by different sensor networks implemented at distinctive spatial and 

temporal scales, multi-sensor integration is often desirable for environmental health 

applications, including air pollution monitoring. One of the main limitations of ground-

based air pollution sensors is their sparse spatial distribution. In contrast, geospatial data 

products derived from space borne sensors provide spatially explicit ’Big Data’ on a variety 

of pollutants, including NOx, SO2, CO, methane, ammonia, volatile organic compounds, and 

particulate matter (Duncan et al,. 2014). However, current air-pollution measurements from 

satellite-borne sensors also have significant limitations, including data gaps resulting from 

clouds, limited temporal resolution, and lack of information about the vertical distribution of 

many pollutants (Duncan et al. 2014). Models are frequently used to link these observations 

across spatial and temporal scales, with the aim of leveraging the strengths and minimizing 

the limitations of each type of sensor. For example, statistical modelling can be used to 

develop interpolated maps that blend spatially continuous aerosol optical depth (AOD) data 

with more precise local measurements of PM2.5 from ground-based sensors (Puttaswamy et 

al., 2014). Process-based chemical transport models can also be used to derive conversion 

factors that translate satellite-based AOD observations into ground-level PM2.5 values, 

allowing estimates to be derived in areas where ground-based monitors are sparse or non-

existent (van Donkelaar et al., 2010). As novel ground-based and satellite sensors are 

developed, they will provide new opportunities for multi-scale sensor integration, but will 

also present conceptual and computational challenges requiring the extension of current 

models and the development of new modelling approaches.

3.3 Nesting and dynamically moving between systems at different scales

The use of hierarchical systems models and compartmental model nesting using a single 

model has become more ubiquitous with the advent of improved numerical techniques that 

allow efficient transfer of flux and pressure boundaries within regional models to form new 

boundary conditions for small scale, more highly disaggregated models. This is also true 

considering the advancement of a socially and computationally driven global system science 

(Convertino et al., 2014, 2015; Helbing et al., 2015). This has paved the way for some of the 

coupling and integration activities described in section 3.2 (for details on conceptual 

approaches for model integration see Argent, 2004a, b; Kelly et al., 2013). The advantages 

of nesting models and different scales can be both computational and political. Stakeholder 

involvement in decision making and in the modelling process has long been sought not only 

as a means of improving models over time, but also to ensure that these models get used 

effectively for decision support (McIntosh et al., 2011) at all levels of analysis. Changing 

the scale and improving the resolution of a model to the point that stakeholders start to 

recognize the characteristics of their own system in an airshed, catchment or landscape can 

yield significant long-term benefits to the decision-making process by increasing the 

potential for early stakeholder buy-in to the decision making process. Stakeholders rarely 
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have the technical skills to understand the nuances of the complex modelling tools being 

applied, but will often respond when presented with data or information that they are 

familiar with at a scale that allows them to evaluate its accuracy. Engagement even at this 

level can positively influence trust later in the resource management process. Such 

engagement can also be leveraged with the quantitative incorporation of stakeholder 

preferences via stakeholder belief assessment models in a direct and/or indirect way.

4. Addressing precision, accuracy, uncertainty and relevance in integrated 

model-sensor systems

As more data become available from sensor systems, questions arise as to variations in the 

precision and accuracy of different sensor instruments between different sensor platforms or 

networks, and whether data and the models that utilize these data are suitable for a specific 

intended purpose. Personal sensors are able to provide immediate and relevant data for 

instance related to physical activity and mobility, and enable the generation, as well as 

derivation of location-based information on environmental factors.

4.1 Precision vs. information content – rethinking instrument and data quality

Air quality measurement provides an example for considering sensor data quality and 

information content. A frequently stated view is that all air quality instruments, whether 

used as part of static networks or for personal exposure monitoring, should perform at a 

level equivalent to the reference instruments used for compliance, a principle enshrined in 

many legislative and regulatory contexts (e.g., in the EU Air Quality Directive 2008/50/EC). 

To establish and maintain a network of instruments based on this premise can be extremely 

expensive, a consequence of which is that fixed site networks are currently extremely sparse, 

with e.g. only 109 sites currently active in the UK (http://uk-air.defra.gov.uk). This raises 

several issues. The first, obvious one, is whether, given that major pollutant emission 

sources are related to traffic emissions, such fixed sites are (or can ever be) a true indicator 

of the spatial and temporal variability likely to be present in air quality. The answer, in most 

cases, is probably no. For example the UK, in its assessment of air quality compliance, 

places increasing reliance on physical and statistical models. The second, increasingly 

pressing and arguably more profound issue, given the advent of low cost air quality sensors 

and air quality sensor networks and the advent of highly sophisticated but efficient air 

quality models, is whether adherence to the ‘equivalence’ principle for air quality 

measurements, dominated by consideration of instrument accuracy and precision, is any 

longer the optimum approach.

Data assimilation, where various observations are combined, often with models, to produce 

optimal solutions, have been widely used (e.g. for determination of regional greenhouse gas 

(GHG) emissions or vertical profile retrieval of GHGs) and recently applied for human 

exposure assessment in urban regions (Schlink and Fischer, 2014). While instruments must 

have well quantified error characteristics, the discussion is now centred on information 

content, and how this could be optimised by suitable deployments of instruments and 

networks (Convertino et al., 2014, 2015). The issue is no longer just ‘how good is an 

instrument’, but ‘have we placed it where it provides maximum information’? Translating 
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this to the context of low cost sensors, the question is whether a relatively poor measurement 

in the correct place can provide more useful information than a high precision measurement 

sited incorrectly. Recognising that sensors can be readily deployed as networks, the issue is 

whether information can be obtained by exploiting the higher density of measurements. 

There is an increasing body of literature suggesting that while this question is not fully 

resolved, low cost sensors and sensor networks have an increasing role to play (Schimak et 

al., 2010; Ostfeld et al., 2013; Diaz et al., 2013; Austen, 2015). It has to be noted that 

information content is a function dependent on the relevance of data to one or multiple 

objectives of stakeholders involved in the decision making process. The trilemma of model 

relevance, accuracy and uncertainty can typically be solved numerically using global 

sensitivity and uncertainty analysis methods (Muller et al., 2011), but stakeholder 

engagement should always be present.

There has also been discussion about whether low cost sensors and sensor networks should 

displace high precision instruments. There are strong arguments against this, both for 

historical reasons for ensuring continuity of data records, and because there are strong 

synergistic advantages in running low cost and high quality measurements (integrated using 

numerical models) side by side. However, there is a strong argument that the discussion 

should move away from purely considering the accuracy and precision of individual 

instruments towards assessing the information content of integrated measurement networks 

(including low cost as well as high precision instruments) and modelling systems.

4.2 Sensing individual activity and its relevance for health impact assessments

The increasing pervasiveness of personal computing devices has created new opportunities 

for sensing individual activity, which is relevant for estimating human exposures to 

environmental conditions (Schlink et al., 2014) and characterizing health-related responses 

that may be associated with exposures. The mobile phone is the most common of these 

devices. Network service providers collect data on the time-location patterns of their mobile 

phone subscribers. In terms of precision, service providers typically know the location of 

their subscribers to the nearest cell tower. For Global Positioning System (GPS) and 

Wireless Network (WiFi)-enabled smartphones, handset manufacturers are collecting more 

detailed time-location data on the users of these devices. GPS systems are fairly accurate in 

outdoor environments, and are able to locate individuals to within city-block distances <30 

m. Furthermore, assisted-GPS (aGPS) uses both cellular and WiFi-networks to improve 

location estimation in outdoor, as well as indoor, environments. In addition, as mentioned 

before, various smartphone apps that offer location-based services have the capability to 

record the time-location patterns of their users. Aside from the mobile phone, many 

wearable personal monitoring devices are now available that can measure a variety of 

physiological and health-related parameters, including those related to motion, muscle 

activity, cardiovascular health, respiration, perspiration, temperature, glucose, brain activity, 

emotion and affect, diet, sleep quality, and vision. Some of these parameters, e.g., motion, 

heart rate, diet, and emotion, can be determined via mobile phones. The quality and usability 

of these devices are improving rapidly, and efforts are already underway to promote better 

standards for data collection and the use of metadata within the academic community.

Reis et al. Page 11

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The analysis of human time-activity patterns and disease has benefitted from previous 

ecological modelling of animal populations, including classic predator-prey, biogeographic, 

and metapopulation models that are spatially and temporally explicit (Loos et al., 2010). 

Already, mobile phone data have been used to parameterize population movement networks 

(Barabasi, 2005), relevant to the spread of malaria (Wesolowski et al., 2012). The coupling 

of monitored personal time-activity patterns with modelled air pollution concentrations has 

improved the characterizations of air pollution exposures (Dons et al., 2011; Engel-Cox et 

al., 2013; Steinle et al., 2013; 2014; Schlink and Ragas, 2011), and in some cases, has 

incorporated physiological sensing, such as energy expenditure, to improve exposure 

estimates (de Nazelle et al., 2013). In addition, recently Citizen Scientists have begun 

leveraging population mobility and mobile phone data to conduct air pollution monitoring 

(http://aircasting.org/).

5. Integrated modelling of human and environmental health

In this section, we discuss how integrated model-sensor approaches can improve the 

understanding of associations and outcome-driven causality of environmental determinants 

for human health effects. Various models have been used for this purpose, in particular for 

associating toxicological and systems’ information to epidemiological patterns. At one end 

of the spectrum statistical epidemiological models identify correlations (i.e., “associations”) 

between environmental exposures and disease outcomes. These models are particularly 

important because the biological mechanisms for many diseases are not completely 

understood. Yet, strong statistical associations between environmental exposures and health 

outcomes can motivate health protective policies. The regulation of particulate matter air 

pollution is an example where our understanding of disease mechanisms is not yet clear, but 

the epidemiological evidence of the association between PM2.5 and cardiovascular mortality 

has led to ambient air quality standards. A common pitfall of association studies is the 

occurrence of exposure misspecification, as most measurements are not individual-specific 

and this can make the results insignificant and/or biased (Begg and Lagakos, 1990).

At the other end of the spectrum are more mechanistic and dynamic multi-compartment 

models that discretize populations into susceptible, exposed, diseased (i.e., infected for 

infectious diseases) and recovered subpopulations (Rothman et al., 2008). Such models rely 

on data for estimating non-physical transition rates among compartments, lack a spatial 

component, and very rarely are coupled to environmental and agent-causing-disease 

compartments whose information can be derived from integrated models (Convertino et al., 

2014, 2015; Rinaldo et al., 2012; Helbing et al., 2014).

Regardless of whether the goal is to utilize modelling for human health risk assessment or 

for health impact assessment, there are great opportunities to leverage the emerging sensor 

system data to improve estimates of micro-environmental levels of hazards and estimates of 

human mobility and time-location patterns – collectively these can improve exposure 

assessment science. Improved exposure estimates for individuals can be linked to ‘Big Data’ 

(e.g., electronic medical records), as well as emerging fields of biomedical science, such as 

exposomics, as discussed below. In addition, physiological sensing data from wearable 

sensors may improve our understanding of pre-clinical effects of exposure, enhanced by 
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model-data fusion, for instance taking into account high resolution meteorological 

information (Johansson et al., 2015).

5.1 Missing link for association and causality

A criticism of statistical epidemiologic models is their focus on identifying association, 

while causality remains difficult to assess, despite the fact that many information theoretical 

and physical based models have been developed recently for dissecting spatio-temporal 

correlation time series more deeply than with traditional statistical models. Models, such as, 

for instance, transfer entropy models (Villaverde et al., 2014), maximal information-based 

nonparametric exploration models, and global uncertainty and sensitivity analysis models 

(Saltelli et al., 2010) are able to explore lags in space and time of data considering variable 

uncertainty and any combination of variable dependency, creating non-linear variations in 

the monitored output, that is, for instance disease incidence. These models embrace the idea 

that interactions of factors matter much more than single factor effects in shaping population 

health trajectories, thus traditional factor ranking based on one-time sensitivity analyses has 

limited validity and applicability. Note that such models can also provide predictions and 

can screen variable importance and interaction before any physical-based model is built. 

They can inform the design of modelling systems beyond the analysis of causality in data. 

Perhaps the most relevant aspect of sensors to these spatio-temporal predictive models is 

that there is the potential for sensor data to improve our understanding of the timing and 

context for exposures to a particular hazard or mixtures of hazards, confirming that 

exposures precede disease, and are not confounded by other competing risk factors to 

improve causal inference. Finally, it is important to recognise that the strength of causality is 

always a function of the stated objective, rather than a universal value valid across any 

domain and temporal scale of analysis if scaling analysis is not performed.

5.2 ‘Big data’ and exposomics

Future environmental health models may obtain relevant information for decision making 

through several linkages to ‘Big Data’, e.g. using web technologies (Vitolo et al., 2015). 

One very likely linkage involves the increasing movement of clinical data to electronic 

medical records (EMR). EMRs have the potential to greatly improve our ability to access 

and query populations to compare the health outcomes of individuals living in different 

environments with different environmental exposures.

Another possible direction for health modelling involves ‘Big Data’, not at the population 

level, but rather at the individual-level. There is a small but emerging subculture, the 

Quantified Self movement (http://quantifiedself.com/), who are individuals interested in 

collecting large amounts of behavioural health data about themselves. Empowered by 

personal sensor devices, these Quantified Self persons may collect gigabytes of data over 

several years about their physical activity levels, time-location patterns, etc., for the 

purposes of understanding behavioural patterns and optimizing efficiency in their life. 

Individual-based dynamic models may be helpful in understanding these patterns.

Advances in the biomedical sciences have enabled the new field of exposomics (Wild, 2005; 

Rappaport, 2011), which aims to understand, through biology, the mixture of exposures to 
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different environmental hazards throughout an individual’s stages of life. As the methods 

within exposomics are refined to the point where an individual’s environmental exposures 

can be characterized (from analysis of biological samples), there will likely be an increasing 

need to model the relationship between these biological exposure factors to exposure factors 

outside of the body, such as behaviours and environmental processes that can be more 

appropriately dealt with through environmental policies and planning.

In each of these ‘Big Data’ examples, and with sensing in general, the prospects for exciting 

new data-integrative modelling must still be balanced with the practicalities and need for 

ethical use of sensitive data. For instance, in the U.S., there are federal laws that govern the 

disclosure of protected health information in electronic medical records. In addition, for data 

from individual-level sensing and exposure biology, the ethical concerns regarding what can 

and cannot be inferred from disclosure remains largely unexplored.

6. Models and data at the science-policy interface

Key for successful science-policy interaction is to establish the science-policy interface to 

include all aspects of the policy decision development cycle: starting from issue framing, in 

the adequate institutional setting, building of trust is an essential step. Salience and timing of 

the scientific evidence agreed upon within the science community and presented to policy 

stakeholders are equally important to ensure uptake.

In the case of transboundary air pollution, long-term monitoring activities and developing 

modelling capability have supported the framing of the issue and delivered robust data to 

derive salient policy information. A crucial role in communicating risk quantification 

concepts and providing input data for integrated assessment modeling (IAM) has been 

fulfilled by the application of both sensor networks and models documenting the 

environmental fate and effects of air pollution. IAMs integrated this information and – by 

providing high-level summary evaluations of different policy options - highlight the cause 

for action and the costs of inaction. The institutional setting provided by, for instance, the 

United Nations Economic Commission for Europe’s (UNECE) Convention on Long-range 

Transboundary Air Pollution (CLRTAP) has been essential both in building trust between 

different scientific fields, and between science and policy stakeholders. The flow of 

information is not unidirectional from science to policy: the explicit and implicit values 

expressed by national and international political processes find their way into the priority 

setting process for modelling and research, and the valuation of different, at times 

conflicting, policy targets (Voinov et al., 2014).

Much of the success of CLRTAP in integrating science and policy can be attributed to 

scientific results, assessments, and technological solutions, forming an integral part of the 

agendas of negotiating meetings. Scientists are present in negotiation meetings, and policy-

makers participate in scientific meetings and thus can make sure that the science remains 

focused on the needs of the policy process. Such meetings typically start with an update of 

the available science and end with further requests to scientists (Reis et al., 2012).
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7. Conclusions and outlook

In this paper, we have outlined a number of exciting developments within environmental 

sensing that offer new opportunities for data-intensive modelling, particularly involving the 

incorporation of ‘Big Data’ from sensors and health-related datasets. The variety of both 

sensor and model systems is too large to provide a comprehensive review, however, we have 

attempted to provide useful examples in which sensor systems have been integrated with 

models, as well as sensor systems producing data that have not been modelled, and models 

that may benefit from sensor data. There are real challenges related to data QA/QC, 

metadata, standards, and spatio-temporal scaling (Schimak et al., 2010) that will require 

continual development in the upcoming years as models and sensor systems are increasingly 

integrated. With such integration across different dimensions (Hamilton et al., 2015), there 

is the possibility to better understand uncertainty, and to improve model predictions, 

particularly in the estimate of human exposures to environmental hazards, which is a 

fundamental step in human health risk assessment and health impact assessment. 

Particularly exciting will be the development of systems that so tightly couple real-time 

sensor data with models, that they produce information that actively engages with the public 

and informs stakeholders (Voinov et al., 2010; Boschetti, 2015) towards improving public 

health in a seamless and transparent manner – true ubiquitous sensing and computing. Here, 

recent developments for instance in the development of Geospatial Information 

Infrastructures (Diaz et al., 2013) provide useful examples and can inform progress towards 

integrated environmental modelling (Laniak et al., 2013). At the same time, the motivation 

for integration needs to be clear and demand driven, to avoid the emergence of 

‘integronsters’ (Voinov et al., 2013), i.e. integrated models which have become too complex 

and convoluted to be transparent or useful.

‘Big Data’ and sensors are without doubt hot topics in the scientific community, as recently 

illustrated by the discussion of ‘Big Data’ in relation to public health (Khoury and Ioannidis, 

2014; Fung et al., 2014) and the spotlight on the use of low-cost sensors for crowdsourcing 

air pollution data in developing countries (Austen, 2015). In order to move forward and 

realise the substantial (potential) benefits offered by embracing these concepts, we identify 

these key research areas:

1. Developing metadata and access standards.

2. Understanding and developing QA/QC frameworks for sensor data that are 

adaptable to different purposes, and informative to modelling applications.

3. Continuing to develop improvements in modelling architectures for working with 

data of different spatio-temporal resolutions.

4. Continuing to develop improvements in the coupling of model systems with sensor 

systems for real-time control.

5. Improving ‘Big Data’ science, including data management, access, fusion, and 

analytics.

6. Addressing the ethical challenges of balancing privacy with data accessibility to 

improve public health.
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7. Improving partnerships between Citizen Science, Community Crowdsourcing, and 

other public data collection campaigns to improve the quality of sensing data and 

their usability for open source modelling.

8. Examining the differences and potential disparities between developed versus 

developing country adoption of sensor technologies, and their impacts on 

modelling of environmental health processes.

9. Evaluating the performance of integrated dynamical model-sensor systems and 

their use in policy making via the coupling of decision-analytical with biophysical 

models.

10. Demonstrating robustness and establishing trust in information generated from 

integrated modelling and ubiquitous sensing data.

This list is not exhaustive, but highlights the key areas we identify as critical for a better 

integration of models, sensors and stakeholders with the ultimate objective to provide better 

information for evidence based decision making. In closing, it is important to highlight the 

potential ethical challenges for integrated sensor-model systems, for instance in relation to 

personal data, privacy and individual autonomy (Vayena et al., 2015). While some of these 

challenges are not novel and well known in the context of public health and data use, others 

are new and emerging due to the recent advances in the capabilities of sensors and models

Acknowledgements

E.S. is funded by NIH R21ES024715. M.C. gratefully acknowledges the Minnesota Discovery, Research and 
InnoVation Economy (MnDRIVE) ‘’Global Food Venture’’ funding and the Institute on the Environment 
‘’Discovery Grant’’ funding at the University of Minnesota Twin-Cities. S.R. and S.S. acknowledge the support for 
the conceptual development and testing of personal exposure monitoring methods by the UK Natural Environment 
Research Council through National Capability funding.

References

Argent RM. Concepts, methods and applications in environmental model integration. Environ Model 
Softw. 2004a; 19(3):217.

Argent RM. An overview of model integration for environmental applications—components, 
frameworks and semantics. Environ Model Softw. 2004b; 19(3):219–234.

Austen K. Pollution Patrol. Nature. 2015; 136(517) http://www.nature.com/news/environmental-
science-pollution-patrol-1.16654. 

Banzhaf E, de la Barrera FJ, Kindler A, Reyes-Paecke S, Schlink U, Welz J, Kabisch S. A conceptual 
framework for integrated analysis of environmental quality and quality of life. Ecol Indic. 2014; 
45:664–668.

Barabási AL. The origin of bursts and heavy tails in human dynamics. Nature. 2005; 435:207–211. 
[PubMed: 15889093] 

Begg MD, Lagakos S. On the consequences of model misspecification in logistic regression. 
Environmental Health Perspectives. 1990; 87:69–75. [PubMed: 2269243] 

Boschetti F. Models and people: An alternative view of the emergent properties of computational 
models. Complexity. 2015

Convertino M, Liu Y, Hwang H. Optimal Surveillance System Design for Outbreak Source Detection 
Maximization: a Value of Information Model. Complex Adaptive Systems Modeling 2014. 2014; 
2:6.

Reis et al. Page 16

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/news/environmental-science-pollution-patrol-1.16654
http://www.nature.com/news/environmental-science-pollution-patrol-1.16654


Convertino M, Muñoz-Carpena R, Kiker GA, Perz SG. Design of optimal ecosystem monitoring 
networks: hotspot detection and biodiversity patterns. Stochastic Environmental Research and Risk 
Assessment. 2015; 29(4):1085–1101.

de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M. 
Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ 
Pollut. 2013; 176:92–99. [PubMed: 23416743] 

Díaz L, Bröring A, McInerney D, Libertá G, Foerster T. Publishing sensor observations into 
Geospatial Information Infrastructures: A use case in fire danger assessment. Environ Model 
Softw. 2013; 48(0):65–80.

Dons E, Int Panis L, Van Poppel M, Theunis J, Willems H, Torfs R, Wets G. Impact of time–activity 
patterns on personal exposure to black carbon. Atmos Environ. 2011; 45(21):3594–36021.

Duncan BH, Prados AI, Lamsal LN, Liu Y, Streets DG, Gupta P, Hilsenrath E, Kahn RA, Nielsen JE, 
Beyersdorf AJ, Burton SP, Fiore AM, Fishman J, Henze DK, Hostetler CA, Krotkov NA, Lee P, 
Lin M, Pawson S, Pfister G, Pickering KE, Pierce RB, Yoshida Y, Ziemba LD. Satellite data of 
atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data 
end-user resources, answer to FAQs, and common mistakes to avoid. Atmos Environ. 2014; 
94:647–662.

Engel-Cox J, Nguyen TKO, vanDonkelaar A, Martin RV, Zell E. Toward the next generation of air 
quality monitoring: Particulate matter. Atmos Environ. 2013; 80:584–590.

EOSDIS. Earth Observation System Data and Information System. 2014 https://earthdata.nasa.gov/
about-eosdis/performance. 

Fung IC-H, Zion Tsz Ho Tse ZTH, Fu K-W. Converting Big Data into public health. Science. 2015; 
347(6222):620. [PubMed: 25657237] 

Galelli S, Humphrey GB, Maier HR, Castelletti A, Dandy GC, Gibbs MS. An evaluation framework 
for input variable selection algorithms for environmental data-driven models. Environ Model 
Softw. 2014; 62:33–51.

Hamilton SH, ElSawah S, Guillaume JHA, Jakeman AJ, Pierce SA. Integrated assessment and 
modelling: Overview and synthesis of salient dimensions. Environ Model Softw. 2015; 64(0):215–
229.

Helbing D. Globally networked risks and how to respond. Nature. 2013; 497:51–59. [PubMed: 
23636396] 

Helbing D, Brockmann D, Chadefaux T, Donnay K, Blanke U, Woolley-Meza O, Moussaid M, 
Johansson A, Krause J, Schutte S, Perc M. Saving Human Lives: What Complexity Science and 
Information Systems can Contribute. Journal of Statistical Physics. 2015; 158:735–781. [PubMed: 
26074625] 

Hill DJ, Liu Y, Marini L, Kooper R, Rodriguez A, Futrelle J, Minsker BS, Myers J, McLaren T. A 
virtual sensor system for user-generated, real-time environmental data products. Environ Model 
Softw. 2011; 26(12):1710–1724.

Hilty LM, Aebischer B, Rizzoli AE. Modeling and evaluating the sustainability of smart solutions. 
Environ Model Softw. 2014; 56(0):1–5.

Horsburgh JS, Tarboton DG, Piasecki M, Maidment DR, Zaslavsky I, Valentine D, Whitenack T. An 
integrated system for publishing environmental observations data. Environ Model Softw. 2009; 
24(8):879–888.

Johansson L, Epitropou V, Karatzas K, Karppinen A, Wanner L, Vrochidis S, Bassoukos A, Kukkonen 
J, Kompatsiaris I. Fusion of meteorological and air quality data extracted from the web for 
personalized environmental information services. Environ Model Softw. 2015; 64(0):143–155.

Kelly (Letcher) RA, Jakeman AJ, Barreteau O, Borsuk ME, ElSawah S, Hamilton SH, Henriksen HJ, 
Kuikka S, Maier HR, Rizzoli AE, vanDelden H, Voinov AA. Selecting among five common 
modelling approaches for integrated environmental assessment and management. Environ Model 
Softw. 2013; 47:159–181.

Khoury MJ, Ioannidis JPA. Big data meets public health. Science. 2014; 346(6213):1054–1055. 
[PubMed: 25430753] 

Reis et al. Page 17

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://earthdata.nasa.gov/about-eosdis/performance
https://earthdata.nasa.gov/about-eosdis/performance


Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, 
Peckham S, Reaney S, Gaber N, Kennedy R, Hughes A. Integrated environmental modeling: A 
vision and roadmap for the future. Environ Model Softw. 2013; 39(0):3–23.

Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu: Traps in Big Data Analysis. 
Science. 2014 Mar; 343(14):1203–1205. Copy at http://j.mp/1ii4ETo. [PubMed: 24626916] 

Levin S. The problem of pattern and scale in ecology. Ecological Time Series. 1995:277–326.

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, et al. A comparative risk assessment of burden of 
disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: 
a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012; 380(9859):
2224–2260.

Loos M, Schipper AM, Schlink U, Strebel K, Ragas AMJ. Receptor-oriented approaches in wildlife 
and human exposure modelling: A comparative study. Environ Model Softw. 2010; 25:369–382.

MacIntosh DL, Xue J, Ozkaynak H, Spengler JD, Ryan PB. A population-based exposure model for 
benzene. J Expo Anal Environ Epidemiol. 1995; 5(3):375–403. [PubMed: 8814777] 

Maier HR, Jain A, Dandy GC, Sudheer KP. Methods used for the development of neural networks for 
the prediction of water resource variables in river systems: Current status and future directions. 
Environ Modell Softw. 2010; 25(8):891–909.

May RJ, Dandy GC, Maier HR, Nixon JB. Application of partial mutual information variable selection 
to ANN forecasting of water quality in water distribution systems. Environ Modell Softw. 2008; 
23(10–11):1289–1299.

McIntosh BS, Seaton RAF, Jeffrey P. Tools to think with? Towards understanding the use of 
computer-based support tools in policy relevant research. Environ Modell Softw. 2007; 22(5):640–
648.

McIntosh BS, Ascough JC II, Twery M, Chew J, Elmahdi A, Haase D, Harou JJ, Hepting D, Cuddy S, 
Jakeman AJ, Chen S, Kassahun A, Lautenbach S, Matthews K, Merritt W, Quinn NWT, 
Rodriguez-Roda I, Sieber S, Stavenga M, Sulis A, Ticehurst J, Volk M, Wrobel M, van Delden H, 
El-Sawah S, Rizzoli A, Voinov A. Environmental decision support systems (EDSS) development 
– Challenges and best practices. Environ Model Softw. 2011; 26(12):1389–1402.

McKone, TE. Livermore, CA: Lawrence Livermore National Laboratory; 1993. CalTOX, A 
Multimedia Total-Exposure Model for Hazardous-Wastes Sites Part III: The Multiple-Pathway 
Exposure Model. UCRL-CR-111456Pt III. https://www.dtsc.ca.gov/AssessingRisk/upload/
techman3.pdf. [Accessed 7 June 2015]

Muller, SJ.; Muñoz-Carpena, R.; Kiker, GA. Model relevance: Frameworks for exploring the 
complexity-sensitivity-uncertainty trilemma. In: Linkov, I., editor. Climate Change: Global 
Change and Local Adaptation. Netherlands: Springer; 2011. Adaptive Management for Climate 
Change (NATO series).

Perelman L, Ostfeld A. Operation of remote mobile sensors for security of drinking water distribution 
systems. Water Research. 2013; 47(13):4217–4226. [PubMed: 23764572] 

Puttaswamy SJ, Nguyen HM, Braverman A, Hu X, Liu Y. Statistical data fusion of multi-sensor AOD 
over the continental United States. Geocarto International. 2014; 29:48–64.

Quax R, Apolloni A, Sloot PMA. Towards understanding the behavior of physical systems using 
information theory. The European physical journal. Special topics. 2013; 222(6):1389–1401.

Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 
2011; 21(1):5–9. [PubMed: 21081972] 

Reis S, Grennfelt P, Klimont Z, Amann M, ApSimon H, Hettelingh J-P, Holland M, LeGall A-C, Maas 
R, Posch M, Spranger T, Sutton MA, Williams M. From Acid Rain to Climate Change. Science. 
2012; 338(6111):1153–1154. [PubMed: 23197517] 

Rinaldo A, Bertuzzo E, Mari L, Righetto L, Blokesch M, Gatto M, Casagrandi R, Murray M, 
Vesenbeckh SM, Rodriguez-Iturbe I. Reassessment of the 2010–2011 Haiti cholera outbreak and 
multi-season projections via inclusion of rainfall and waning immunity. PNAS. 2012; 109(17):
6602–6607. [PubMed: 22505737] 

Rose G. Sick individuals and sick populations. International Journal of Epidemiology. 1985; 14:32–38. 
[PubMed: 3872850] 

Rothman, K.; Greenland, S.; Lash, T. Modern Epidemiology. Lippincott W and Wilkins; 2008. 

Reis et al. Page 18

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://j.mp/1ii4ETo
https://www.dtsc.ca.gov/AssessingRisk/upload/techman3.pdf
https://www.dtsc.ca.gov/AssessingRisk/upload/techman3.pdf


Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, Campbell EM, Cattuto C, 
Khandelwal S, Mabry PL, Vespignani A. Digital epidemiology. PLoS Comput Biol. 2012; 
8:e1002616. pmid:22844241. [PubMed: 22844241] 

Saltelli A, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, Stefano Tarantola. 
Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity 
index. Computer Physics Communications. 2010; 181(2):259–270.

SAS. Big Data - What it is & why it matters. http://www.sas.com/en_us/insights/big-data/what-is-
bigdata.html. 

Schimak G, Rizzoli AE, Watson K. Sensors and the environment – Modelling & ICT challenges. 
Environ Model Softw. 2010; 25(9):975–976.

Stocker M, Baranizadeh E, Portin H, Komppula M, Rönkkö M, Hamed A, Virtanen A, Lehtinen K, 
Laaksonen A, Kolehmainen M. Representing situational knowledge acquired from sensor data for 
atmospheric phenomena. Environ Model Softw. 2014; 58(0):27–47.

Schlink, U.; Fischer, G. A Bayesian Maximum Entropy scheme for the assimilation of mobile 
recordings with simulations of urban micrometeorological data. In: Ames, DP.; Quinn, NWT.; 
Rizzoli, AE., editors. Proceedings of the 7th International Congress on Environ Modell Softw 
(iEMSs). San Diego, California, USA: International Environ Modell Softw Society (iEMSs), 
Manno; 2014 Jun 15–19. p. 1-6.

Schlink U, Kindler A, Großmann K, Schwarz N, Franck U. The temperature recorded by simulated 
mobile receptors is an indicator for the thermal exposure of the urban inhabitants. Ecol Indic. 
2014; 36:607–616.

Schlink U, Ragas AMJ. Truncated Levy flights and agenda-based mobility are useful for the 
assessment of personal human exposure. Environ Pollut. 2011; 159(8–9):2061–2070. [PubMed: 
21429644] 

Schlink U, Strebel K, Loos M, Tuchscherer R, Richter M, Lange T, Wernicke J, Ragas AMJ. 
Evaluation of human mobility models, for exposure to air pollutants. Sci. Total Environ. 2010; 
408:3918–3930. [PubMed: 20417545] 

Shannon, CE.; Weaver, W. The Mathematical Theory of Communication. University of Ilinois Press; 
1949. 

Steinle S, Reis S, Sabel C. Quantifying human exposure to air pollution - moving from static 
monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2013; 
443:184–193. [PubMed: 23183229] 

Steinle S, Reis S, Sabel C, Semple S, Twigg MM, Braban CF, Leeson AE, Heal MR, Harrison D, Lin 
C, Wu H. Application of a low-cost method to quantify human exposure to ambient particulate 
matter concentrations across a wide range of microenvironments. Sci Total Environ. 2015; 
508:383–394. [PubMed: 25497678] 

Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villenevue PJ. Global 
estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical 
depth: Development and application. Environ Health Persp. 2010; 118:847–855.

Vayena E, Salathé M, Madoff LC, Brownstein JS. Ethical Challenges of Big Data in Public Health. 
PLoS Comput Biol. 2015; 11(2):e1003904. [PubMed: 25664461] 

Vespignani A. Modeling dynamical processes in complex socio-technical systems. Nature Physics. 
2012; 8:32–39.

Vieno M, Heal MR, Hallsworth S, Famulari D, Doherty RM, Dore AJ, Tang YS, Braban CF, Leaver 
D, Sutton MA, Reis S. The role of long-range transport and domestic emissions in determining 
atmospheric secondary inorganic particle concentrations across the UK. Atmos Chem Phys. 2014; 
14:8435–8447.

Vieno M, Dore AJ, Stevenson DS, Doherty R, Heal MR, Reis S, Hallsworth S, Tarrason L, Wind P, 
Fowler D, Simpson D, Sutton MA. Modelling surface ozone during the 2003 heat-wave in the UK. 
Atmos Chem Phys. 2010; 10:7963–7978.

Villaverde AF, Ross J, Morán F, Banga JR. MIDER: Network Inference with Mutual Information 
Distance and Entropy Reduction. PLoS ONE. 2014; 9(5):e96732. [PubMed: 24806471] 

Voinov A, Bousquet F. Modelling with stakeholders. Environ Model Softw. 2010; 25(11):1268–1281.

Reis et al. Page 19

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sas.com/en_us/insights/big-data/what-is-bigdata.html
http://www.sas.com/en_us/insights/big-data/what-is-bigdata.html


Voinov A, Shugart H. 'Integronsters', integral and integrated modeling. Environ Model Softw. 2013; 
39:149–158.

Voinov A, Seppelt R, Reis S, Nabel JEMS, Shokravi S. Values in socio-environmental modelling: 
Persuasion for action or excuse for inaction. Environ Model Softw. 2014; 53:207–212.

Vitolo C, Elkhatib Y, Reusser D, Macleod CJA, Buytaert W. Web technologies for environmental Big 
Data. Environ Model Softw. 2015; 63(0):185–198.

Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO. Quantifying the 
impact of human mobility on malaria. Science. 2012; 338(6104):267–270. [PubMed: 23066082] 

Wild CP. Complementing the genome with an "exposome": the outstanding challenge of 
environmental exposure measurement in molecular epidemiology. Cancer epidemiology, 
biomarkers & prevention: a publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology. 2005; 14(8):1847–1850.

Wood M, Kovacs D, Bostrom A, Convertino M, Linkov I. A Moment of Mental Model Clarity, 
Response to Jones et al. 2011 “Mental Models: An Interdisciplinary Synthesis of Theory and 
Methods, 2011, 16-1, Ecology and Society) in the special issue “Mental models in human - 
environment interactions: Theory, policy implications, and methodological explorations”; Editor: 
L. Gunderson), http://dx.doi.org/10.5751/ES-05122-170407. Ecology and Society. 2012

Wu W, Dandy GC, Maier HR. Protocol for developing ANN models and its application to the 
assessment of the quality of the ANN model development process in drinking water quality 
modeling. Environ Model Softw. 2014a; 54:108–127.

Wu W, Dandy GC, Maier HR. Optimal control of total chlorine and free ammonia levels in a water 
transmission pipeline using artificial neural networks and genetic algorithms. J. Water Resour. 
Plann. Manage. 2014b 10.1061/(ASCE)WR.1943-5452.0000486, 04014085. 

Reis et al. Page 20

Environ Model Softw. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.5751/ES-05122-170407


Highlights

1. Sensors and models play vital roles in harnessing ‘Big Data’ to extract 

information

2. Data analytics can help to diminish monitoring burden and support locating 

sensors

3. Exploring ‘Big Data’ is essential to detect universal associations across space 

and time

4. Ethical challenges and issues of standards and harmonisation need to be 

addressed

5. Citizen science needs robust sensors and models to crowd-source and interpret 

data
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Fig. 1. 
A conceptual model for sensor-model integration illustrating the complex system required 

for the development of evidence and data based action (e.g. policy development and 

implementation). The central role of information (factors, interpretation, values, uncertainty, 

transformation and context) is highlighted. Here, information is also depicted as input to the 

modelling stage, e.g., to reduce the size of ’Big Data’ by extracting only data with high 

information value for the question being asked (Shannon and Weaver 1949, Lazer et al., 

2014, Galelli et al., 2014; Convertino et al., 2014, 2015). Information in general and the 

policy questions to be assessed in particular include value judgements (Voinov et al., 2014). 

This can affect the interpretation of data, for instance by identifying priorities and setting the 

context for analyses. A robust science-policy interface (Reis et al., 2012) can establish trust 

in data and information generated by sensors and models. This is essential, as transparency 

and traceability of data flows and processing methods are key requirements to assess the 

quality of data. Such science-policy interfaces need to reflect stakeholders’ conceptual and 

mental models (alternatives, preferences, utility, and drivers) embedded in decision science 

frameworks, integrating those (mainly) qualitative models with (quantitative) biophysical 

models and decisions (see Wood et al., 2012; Boschetti, 2015 and section 7).
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