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Summary

Tumors are typically sequenced to depths of 75–100× (exome) or 30–50× (whole genome). We 

demonstrate that current sequencing paradigms are inadequate for tumors that are impure, 

aneuploid or clonally heterogeneous. To reassess optimal sequencing strategies, we performed 

ultra-deep (up to ~312×) whole genome sequencing (WGS) and exome capture (up to ~433×) of a 

primary acute myeloid leukemia, its subsequent relapse, and a matched normal skin sample. We 

tested multiple alignment and variant calling algorithms and validated ~200,000 putative SNVs by 
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sequencing them to depths of ~1,000×. Additional targeted sequencing provided over 10,000× 

coverage and ddPCR assays provided up to ~250,000× sampling of selected sites. We evaluated 

the effects of different library generation approaches, depth of sequencing, and analysis strategies 

on the ability to effectively characterize a complex tumor. This dataset, representing the most 

comprehensively sequenced tumor described to date, will serve as an invaluable community 

resource (dbGaP accession id phs000159).

Introduction

Previous studies have estimated that sequencing human genomes to 30–40× mean coverage 

is sufficient to accurately detect germline heterozygous SNVs in 95% of the genome (Ajay 

et al., 2011). Despite additional complexity from factors like contamination of non-tumor 

cells, tumor heterogeneity, and aneuploidy, cancer genomes have generally been sequenced 

to comparable depths, typically between 30× and 50× mean coverage (Borad et al., 2014; 

Mardis, 2012). While this is enough coverage to discover SNVs in the founding clones of 

high purity tumors, most tumors are not pure, with estimated tumor cellularities ranging 

from 90–95% in many hematologic cancers, such as acute myeloid leukemia (AML) 

(Cancer Genome Atlas Research Network, 2013), to 25–75% in some solid tumors such as 

breast (Yuan et al., 2012), and to as low as 5% in some pancreatic cancer samples (Biankin 

et al., 2012). Most tumors also contain subclonal populations, some of which may contribute 

to therapeutic resistance (Ding et al., 2012; Ma et al., 2015). Increased sequencing depth has 

the potential to enable sensitive detection of mutations corresponding to these subclonal 

populations and improve inference of a tumor’s clonal architecture.

Although interrogating tumors with targeted approaches (including exome capture) can 

provide greater sequencing depth, these assays do not allow for complete characterization of 

a tumor genome. Whole genome sequencing (WGS) is necessary for comprehensive 

detection of many relevant classes of mutations, including structural variants, copy number 

alterations, non-protein-coding mutations with regulatory significance, and viral integration 

sites. In tumors with a low mutational load, WGS increases the number of detectable 

variants and is essential for accurately outlining subclonal architecture (Miller et al., 2014). 

In general, detecting low frequency mutations and characterizing the clonal structure of 

tumors may require greater depth than that afforded by current WGS strategies, and greater 

breadth than that afforded by current exome or gene panel sequencing strategies.

The reluctance to sequence cancer samples to high depth has been driven by financial 

constraints, but as the cost of sequencing has continued to drop, there have been a few 

studies that have generated large amounts of sequence data from single samples. Lam, et al. 

sequenced a normal individual to ~300× in order to compare the characteristics of multiple 

sequencing chemistries and instruments (Lam et al., 2012). Rieber, et al. generated ~145× 

coverage of a pair of medulloblastomas (when combining data across platforms) and used 

that data to evaluate coverage biases and variant calling performance (Rieber et al., 2013). 

One of the most deeply sequenced tumors to date is an ER+ breast cancer that was 

sequenced to ~188× mean coverage, which allowed for identification of subclonal 

populations as low as ~5% variant allele frequency (VAF) (Nik-Zainal et al., 2012). Though 
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each study offered valuable insights, none examined the impact of sample and library 

preparation or attempted to quantify the lower limits of detection using current sequencing 

technologies.

While a growing body of evidence suggests that current sequencing paradigms are 

inadequate for evaluating relevant characteristics of tumors, consensus on optimal 

methodologies and depth of coverage targets is lacking. The International Cancer Genome 

Consortium (ICGC) has published anticipated standards, recommending that "80% of the 

somatic alterations should be identified in each sample and that coverage calculations on 

each sample should be based on this expectation” (https://icgc.org/icgc/goals-structure-

policies-guidelines/e8-genome-analyses). At this point, it is unclear how such coverage 

depths can be estimated, especially when the number of mutations present at a variant allele 

frequency (VAF) of below ~15% is essentially unknown for all cancers sequenced to date.

In this study, we explore the value of sequencing genomes well beyond 100× by studying an 

individual with AML, referred to throughout this work as ‘AML31’. This patient was 

diagnosed with AML at age 55 and a primary tumor sample (from the bone marrow) was 

obtained at this timepoint. The patient achieved clinical remission following standard 

induction chemotherapy with cytarabine and idarubicin, and then received four rounds of 

high dose cytarabine consolidation therapy. The patient relapsed 16 months later, at which 

point a relapse sample was obtained (clinical features of this case have been described in 

detail in previous publications (Cancer Genome Atlas Research Network, 2013; Ding et al., 

2012; Klco et al., 2014)). Previous genomic analyses of both the de novo and relapsed 

samples revealed common founding clone mutations between the two populations, as well as 

subclonal populations specific to the primary tumor (responsive to therapy) and to the 

relapse tumor (that became the dominant clone) (Ding et al., 2012). Although WGS was 

performed for these samples to typical coverage levels (25× and 38×), this depth was 

insufficient to identify the provenance of most mutations observed only in the relapse 

sample. The initial discovery sequencing for this case was also complicated by a normal skin 

sample that was heavily contaminated by tumor cells. In the current study we sequenced a 

second skin normal sample obtained when the patient was in a deep remission.

By whole genome sequencing this tumor to a depth of greater than 300× and applying 

comprehensive analysis strategies, we demonstrate that: 1) The commonly utilized 

sequencing depths of ~100× for exomes and 30–50× for WGS are inadequate when there 

exists even moderate heterogeneity, impurity, contamination, aneuploidy, or combinations 

thereof; 2) Current analysis strategies relying on a single alignment algorithm and variant 

caller, using data from a single DNA library, suffer from poor sensitivity and specificity; 3) 

Deep sequencing substantially improves the discovery of variants across a range of variant 

allele frequencies and allows for a more definitive model of tumor clonal architecture; and 

4) This dataset, generated from the most deeply sequenced and cross-validated tumor 

described to date, will serve as a valuable community resource for improving tools and 

algorithms by providing an extremely high confidence set of low frequency mutations.
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Results

Whole genome sequencing of an AML primary tumor and relapse specimen

Samples from a single patient (“AML31”) were originally sequenced to standard depths 

(24× tumor, 32× normal, 38× relapse), which allowed for the identification of 118 variants, 

including a DNMT3A R882H mutation and NPM1 W288fs in the founding clone (Ding et 

al., 2012). Nineteen sites, including FLT3 D835H and IDH1 R132H, comprised a subclone 

that was apparently eliminated by chemotherapy. An additional 42 sites were categorized as 

relapse-specific, though a few were found at measurable (but not statistically significant) 

depths in the primary tumor. Follow-up work further established that AML31 had multiple 

subclones at presentation (Klco et al., 2014), with at least three populations that responded 

differently to engraftment in immunodeficient mice, and confirmed that many mutations 

driving the relapse tumor were present at low levels in the primary tumor. That study also 

identified a presumed driver IDH2 R140Q mutation that was in less than 2% of the tumor, 

but present in the dominant subclone of the relapse. A total of 149 somatic SNVs and indels 

were discovered in these two paired samples.

To enable discovery of additional somatic mutations, we took samples from the primary and 

relapse tumors and matched them with a normal skin sample (Figure 1 and Table S1). We 

performed WGS for the primary tumor and normal samples, using multiple independent 

libraries to 312× and 121× coverage, respectively. Existing sequence data for the relapse 

tumor provided 38× coverage of that sample (Table 1 and Figure S1–S3). Using a 

combination of WGS and custom capture data (described below), we estimated the tumor 

cell purity of primary and relapse tumors as 90.7% and 36.2% respectively (Figure S4, 

Supplemental Experimental Procedures). Purity is the proportion of tumor cells derived 

from the initiating tumor cell and the remaining proportion represents putatively normal 

cells. Tumor contamination in the normal skin was low (likely because the sample was 

obtained while the patient was in remission), with a conservative upper estimate of 0.35% 

(Figure S4), based on the 95th percentile VAF value from selected somatic sites in the tumor 

(see Supplemental Experimental Procedures for details). This level may include sequencing 

errors and technical errors, but we were unable to find strong evidence for either at rates that 

would exceed 0.35%. Sequencing errors were examined using homozygous sites (as 

determined by SNP genotyping microarrays); the upper estimate of signal we expect from 

sequencing errors in this data is 0.23–0.35%, depending on the base identity (Figure S5 and 

Table S2). Much of the following analysis relies on accurate estimation and interpretation of 

tumor VAFs. These values can be substantially complicated by large-scale copy number 

variants (CNVs) that are common in many tumors. However, neither the primary tumor nor 

the relapse contained any detectable CNVs (Figure S6).

SNV detection and validation

Seven different SNV callers were run on the WGS data for the primary and relapse tumors 

(both compared to the normal skin sample). Application of these callers to the unusually 

high tumor WGS coverage resulted in 371,976 unique somatic variants called by one or 

more callers (Table S3 and Dataset S1, the complete call set is available in dbGaP accession 

id phs000159). A low stringency filter was applied to all of these variants to remove those 
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with low read coverage in the tumor WGS data or unusually high evidence for the putative 

variant base in the normal sample (see Experimental Procedures for details). Only 3.3% of 

all variants were removed by this filter, leaving 359,619 calls. From the 359,619 remaining 

variants, we selected 198,814 for targeted re-sequencing using a custom NimbleGen capture 

reagent (Dataset S2, see Experimental Procedures for details). Oligonucleotide probes for 

191,988 (96.6%) of these sites were successfully designed and synthesized. 3.4% of sites 

failed the design process because the resulting oligonucleotide sequences did not satisfy the 

manufacturer’s specified parameters with respect to GC content, melting temperature, 

repetitive sequence, or other factors. Capture hybridization followed by sequencing yielded 

adequate coverage for 164,090 sites (82.0%), with at least 20× coverage in the tumor, 

relapse and normal (median depth of 1,500× in the primary tumor sample, 280× in the 

relapse, and 1,130× in the normal skin). 135,788 of these sites (82.7%) contained at least 

one variant supporting read. Using these results along with data from deep exome 

sequencing (coverage of 263× normal, 433× tumor, and 251× relapse) as input (the “core” 

dataset), we performed extensive filtering and manual review to produce a ‘platinum’ 

variant list that contained 1,343 high quality validated sites (Table S4, Dataset S3, and 

Supplemental Experimental Procedures). The relapse data served as a useful control for this 

filtering process, since it contained many very-low frequency sites that expanded to higher 

VAFs in the relapse: 63 sites in the list with relapse VAF > 10% have a primary tumor VAF 

between 0.05 and 2%. This represents a greater than 11-fold increase in the number variants 

over the previous ~30× tumor with a tumorcontaminated normal (Ding et al., 2012).

The platinum variant list includes previously unidentified SNVs in a number of cancer-

related genes, including FOXP1 (e11+1) and TP53 (G266R) (Table S5). The coverage for 

platinum variants in the core dataset was 4,182–11,603× in the primary sample and 3,392–

10,557× in the relapse. We also identified 38 putative relapse-specific variants in this list, 

where the VAF observed in the primary tumor was less than 0.23% (the 95th percentile of 

what we might expect by random sequencing errors) and the VAF was greater than 5% in 

the relapse tumor (5–20% range, 7.2% median) (Table S6 and Figure S7). The relapse-

specific variants included four predicted to affect protein sequence: MIB2 (G514S), CXCL17 

(N83D), LMBR1 (R215H), and the TP53 (G266R) variant mentioned above. The TP53 site 

was covered by 9,292 reads across all sequence datasets with only 0.01% VAF in the 

primary tumor (Table S5), below that expected by sequencing error alone (Figure S5). To 

visualize support for these, along with an additional 228 putative relapse-specific events that 

did not meet the platinum criteria, we plotted the reference and variant read counts, coverage 

levels, and VAFs for both the primary and relapse sample (Figure S8). Many of these 

candidates had ~1,000–4,000× coverage with 0–2 variant-supporting reads in the primary 

tumor, close to what could be expected by sequencing errors alone. However, it was difficult 

to conclude that they were truly new mutations acquired at relapse, rather than mutations 

that were present at very low levels in the primary tumor. A subset of these events was 

therefore assayed by amplicon sequencing and ddPCR to assess their relapse-specific status 

(Figure S8, Tables S7 and S8). We obtained up to ~239,000× coverage in these assays 

(using up to 2 µg of input DNA, or ~580,000 haploid copies of the genome per assay). No 

variants assayed in this manner were truly relapse-specific. Some were present at low levels 

and were difficult to detect with the ~2,000–10,000× coverage from the custom capture 
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assays, but upon deeper sequencing, all were found to be present in the primary tumor 

(Tables S8 and S9).

WGS offers the additional benefit of interrogating the regulatory regions of the genome. Out 

of the 1,343 variants in the platinum list, 8 occurred within putatively important non-coding 

regions defined by version 1 of our regulatory database, the ‘Regulome’, further described in 

the Supplemental Experimental Procedures (Table S10). FPKM expression values of the 

nearest neighboring gene were compared between RNA-seq data from the primary and 

relapse samples (4 variants were within gene introns, 3 were within 400 bp of a gene, and 1 

was within the untranslated region of a pseudogene). Only 2 variants occurred within or 

adjacent to genes with >1 FPKM RNA-seq expression (RGS9 and ANKS6), both of which 

showed mild increases in FPKM values between primary and relapse (0.003 to 1.86 and 1.15 

to 4.57, respectively).

Detection of other somatic events

Although the primary focus of this study was SNVs, we also examined other types of 

somatic variation. Detection of small insertions and deletions (indels) was performed using 

six different algorithms, yielding 667 indels within known Ensembl exons, of which only 23 

(3.4%) remained after filtering and manual review (See Supplemental Experimental 

Procedures, Figure S9). Driver indels include FLT3 ITD, RUNX1 P339fs, and the previously 

described NPM1 W288fs (Table S11) (Ding et al., 2012). This tumor genome was 

exceptionally copy neutral, and even with the high resolution afforded by deep WGS, we 

were unable to detect any somatic copy number (Figure S6) or structural variants.

Clonal inference and tumor evolution

Using the variant allele frequencies of SNVs from the platinum list, we utilized the SciClone 

algorithm to infer the clonal structure of this tumor (Figure 2) (Miller et al., 2014). It 

detected 6 distinct clusters (Figure 2), with a founding clone (cluster 1), three tumor-specific 

subclones (clusters 2, 4, and 6), and two subclones enriched in the relapse sample (clusters 3 

and 5). With the exception of the very-low VAF cluster 6, each cluster contained at least one 

potential driver mutation that may be relevant for that subclone’s growth advantage.

Using the full clustering data as input, we generated possible evolutionary trees, based on 

relationships between subclones in the primary tumor and relapse (Figure S10). Though 5 

structures are initially possible in the tumor, single cell sequencing data conclusively 

established the independence of clusters 2 and 4 (Klco et al., 2014). This eliminated all but 

two structures that differed only in assigning the parent of cluster 6 (Figure S10A,B).

Tracking clonal evolution over time

To add additional temporal resolution between presentation and relapse, we sequenced 11 

variants drawn from several different subclonal populations to a depth of 6,463× in FFPE 

bone marrow biopsy samples collected at days 0 (primary tumor), 14, 34, 69, 187, 334, and 

505 (relapse) using targeted amplicon sequencing (Figure 3A and Table S7). At day 14, the 

VAFs of all variants were diminishing and almost completely disappeared at day 34, with 

only 2 reads out of 2,878 (0.07%) supporting the presence of the DNMT3A founding clone 
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variant. By day 69, however, the founding clone mutations had returned and were detected 

with VAFs between 1 and 3% until day 505. At this point the relapse tumor had emerged, 

containing the cluster 3 IDH2 mutation (18.64% VAF), as well as the founding clone 

DNMT3A and NPM1 mutations, all with VAFs of approximately 20%.

Though the TP53 variant had a coverage of 7,664 reads and only 0.01% VAF at day 0, its 

proportion increased post-chemotherapy, with a VAF of 6.84% by day 187 and 17.65% by 

day 334. The other assayed variants all had VAFs below 1.02% at these timepoints. This 

indicates that the population of cells containing TP53 and KCNT1 mutations was derived 

from a hematopoietic stem/progenitor cell that was different from the one that produced the 

AML founding clone. This observation resulted in further modification of our model of 

tumor evolution (Figure 3B–D). This population had a selective advantage during 

consolidation chemotherapy, which lasted until day 150 (consistent with a previous report of 

TP53 as a driver of resistance to chemotherapy and expansion post-treatment (Wong et al., 

2015)). Post-therapy, the tumor once again outcompeted the TP53-containing clone, which 

receded to a VAF of 5.43% at relapse.

RNA sequencing

In addition to ultra-deep DNA sequencing of the primary tumor and relapse tumor genomes, 

we also conducted ultra-deep RNA-seq of the same two samples, producing 21 lanes of 

RNA-seq data from 10 individual libraries prepared using 8 different RNA-seq library 

construction strategies. We generated a total of 542 Gbp (2.7 billion 2×100 bp reads) of 

RNA-seq data for the primary tumor sample (Table 1). A detailed analysis of these data is 

being prepared for submission but we discuss here the integration of the RNA-seq data with 

respect to somatic SNV status. We examined all ~200k candidate somatic SNVs in the 

RNA-seq data. 74,897 variants (38%) predicted by the WGS were detected by >1 read in the 

RNA-seq data. 14,621 (7%) were detected with >100 reads. We observed the highest 

coverage for variants occurring within exons, UTRs, and RNA genes, followed by splice 

sites and intronic sites, and finally, "non-genic" variants had the least coverage. Despite 

substantial methodological differences across the 8 types of RNA-seq libraries sequenced, 

they were remarkably consistent with respect to RNA-seq VAF of driver AML variants. For 

example, VAFs obtained for the canonical IDH2 (R140Q) variant ranged from 33–43%. By 

considering the VAF estimates from RNA and DNA, along with gene level FPKM values 

from the RNA, we were able to categorize all 1,343 platinum variants according to their 

variant expression patterns (Supplemental Experimental Procedures). 43 were associated 

with a known or predicted Ensembl gene, 12 were confirmed as expressed and all but one of 

these were expressed in an allele-balanced fashion. ELANE Q194H exhibited wild type-

biased expression, based on >9,000× coverage in both the DNA and RNA data (Figure 4D 

and Figure S11).

Starting with the platinum variant list, we reviewed six putative somatic splicing mutations 

and found three with an observable effect on splicing in the RNA-seq data (Table S12 and 

Figure S12). Two resulted in exon skipping and one resulted in intron retention. FOXP1 had 

a donor site mutation that caused skipping of the associated exon, resulting in a frameshift. 

This FOXP1 splice site mutation was observed in a subclone of the primary tumor sample 
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that was cleared at relapse. The level of aberrant splicing in the primary was consistent with 

the level expected for the subclone and at relapse, no exon skipping was observed. GGA2 

also had a donor site mutation that resulted in skipping of the associated exon. This event 

appeared to be in the dominant clone of the primary and was maintained at relapse. The 

exon skipping pattern in the RNA-seq data for primary and relapse samples appeared 

consistent.

A comprehensive and integrative analysis strategy is critical

In addition to better describing the AML31 primary tumor and relapse, we used this dataset 

to perform an evaluation of sequencing and analysis methods and explored ways in which 

they could be optimized for genomic characterization of cancer samples.

Sample preparation

Generating multiple DNA libraries for WGS requires extra labor and expense, but starting 

with a larger pool of molecules should increase the complexity and coverage of the resulting 

sequence data. We generated data from 11 distinct libraries with insert sizes that were small 

(~407 bp), intermediate (~530 bp), or large (~792 bp) (Figures S1 and S2). We assessed 

uniqueness as a function of coverage depth by sampling from these libraries (either in 

isolation or pooled), then calculated the read duplication rate (Figures 4A and Figure S3). 

Combining libraries with different insert sizes added uniqueness, reducing the duplication 

rate an average of 3.6 fold, and combining libraries with similar insert sizes did almost as 

well, with 2.7 fold lower accumulation of duplicate reads (Figure S3). This is due to the fact 

that duplicates are marked only within a library, even if mapped to the same coordinates. 

The amount of input DNA (and thus the number of unique molecules) influenced 

duplication rates more than the library preparation parameters that we tested. Using all 

available data, we observed a 10.7 fold lower duplication rate than in individual libraries. 

We did not approach saturation of any library, and based on downsampling experiments 

using all libraries, we estimate that we could produce over 16-fold more WGS coverage 

(approaching 5,000×) before the overall duplication rate would exceed 50% (Supplemental 

Experimental Procedures).

A second benefit of multiple libraries is that it allows for a smaller number of amplification 

cycles, thereby reducing the technical substitution rate by restricting PCR errors to a smaller 

fraction of the total reads. We were unable to detect any significant library-specific artifacts 

in our data (see Supplemental Results). Previous studies indicate that such errors are likely 

to be more of an issue in samples with a limited quantity of nucleic acid, where more PCR 

cycles are required during library generation (Brodin et al., 2013). It seems likely that the 

large amount of input DNA used, coupled with our strategies of independent PCR 

amplifications and multiple libraries resulted in PCR error rates below those detectable from 

the depth of sequencing that was performed (<0.23–0.35%). We were also unable to 

evaluate the potential benefits of multiple library sizes on SV detection, since this genome is 

remarkably free of such events.
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Comparison of sequencing assays

To assess the amount of information gained from deep sequencing and comprehensive 

variant calling, we compared our final results to those obtained from more typical 

sequencing assays and coverage levels (Figure S13). In each case, we called SNVs with a 

‘standard’ calling pipeline implemented in the Genome Modeling System (GMS) (Griffith et 

al., 2015) consisting of SomaticSniper, VarScan, Strelka, and a number of additional filters 

(Supplemental Experimental Procedures). The data from targeted capture of 264 AML-

related genes sequenced to ~1,200× depth revealed only 4 of 1,343 platinum SNVs. The 

sensitivity was good within this limited space, and only the very-low VAF (<2%) TP53 and 

IDH2 mutations were missed. Exome sequencing with a NimbleGen V3 reagent to a high 

depth of 433× found 30 SNVs from the platinum list, and only 6 that were below 15% VAF. 

17 of these were protein-coding mutations, and only 4 of the 9 AML-related gene SNVs 

were discovered. Exome sequencing failed to detect 37% of the coding SNVs that were 

detectable in the tumor (mostly at low VAF) and missed 3 SNVs that were found to be 

expressed in corresponding RNA sequence data. In addition, none of the 9 candidate 

regulatory mutations we identified were called from the exome data (Table S10). The exome 

sensitivity within its target space was high, with 30 of 31 platinum mutations with VAFs of 

>= 2% in the tumor detected (and 30 of 41 overall).

To compare to ‘standard’ depths of 30× and 50× coverage, we randomly downsampled the 

WGS data to each depth 10 times. (Figure S14). SNVs were called with the same standard 

pipeline as the exome data, and the platinum variant list was used as the truth set. For this 

exercise, we considered a variant ‘consistently detected’ if it was identified in at least 50% 

of the 10 downsampled bam files. At 50× coverage, 95% of SNVs with a VAF of 15% or 

higher could be consistently detected, but only 10% of SNVs with less than 15% VAF could 

be consistently found. At 30× coverage, those numbers dropped to 94% (with a >= 15% 

VAF) and 3% (with a < 15% VAF). The positive predictive values (PPV) were between 63 

and 68%, which corresponds to more than 500 false-positive calls in every case.

The above analyses examined variants originally discovered in the ultra-deep WGS data. We 

also performed de novo somatic variant calling using the 200k Illumina capture data and the 

same seven SNV callers. (Tables 1, S13, and S14 and Figure S2). Figure S15 and Figure 

S16 show the overlap between variants from this de novo calling compared to calls from the 

WGS data and the subset of these making up the platinum list. No variant caller was able to 

detect all of the platinum variants, even when considering only regions with >50× coverage 

in both the WGS and capture data. Furthermore, additional de novo variant calling on deeper 

data revealed a continuing accumulation of variant predictions. Most are expected to be false 

positives, but a small subset that might be true positives were discovered.

Orthogonal sequencing platforms

We used the Ion Torrent PGM sequencing platform and our custom NimbleGen capture 

reagent to generate additional sequence data from the normal (6.1 Gbp; 34×), primary tumor 

(6.1 Gbp; 36× coverage), and relapse tumor (6.6 Gbp; 40× coverage) samples (Tables S15 

and S16). Of the platinum SNVs, 76.9% were adequately covered for variant confirmation 

in the tumor and 47.4% in the relapse samples, defined here as a 95% probability of 
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detecting at least four variant-supporting reads, given the VAF of the variant (using the 

assumption of a binomial distribution). Using the criteria of at least four variant-supporting 

reads in the tumor and no more than one in the normal, 98.5% of covered sites in the tumor 

validated, as did 98.9% of sites in the relapse (Figure S17 and Table S16). None of the sites 

provided adequate evidence to suggest that any of the Illumina-derived platinum calls were 

the result of platform-specific artifacts. VAF estimates were consistent between the Illumina 

and Ion Torrent platforms (Figure S17). We also used a digital droplet PCR (ddPCR) 

platform to validate the presence and VAF of 15 somatic variants (Figure S8 and Table S9). 

VAFs from ddPCR and sequencing were highly correlated across a range of VAFs from 

~1% to 47% (r2 = 0.992; p-value = 3.553e−15 based on Pearson's product moment 

correlation coefficient).

Algorithmic assessment

We hypothesized that comprehensive approaches to computational analysis might improve 

the quality of mutation calling. To evaluate this, we performed alignments of the WGS data 

with seven different algorithms (Supplemental Experimental Procedures). We then 

evaluated the coverage and VAF at 198,814 putative SNV sites to identify aligner-specific 

bias (Figure 4B and Figure S18). Positions with high variance in VAF reported by different 

aligners revealed regions of the genome that were difficult to characterize by short read 

sequencing and that represent a potential source of false-positive variant calls from 

misaligned reads.

Variant calling was also assessed, and sensitivity and PPV were calculated for each of the 

seven SNV callers, using BWA 0.5.9 aligned reads and the platinum variants as a truth set 

(Table S13 and S14). The algorithms had sensitivities ranging from 0.798 to 0.958 and PPVs 

ranging from 0.029 to 0.529 (Figure S13 and Supplemental Results). Notably, several 

variant callers appeared to miss many hemizygous variants on chromosome X (AML31 is 

male) that were of high quality by manual review. All callers performed reasonably well on 

variants at high VAFs, but for variants with less than 10% VAF, no caller had a PPV above 

10% (Figure S19). This may be explained by the fact that none of these algorithms were 

designed specifically for ultra-deep sequence data. Furthermore, we used the authors’ 

recommended parameters for the evaluation and did not extensively explore parameter 

optimization (Supplemental Experimental Procedures).

In addition to benchmarking SNV-calling algorithms in isolation, we generated lists using 

the union and intersection of calls from multiple algorithms to determine whether such an 

approach could enhance the strengths and hide the weaknesses of particular variant 

detectors. Though union-based approaches depressed PPVs to unreasonable levels, 

intersecting multiple callers generally resulted in higher overall performance than using any 

single caller in isolation (Supplemental Results, Figure S20). The best performing 

combinations still had considerable room for improvement, with sensitivities of 80–95% and 

PPV of 75–85%. By plotting all possible combinations of algorithms, we create a ‘best 

performance’ curve that gives guidelines on which callers may be intersected to give a 

particular balance of sensitivity and PPV (Figure 4C, Figure S20, Table S17 and S18). We 

did not investigate more complicated schemes for merging variant calls, but believe that 
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more complex and statistically rigorous methods for doing so could result in better overall 

performance.

Clonal inference

To systematically evaluate the effect of increasing sequencing depth on VAF estimation and 

inference of clonal architecture, we downsampled all variants from the platinum list to 

values between 10× and the maximum coverage available (1,640× for primary and 310× for 

relapse) (Figure 4E, Figure 5, Figure S21, and Video S1). VAFs were calculated for all sites, 

independently of whether a site could conceivably be called as a variant from that depth. 

Increased coverage provided more accurate VAFs, due to reduction in sampling error. This 

resulted in more compact clusters of variants and allowed distinct subclonal populations to 

be more easily resolved. At 30× depth, SciClone detected only four clusters, with a mean 

cluster error of over 50% (Miller et al., 2014). While 100× coverage improved the 

clustering, we did not reliably detect the fifth cluster until 200× coverage, and even then, the 

mean cluster error is 19.24%, owing largely to the absence of the sixth cluster. To resolve all 

six clusters, ~850× coverage depth in the primary tumor, and ~310× depth in the relapse was 

required.

We also explored the ability of different sequencing assays to reconstruct the clonal 

architecture of this tumor. Figure S13 shows that variants called from deep sequencing of a 

targeted RMG panel or a very deep exome did not provide enough data points to resolve the 

clonal architecture of this tumor. While 50× WGS sequencing represented an improvement, 

it lacked the power to detect the lowest-VAF subclones, and did not unambiguously separate 

the variant clusters. Though single-cell sequencing is generally limited by throughput, cost, 

and reduced accuracy due to errors and allelic dropout during amplification, using it in a 

limited way proved valuable for reconstructing the phylogeny of this tumor. We also 

performed extensive downsampling experiments to study the effect of depth on the accurate 

assignment of each individual variant to each subclone (Supplemental Experimental 

Procedures). At least ~500× coverage was needed before the majority of variants could be 

reliably assigned to the correct subclone (Figure 5D and Figure S21).

Since 5 of 6 tumor subclones contained mutations in genes with known relevance to AML, 

we examined the ability of each alternative sequencing and capture platform to detect them 

(Figure 4F and Figure S22). Some level of detection was generally observed for all nine 

potential driver mutations in all six sequencing platforms examined. However, poor 

detection was associated with the low coverage levels achieved by the Ion Torrent platform. 

Furthermore, low coverage from some other platforms for certain variants, especially 

subclonal variants and indels resulted in highly variable VAF estimates that would have 

hindered our ability to assign mutations in key AML genes to specific subclones without 

combining data across all platforms.

A rich resource for method development and algorithm evaluation

In addition to the data described in our analyses above, we have generated exome and 

custom targeted sequence data that represents an additional 126 billion bases (Gbp). In sum, 

we are releasing almost 3 terabases (Tbp) of sequence, representing over 10,000× coverage 
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of some regions of these matched genomes. These raw data are being coupled with a 

database of analysis results that includes an extensively validated list of somatic variants. 

The platinum list has been carefully curated to incorporate a balance of information from 

ultra-deep validation data, multiple alignment algorithms, and manual review. This list is not 

intended to be comprehensive, as we believe that even more sequence data would uncover 

additional low-frequency variants, with the logical maximum being detection of mutations 

unique to a single cell. Though we do not approach this threshold of sensitivity, this list is 

very specific and includes very high-confidence mutations at variant allele frequencies of 

1% or lower. We also provide a ‘gold’ list that includes sites that meet lower-stringency 

criteria for inclusion, but cannot definitively be ruled out as false positives (Dataset S4). We 

anticipate that these resources will be used to train the next generation of somatic variant 

callers, and to facilitate this, we have created an R package that allows users to input a list of 

variants and receive metrics and visualizations of their tool’s performance. This tool, links to 

the datasets, and a host of other analysis results can be accessed at http://

aml31.genome.wustl.edu/ and as Dataset S5.

Discussion

Comprehensive characterization of tumors is challenging when a tumor has low-cellularity, 

polyploidy, and/or significant clonal heterogeneity. The sample that we have sequenced in 

this study represents a best-case scenario, with high purity and nearly no copy number 

alterations. Despite this, standard sequencing assays failed to capture many of the variants 

and most of the clonal complexity of this tumor. This lack of power is partially attributable 

to lack of sequencing depth - with 50× WGS coverage, detecting variants that exist in <= 

1% of cells is essentially impossible. Resolving these rare variants is not as simple as simply 

adding coverage, though, as a number of technical issues contribute to the problem. Difficult 

to sequence or align regions result in poorly covered regions, including many that have been 

implicated in disease, such as the CEBPA gene and the TERT promoter (Horn et al., 2013; 

Huang et al., 2013). Library preparation can also introduce errors, and sequencing 

instruments do not “read” DNA with perfect fidelity. Though higher depth is sometimes 

obtained with targeted assays, these often miss key variants in genic or regulatory regions, 

have limited power to detect structural events or viral integrations, and may not provide 

enough variants to confidently segregate subclonal populations.

Even when high depth WGS data are obtained, significant challenges remain for effectively 

analyzing and interpreting these data. We show that there are significant portions of the 

genome where multiple aligners produce highly discordant results. These may represent 

problems with the reference genome or algorithmic limitations, but it is clear that they 

impact variant calling. Though some approaches, often based on a ‘panel of normals’ make 

help to ameliorate the issues of false positives in these regions, better strategies for 

identifying and handing these appropriately will be needed. Ultimately, improvements in 

longer-read sequencing technologies and assembly-based variant calling may help address 

these challenges.

We also demonstrate that while detecting most low-frequency SNVs is impossible in 

standard-depth genomes, it remains challenging even with very high depth sequencing. 
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Though simulations based on in-silico mixing have provided some insight (Wang et al., 

2013; Xu et al., 2014), such datasets do not represent the true spectrum of biases and 

experimental noise. By testing variant callers on the real ultra-deep sequence generated here, 

we find that the parameters and filtering strategies seem to have been heavily over-trained 

on the expectations of a 30–40× tumor/normal pair. Most tools still perform poorly when 

trying to identify SNVs in less than 30% of the cells sequenced. As we studied a single 

sample, and have not comprehensively explored the parameter space of each algorithm, we 

refrain from describing any SNV caller as ‘best’. Selection of the appropriate algorithm 

should be driven by each experiment’s design and should include factors like tolerance for 

false positives and false negatives. Intersecting calls from multiple tools does provide better 

results and more intelligent merging strategies may offer additional improvement. 

Additional efforts similar to the ICGC-TCGA DREAM Somatic Mutation Calling Challenge 

(Boutros et al., 2014), that utilized a large number of deeply sequenced samples to robustly 

quantify performance under a variety of conditions, might prove useful and spur efforts to 

optimize existing algorithms and develop new ones. This dataset should provide a rich 

substrate for those same efforts, by providing a very deeply sequenced, high-confidence set 

of mutation calls.

Though we discovered many somatic SNVs missed by more typical sequencing approaches, 

we also identified several thousand putative variants where even more sequence coverage 

would be necessary to make a confident SNV call. If confirmed, interpreting these low-VAF 

events will be a significant challenge. Similarly, even more coverage in the primary tumor 

would be useful for determining whether variants from the relapse were preexisting or 

acquired after the start of treatment. Given the low background mutation rate and the 

relatively short time frame, though, it seems quite possible that every mutation we detected 

was present in the original leukemia. Certainly, all identifiable subclonal driver mutations 

existed in the original AML sample, suggesting that selection—not chemotherapy-induced 

mutations—was the primary contributor to the patient’s relapse.

Many factors come into play when deciding how deeply to sequence a tumor, and making a 

‘one-size-fits-all’ recommendation would be unwise. However, after comprehensive 

analysis of the rich and ultradeep resource dataset provided here, we believe we can provide 

some guidance to those seeking to optimize their tumor sequencing projects (Table 2). WGS 

is by far the best and most comprehensive strategy available, but the cost of achieving 500–

1,000× coverage remains prohibitive with current platforms. A suitable intermediate-term 

compromise may be to increase the standard depth of tumor WGS to at least 200–300×, 

which would facilitate discovery of clinically relevant variants at sub-10% VAF. In tandem, 

it seems prudent to apply targeted sequencing of mutational ‘hotspots’ specific to cancer (or 

a particular tumor type) to achieve at least 1,000× coverage on potential drivers of 

therapeutic resistance. The data should be analyzed with a multi-caller, highly sensitive 

variant discovery pipeline, followed by custom capture of predicted variants and deep 

sequencing (1,000–10,000×). The complexity and time to produce data for this method 

would present significant challenges for clinical implementation though, and we suggest that 

matching the sequencing and analysis approaches to the experimental question are of 

paramount importance.
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Regardless of which sequencing approach is used, it is clear that given the propensity of rare 

subclones to harbor mutations that contribute to therapy resistance there is an urgent need to 

become more adept at discovering low-frequency events at presentation. This requires 

pushing the boundaries of today’s sequencing platforms, developing a better understanding 

of technical details like error rates and lower bounds of detection, and developing new sets 

of best practices. The analyses and resources we present here represent a significant step in 

that direction, and thus will contribute to making targeted cancer therapies guided by 

genomics more effective.

Experimental Procedures

Sample collection and nucleic acid isolation

Bone marrow biopsy specimens and normal skin samples (Figure 1 and Table S1 for 

timepoints) were obtained from a single subject who provided written informed consent on a 

form that contained specific language authorizing WGS and data sharing. This consent 

procedure was approved by the Washington University School of Medicine Human 

Research Protection Office (HRPO) on 10/23/06 and renewed annually thereafter. Genomic 

DNA was prepared by column purification (Qiagen DNeasy).

Discovery sequencing

WGS for the primary AML tumor, relapse tumor and matched normal skin samples was 

performed using the Illumina HiSeq platform with paired 2×100 bp reads. Each sample was 

also subjected to exome sequencing using the Roche NimbleGen SeqCap EZ Human Exome 

Library v3.0. The resulting captured DNA was also sequenced by Illumina 2×100 bp 

sequencing. Each sample was also captured using a custom set of capture probes 

(manufactured by IDT) that were designed to tile across 264 genes found to be recurrently 

mutated in AML (Cancer Genome Atlas Research Network, 2013). Refer to Table 1 and 

Figure S2 for sequence coverage levels achieved and Figure 1 for an overview of the 

experimental design.

Sequence alignment and somatic variant calling

WGS, exome and custom capture reads were aligned to the human reference genome (NCBI 

build 37, ‘GRCh37’) using BWA (v0.5.9) (Li and Durbin, 2009). All reads obtained by 

custom capture of ~200,000 putative somatic variant sites were re-aligned using additional 

aligners (Supplemental Experimental Procedures). Prediction of somatic variants was 

performed primarily using the ultra-deep WGS data from the primary and relapse tumors 

(bone marrows) compared to a skin normal. Single nucleotide variants, small insertions and 

deletions, structural variants, and copy number variants were called with multiple algorithms 

designed for each of these variant types (Supplemental Experimental Procedures).

Design of a custom NimbleGen capture reagent

A total of 371,976 variants were called from the primary tumor or relapse WGS data by at 

least one of the seven variant callers described in the Supplement. Variants were removed 

from consideration for design of a capture validation reagent if (a) the minimum WGS 

coverage in the primary tumor was < 20× or (b) normal coverage was > 50× and the normal 
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VAF was > 20%. This left 359,619 (96.7%) candidate somatic variants. All variants from 

this list were selected except for those called by Seurat where a random subset (~one-third) 

were selected (Table S3). A final list of 198,814 unique sites were sent to NimbleGen for 

design of a validation capture reagent. NimbleGen was able to design targeted probes for 

191,988 (96.6%) of these sites. Capture followed by sequencing produced 135,731 (68.3%) 

sites with coverage > 100× coverage in the primary tumor.

Validation sequencing and analysis (Illumina capture, IDT, RMG)

Validation of predicted somatic variants from the primary and relapse tumors was conducted 

across multiple independent DNA samples, using multiple capture reagents, orthogonal 

sequencing platforms, and analysis strategies (Table 1 and Figure 1). Sequencing libraries 

were created in replicate from multiple aliquots of DNA as well as distinct DNA isolation 

events. Regions harboring putative somatic variants were enriched for deep validation by 

use of commercial exome reagents, design of a large custom NimbleGen capture panel 

(~200k sites), more focused capture reagents made by Integrated DNA Technologies, 

amplicon sequencing, and digital droplet PCR. Sequencing was performed on the Illumina 

HiSeq and Ion Torrent platforms. Analysis involved use of comprehensive downsampling 

experiments, integration of multiple sequence libraries and platforms, integration of DNA 

and RNA data, integration of data spanning across seven disease timepoints, and extensive 

manual review of raw data (Supplemental Experimental Procedures).

Sequence data is available through dbGaP accession id phs000159, and are described in 

more detail on the resource site: http://aml31.genome.wustl.edu

Refer to Supplemental Experimental Procedures for additional methods details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Current sequencing strategies are inadequate given the complexity of most 

tumors

• Current analysis strategies perform poorly, missing rare clinically relevant 

variants

• A comprehensive strategy allows for a more definitive model of clonal 

architecture

• We present a comprehensively sequenced and validated case as a community 

resource
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Figure 1. Experimental overview
A) Samples from this study are depicted along a timeline with day 0 representing the day of 

AML diagnosis. B) Data types generated for each sample are indicated along with a basic 

summary of their dependencies. C) A depiction of the analysis strategies employed, their 

outputs and the datasets they rely on are depicted as a schematic ‘subway map’. Refer to 

Supplemental Experimental Procedures for additional methods and results associated with 

each.
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Figure 2. Cancer driver variants and their clonal identities in primary and relapse
A) VAFs derived from the core dataset for all platinum variants are plotted for primary and 

relapse with colors assigned to variant clusters identified by SciClone. Each subpanel shows 

the change in VAF distributions for a single cluster from primary to relapse. Key AML-

related variants are highlighted. B) A model of clonal heterogeneity within a theoretical 100 

primary and relapse cells. C) Summary statistics and classification of each cluster with 

respect to clonal evolution.
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Figure 3. Tracking tumor evolution and refining a model of clonal architecture
A) Variant allele frequency (VAF) of key mutations, at diagnosis (day 0), during 

progression through treatment, and at relapse (day 505). The median depth of coverage 

obtained at each variant position for each timepoint is indicated at top. Samples for 

intermediate timepoints between day 0 and 505 were obtained from FFPE blocks and in 

some cases were heavily degraded, leading to lower yields and sequence depth for some 

timepoints. B) Model of clonal architecture and tumor evolution, inferred from the original 

~30× sequencing data. C) Ultra-deep sequencing and validation revealed additional 
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subclonal complexity. D) Incorporating the results of single-cell sequencing and 

intermediate timepoints allows for refinements to the model, including establishing an 

independent origin for the TP53-mutant clonal population. Numbers in legend refer to 

cluster assignments. The ‘Chemotherapy’ label includes induction chemotherapy (day 1), 

and four rounds of consolidation chemotherapy at days 47, 81, 116, and 151.
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Figure 4. Selected findings from comprehensive data analyses
A) Correlation of DNA and RNA VAFs for variants within exons. B) The effect of using 

multiple sequence libraries on library complexity. C) Representative comparisons of the 

effect of alignment algorithm on variant allele frequency estimation. D) The performance of 

variant callers when used in all possible combinations (intersections). E) The effect of 

increasing depth on the accuracy of clonal inference. F) Comparison of VAF estimation 

across six sequence platforms/datasets. Refer to the Supplemental Experimental Procedures 

and Supplemental Results for more details of each of these analyses.
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Figure 5. The effect of coverage depth on subclonal inference
Clustering was performed using read counts from downsampled sequence data at all 

platinum SNVs. Panels A-E show the results of lower coverage, while panel F uses the 

‘core’ validation data. For each cluster in the ‘truth set’ (panel F), the percentage of that 

cluster’s points correctly assigned was calculated. One minus the mean of these values gives 

the mean cluster error. An animated version of these plots with additional coverage levels is 

available as Video S1.
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Table 1

Summary of data produced.

Data type Normal sample Primary tumor sample
(90.7% estimated purity)

Relapse tumor sample
(36.2% estimated purity)

Total number of DNA libraries 12 libraries as 15 fractions 13 libraries as 23 fractions 8 libraries as 10 fractions

Illumina whole genome sequencing 
(WGS) *

1 library, 4 reps;
422 Gbp;
121× coverage;
2,798 Mbp breadth

4 libraries; 12 reps
1,167 Gbp;
312× coverage;
2,813 Mbp breadth

1 libraries, 2 reps
153 Gbp;
38× coverage;
2,566 Mbp breadth

Illumina exome data (NimbleGen 
SeqCap EZ v3.0 exome) *

1 library, 1 reps;
57 Gbp;
263× coverage;
149 Mbp breadth

9 libraries 100 Gbp;
433× coverage;
174 Mbp breadth

3 libraries;
77 Gbp;
251× coverage;
221 Mbp breadth

NimbleGen custom capture (200k sites) 
sequenced with Illumina *

7 libraries, 7 reps;
99 Gbp;
1,130× coverage;
238 Mbp breadth

6 libraries, 6 reps;
128 Gbp;
1,500× coverage;
359 Mbp breadth

2 libraries, 2 reps;
29 Gbp;
280× coverage;
71 Mbp breadth

NimbleGen custom capture (200k sites) 
sequenced with Ion Torrent

1 library;
6.1 Gbp;
43× coverage;
25 Mbp breadth

1 library;
6.1 Gbp;
49× coverage;
31 Mbp breadth

1 library;
6.6 Gbp;
45× coverage;
36 Mbp breadth

IDT custom capture (AML RMG set) 
sequenced with Illumina

4 libraries;
3 Gbp;
270× coverage;
5.8 Mbp breadth

10 libraries;
7 Gbp;
1,209× coverage;
7.3 Mbp breadth

N/A

IDT custom capture (145 target sites) 
sequenced with Illumina

4 libraries, 4 reps;
14 Gbp;
6,994 ×coverage;
2.8 Mbp breadth

3 libraries, 3 reps;
9 Gbp;
6,939× coverage;
2.6 Mbp breadth

3 libraries, 3 reps;
8 Gbp;
9,713× coverage;
2.4 Mbp breadth

ddPCR sequencing (15 targets) N/A 6,109× coverage (valid droplets) 5,619× coverage (valid droplets)

PCR Amplicon Ion Torrent Sequencing
(11 cancer driver targets).

6,846× coverage; 12,299× coverage; 13,725× coverage;

Illumina RNA-seq N/A 8 libraries;
542 Gbp;

1 library;
32 Gbp;

An asterisk (*) denotes membership in the ‘core’ dataset.

‘Coverage’ refers to the median per base coverage. ‘Breadth’ refers to the number of sites sequenced to >= 20× coverage where only bases with >= 
20 base quality score and reads with mapping quality >= 20 are considered. Refer to Supplemental Experimental Procedures for details of each 
sequence capture approach.
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Table 2

Key findings and recommendations for tumor genome sequencing and analysis.

Sample and case selection - Avoid low yield/heavily degraded DNA from FFPE if possible.

- Be aware that pathology assessments often overestimate tumor cellularity.

Matched normal samples - Sequencing matched normal tissue is essential for removing germline variants and identifying 
mapping artifacts or sequencing errors.

- For hematologic cancers, skin normals should be collected at remission to reduce tumor 
contamination of the normal.

- For solid tumors, use blood instead of adjacent normals to avoid tumor infiltration.

- In the absence of a matched normal, use as many unmatched normal samples as possible (e.g. a 
pool of healthy individuals).

Library construction - Improve coverage, reduce amplification-related errors, and improve SV detection by 
constructing multiple independent libraries per sample. This approach resulted in PCR error 
rates below those detectable from the assays that were performed (< 0.23–0.35%).

- A large amount (>1 μg) of starting input DNA allows for multiple libraries, decreases 
duplication rates, and enables adequate sampling of rare subclonal populations.

Sequencing platform - Choose a platform that allows for cost-effective generation of high depth data.

- Orthogonal sequencing methods have value for confirmation of low-frequency variants.

- Single cell sequencing can be useful for resolving tumor phylogeny.

Sequencing depth - Greater depth is needed in the case of impure tumors, tumor contamination of the normal 
sample, aneuploidy, and clonal heterogeneity.

- Expect non-uniform coverage across the genome. Total coverage levels may need to be 
increased to ensure adequate depth in certain regions (e.g. GC rich promoter regions).

- 30× WGS was insufficient for inferring clonal architecture or identifying variants with <15% 
VAF, even in a tumor with >90% purity.

- 50× WGS was insufficient to detect variants at <10% VAF, including many important for 
relapse.

- An increase in coverage from ~30× to ~300× (coupled with a less-contaminated normal) 
resulted in the identification of 4 additional subclones and over 11× as many variants in this 
case.

Whole genome sequencing - WGS is essential for detection of CNVs and other SVs.

- Difficult to capture coding regions may be better covered in WGS.

- WGS enables detection of non-coding mutations that may be biologically relevant or serve as 
clonal markers.

Targeted Sequencing - WGS should be accompanied by either commercial exome or custom capture for increased 
coverage of key cancer genes.

- “Spiking in” oligonucleotide probes allows for more coverage (>1,000×) and improved 
sensitivity in critical ‘hotspot’ regions (can be cancer specific or pan-cancer). We achieved ~5-
fold greater coverage across 264 genes recurrently mutated in AML with little exome-wide loss 
of coverage.

Sequence alignment - The choice of reference sequence and alignment algorithm impacts variant calling. VAFs 
calculated from the same data aligned with alternate algorithms had Spearman correlations that 
varied from 0.56 to 0.99.

- Local assembly of indels and realignment can produce more accurate VAF estimates, especially 
for multi-basepair events.
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Variant calling - Current SNV callers are not optimized for detecting low VAF events in high-depth data. 
Optimization of parameters may help, but new algorithms are probably needed in the long term.

- Using multiple variant callers is a viable strategy for improving performance. Intersections 
improve PPV, while unions improve sensitivity.

- Match the goals of a project to algorithms that provide the right balance of sensitivity and 
specificity.

- Indels and SVs are harder to detect – expect poorer performance.

- Samples from multiple time points increase confidence and enable detection of key low-VAF 
variants that are enriched during clonal evolution.

Subclonal inference - Accurate estimation of tumor VAFs requires high depths to overcome sampling error. Plan for 
500–1,000× coverage or more if detailed inference of subclonal populations is important.

- Exomes or targeted assays may not provide enough variants for accurate clonal clustering, 
especially in cancers with low mutation rates.

- Temporally and/or spatially separated samples aid in subclonal inference and tracking tumor 
evolution.

RNA sequencing - Variants detected in both DNA-seq and RNA-seq have high confidence because they are 
confirmed by orthogonal library and alignment strategies.

- RNA-seq may be used to assess expression status of coding somatic variants and fusions as well 
as the functional impact of regulatory variants.

Overall recommended strategy Sequencing strategy will always be dependent on the goals of the project and budget, but an ideal tumor 
profiling study might include:

- WGS to a depth of 200–300×

- Exome sequencing to a depth of 1,000× (possibly with spike-in probes for mutational hotspots)

- Analysis with multiple alignment strategies and variant callers

- Validation of variants with custom capture and deep sequencing (1,000–10,000×)

- RNA-seq with 250–300 million mapped 2×100 reads or greater for robust integration with 
DNA-seq data.
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