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Abstract

Random fiber networks are assemblies of elastic elements connected in random configurations. 

They are used as models for a broad range of fibrous materials including biopolymer gels and 

synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has 

been studied extensively, the behavior of composite systems of fibers with different properties has 

received less attention. In this work we numerically and theoretically study random networks of 

beams and springs of different mechanical properties. We observe that the overall network 

stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber 

stiffness. Numerical results and analytical arguments show that for small variabilities in fiber 

stiffness the amount of network softening scales linearly with the variance of the fiber stiffness 

distribution. This result holds for any beam structure and is expected to apply to a broad range of 

materials including cellular solids.
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1. Introduction

Assemblies of linear elastic beams have been used as mechanical models for materials with 

fibrous, cellular or periodic lattice microstructures. For example Head et al. (2003) used 

networks of beams to model the mechanics of biopolymer gels (also see van Dillen et al., 

2008). Beam structures have also been previously used to study cellular materials such as 

foams (Deshpande et al., 2001) and also in studies of the mechanics of paper (Cox, 1952). 

Similarly, regular lattices of beams have been used extensively in structural engineering to 

represent beam frameworks (Reddy, 2001).
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In most of these studies the network is considered homogeneous, i.e. it is made from fibers 

having identical properties. However, most networks encountered in nature are composite, 

i.e. are made from fibers with different properties. In most biological collagen networks the 

fibers group in bundles of variable dimensions (Raub et al., 2007) and hence the effective 

network of bundles can be considered a composite network. Connective tissue gains its 

unique mechanical properties due to the presence of fibers such as collagen and elastin 

(Cowin and Doty, 2007). The cell cytoskeleton contains protein filaments such as F-actin 

and microtubules (Fletcher and Mullins, 2010). In papers, mixtures of fibers of different 

length and stiffness are used to provide enhanced strength and toughness. In all these cases 

the presence of the different types of fibers imparts special properties to the composite 

network, above and beyond those of the homogeneous networks (Broedersz et al., 2011, 

2012; Buxton and Clarke, 2007; Gardel et al., 2004; Head et al., 2003; Kasza et al., 2009; 

Lieleg et al., 2010; Picu, 2011; van Dillen et al., 2008; Wade and Tanaka, 2009).

To place the discussion in perspective, we briefly review the main results obtained for the 

relationship between network parameters and the overall stiffness of homogeneous networks 

(Picu, 2011). The parameters of importance in both 2D and 3D models are the network 

density, ρ (total fiber length per unit area or volume), the mean fiber length, lc and the fibers 

axial and bending stiffness, (EA)f and (EI)f. In thermal systems, the filament bending 

stiffness can be alternatively quantified by the fiber persistence length. For homogeneous 

networks, a characteristic length scale is defined as lb = [(EI)f/(EA)f]0.5. It has been shown 

that homogeneous networks with various (EA)f and (EI)f values, but with the same lb have 

the same network stiffness. When ρ or/and lb increase, the network approaches a limit in 

which the strain energy is predominantly stored in the axial mode of fiber deformation and 

the overall modulus scales linearly with (EA)f and ρ. As ρ or/and lb decrease, the 

deformation is more non-affine, the strain energy is stored predominantly in the bending 

mode of fiber deformation and the overall modulus scales linearly with (EI)f and ρx. The 

exponent x depends on the network geometry. While Broedersz et al. (2012) and Shahsavari 

and Picu (2012) reported exponents of 3 and 8 respectively for 3D networks with elements 

aligned along the edges of a face centered cubic lattice and 2D Mikado networks 

respectively, here, we observe that x = 2 for 3D Voronoi networks. This demonstrates that 

the network modulus is highly sensitive to the density for systems in the non-affine, bending 

dominated regime.

Composite networks have been studied much less than homogeneous networks. A class of 

composite networks constructed by adding a small number of different fibers to a 

homogeneous base network was studied only recently (Bai et al., 2011; Huisman et al., 

2010; Shahsavari and Picu, 2015; Wada and Tanaka, 2009). Bai et al. (2011) reported 

significant network stiffening from adding small fractions of stiff fibers to a non-affinely 

deforming base network. Stiffening was observed even when the added fibers were too 

sparse to form a stress-bearing network. They attributed this effect to a more affine 

displacement field due to the presence of the added stiff fibers. A similar type of network 

was studied in 3D by Huisman et al. (2010) where no stiffening effect was observed. 

However they reported that the presence of stiffer fibers reduces the critical strain marking 

the transition from the linear to the non-linear elastic regime. The problem of stiff fibers 
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added to a non-affinely deforming base network was also studied by Shahsavari and Picu 

(2015). They reported that the global stiffening effect takes place in two steps. A transition 

is observed when the added stiff fibers percolate and form a stress-bearing network. During 

this process the overall stiffness increases abruptly and asymptotes to the value expected for 

the newly formed stiff network. A second transition takes place at smaller densities of added 

fibers which also leads to a substantial stiffness rise. Stiff fibers bonded to a non-affinely 

deforming base induce an “interphase” (i.e. a region of the base network) in which the strain 

energy is stored predominantly in the axial mode of fiber deformation. The second transition 

is associated with the percolation of these interphases.

An entirely different class of models in which a more macroscopic continuum view is taken, 

has been developed for fibrous structures. These are homogenized representations that lack 

the level of microstructural detail of the discrete models, such as those discussed above, but 

can be used to model much larger problem domains. Homogenized models of molecular 

networks have been proposed early in the development of the theory of rubber elasticity 

(James and Guth, 1943; Treloar, 1954). These models considered the molecules to behave as 

entropic springs and assumed that the motion of the cross-links is affine. Similar models 

based on the affine deformation assumption have been derived for athermal networks (e.g. 

Lee and Carnaby, 1992; Wu and Dzenis, 2005). Further developments of the theory of 

molecular networks partially relaxed the affine deformation restriction while considering a 

small number of chains as being representative for the entire network. Examples are the four 

chain model (Flory and Rehner, 1943; Treloar, 1946) and the eight chain model of Arruda 

and Boyce (1993). Improved models have been introduce that consider more broadly the 

non-affine deformations as well as other important factors such as structural constrains on 

the possible conformations of the chains (Miehe et al., 2004), network functionality 

(Tkachuk and Linder, 2012) and viscous effects caused by diffusion and mobility of the 

chains (Linder et al., 2011). Continuum network models have also been used to capture the 

strain stiffening mechanism in materials with random fibrous microstructures (Raina and 

Linder, 2014; van Dillen et al., 2008).

Here we study a general type of discrete composite network models made from fibers 

having a distribution of stiffness values. It is observed that in this case a single parameter 

describing the fiber properties, i.e. lb, is insufficient to quantify the overall stiffness and it is 

necessary to consider the distributions of both (EA)f and (EI)f. It is observed that the mean of 

the overall network stiffness, E, decreases with increasing the variance of the fiber stiffness 

distribution at constant mean of this distribution. In contrast, the variance of E increases 

with increasing fiber stiffness variance. These results are proven analytically for any generic 

structure of beams.

2. Models and methods

Models of random fiber networks in 2D and 3D were used in simulations. In the 3D 

simulations a cubic domain of dimension L was considered and a set of seed points were 

randomly distributed in the domain. The seeds were then used to create Delaunay or 

Voronoi tessellations. Fibers were defined along all edges of the resulting tessellations. The 

generated models contained more than one thousand fibers in all instances. This number is 
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referred to as Nf. Samples with variable fiber densities, ρ, and problem sizes were 

considered. A 2D projection of one of the studied 3D networks is shown in Fig. 1. Mikado 

networks were also considered in few cases to further test the results using 2D models. 

These networks were cross-linked at all fiber intersection points and were generated with a 

procedure similar to that described in (Shahsavari and Picu, 2012).

In all these models, the random network generation procedure resulted in fibers with 

exponential distribution of fiber lengths, of mean lc. Exponential distributions have been 

previously observed in Mikado networks (Kallmes and Corte, 1960; Shahsavari and Picu, 

2013) as well as in experiments on actin filament gels (Janmey et al., 1986). It can be noted 

that this is not the case for all biopolymer networks. For example logarithmic-normal 

distributions of filament lengths have been observed in networks of collagen-I filaments by 

Lindström et al. (2010).

Unless specified otherwise, individual fibers were represented as Timoshenko beams that 

store energy in the axial, bending, torsion and transverse shear deformation modes. The 

beam elements were modeled using linear elements with generalized sections and hence we 

were able to control the axial (EA)f and bending (EI)f stiffnesses independently. The beam 

cross-sections had the same stiffness in all possible bending directions. A few tests were also 

performed using networks of linear springs that can store energy only in the axial 

deformation mode. These tests are discussed in section 3.

The overall network modulus was determined by performing small-strain displacement 

controlled uniaxial stretch tests. In these tests the displacements and rotations of all nodes 

are the degrees of freedom. These degrees of freedom determine the total potential energy of 

the system. The system equilibrium configuration can be found by minimizing the total 

system potential energy. The tests were performed using implicit nonlinear analysis with the 

Abaqus finite element solver.

The applied boundary conditions are shown schematically in Fig. 1. The left and right faces 

of the test cube were subjected to prescribed displacements in the X1 direction. The nodes on 

the left face were fixed in the X1 direction. Additionally, to eliminate the rigid body 

translations and rotations one node on the left face was fixed also in X2 and X3 and another 

node on the left face was only fixed in X2. The right face was displaced in X1 by an amount 

d0 while its nodes were traction free in all other directions. All other boundaries were 

traction free. The effective network modulus was calculated as

(1)

where Sx is the initial area of the right face of the sample. t is the computed traction 

associated with the imposed boundary displacement over Sx and d0 = {d0, 0, 0}. V is the 

initial volume of the simulation domain and ε0 is the small prescribed normal strain, ε0 = 

d0/L.
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The beam materials were considered to be linear elastic and to behave identically in 

compression and tension. Asymmetric behavior of fibers in tension and compression was 

also considered in few cases (where specified) and only in networks in which the strain 

energy is stored predominantly in the axial deformation mode of fibers. In these models, the 

ratio of the axial fiber stiffness in compression to the axial stiffness in tension was 0.1.

3. Numerical results

We began by verifying the models against previous findings regarding homogeneous 

random fiber networks. This also allowed defining the characteristic bending and stretch 

dominated asymptotes for the particular network geometry used in this work. These 

characteristic behaviors were previously described in section, (Broedersz et al., 2012; 

Shahsavari and Picu, 2012). To this end, the ratio (EI)f/(EA)f was varied while the network 

density, ρ, was kept constant. All networks in this set were of Voronoi type. A reference 

homogeneous model was defined, having fibers of circular cross section of radius r = 0.02L, 

Young’s modulus Ef and shear stiffness Gf = Ef/2.6. The reference axial and bending 

stiffnesses are denoted by (EA)f0 and (EI)f0, and (EI)f0/(EA)f0 = 10−4. The number of fibers 

in this reference network is denoted by Nf0. The overall network modulus, E, was evaluated 

numerically. As expected, for very large values of the ratio (EI)f/(EA)f, it was observed that 

E~(EA)f, while for very small values, E~(EI)f. The reference network of (EA)f0 and (EI)f0 

was in the transition region and has stiffness denoted by E0. The network modulus divided 

by the axial stiffness of fibers, E/(EA)f, is shown in Fig. 2. The reported values are 

normalized by the corresponding values of the reference network.

We proceeded by studying the effect of fiber density on E close to the two asymptotes and 

observed that E~ ρ in the stretch dominated limit (right side of the plot in Fig. 2) and E~ ρ2 

in the bending dominated limit (left side of the plot in Fig. 2).

Next, we considered composite networks with distributions of axial and bending stiffness of 

the constituent fibers. The moduli of these networks were compared with the reference 

homogeneous network of fiber stiffnesses (EA)f0 and (EI)f0 and overall modulus E0.

First, we considered networks of fibers having the same axial stiffness, (EA)f = 103(EA)f0, 

while the bending stiffness of the fibers was sampled from a normal distribution of mean 

 and coefficient of variation†, . The parameters 

 and  were chosen such for the network deformation to be bending dominated 

(Fig. 2). Five hundred replicas with the same geometry as the homogenous network were 

used to obtain the distribution of E associated with the distribution of (EI)f. Fig. 3(a) shows 

the probability distribution function (PDF) of the normalized network modulus, p(E/E0), for 

two cases, with CV(EI)f = 0.1 and 0.2.

It was observed that the variance of the network stiffness PDF increased with increasing the 

coefficient of variation of the fiber bending stiffness CV(EI)f. Interestingly, the mean of the 

†Throughout this text σ refers to standard deviation.
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network stiffness, 〈E〉, decreased with increasing CV(EI)f. So, the composite networks were 

on average softer than their homogeneous counterparts.

In the tests mentioned above the strain energy was predominantly stored in the bending 

mode of fiber deformation. Therefore, the observed shift was not due to a change of 

deformation mechanism from the bending-dominated to the axially-dominated mode. We 

further considered axially-dominated networks. In these models, fibers had identical bending 

stiffness (EI)f = (EI)f0 and a PDF of axial stiffnesses. The mean fiber axial stiffness was 

 and the coefficient of variation was . The 

result is shown in Fig. 3(b) for networks with CV(EA)f= 0.2 and 0.9. The trends are identical 

to those seen in Fig. 3(a), but the effect is more pronounced since the variance of the fiber 

stiffness distribution is larger.

Various network geometries (3D Voronoi, 3D Delaunay and 2D Mikado), various types of 

fiber stiffness distribution (normal, log-normal and bimodal) and various values  were 

considered in separate simulations.  values ranging from 10−3(EA)f0 to 103(EA)f0 

were considered in the tests. So, values close to both axial and bending asymptotes of the 

plot in Fig. 2, and in the transition region were considered. The tests were performed using 

different CV(EI)f and CV(EA)f values and the average network softening was measured. The 

results of these tests are shown in Fig. 4. In Fig. 4(a) the relative network softening, (E0 − 

〈E〉)/E0, is plotted against the coefficient of variation of the fiber stiffness. The figure shows 

 or  if (EI)f or (EA)f are sampled from distributions, respectively. The various 

symbols correspond to networks with the various properties listed in Table 1. It is observed 

that if the network is selected close to the bending dominated asymptote of the plot in Fig. 2, 

there is no significant effect due to the variability of the fiber axial stiffness. This is expected 

since E is not significantly affected by the fiber axial stiffness close to the bending 

dominated asymptote. Similarly, E is not affected by a distribution of fiber bending stiffness 

if the system is close to the axially dominated asymptote.

If the parameters are such that the network is not close to the stretch dominated asymptote it 

was observed that, in all cases, the network softening is proportional to . Hence, with 

all other parameters kept constant and variable σ(EI)f,

(2)

In Fig. 4(b) the normalized variance of the network stiffness is plotted against the coefficient 

of variation of the fiber stiffness, . It was observed that  is proportional to 

 and the scaling prefactor depends on the average nodal coordination number 

(network functionality) and Nf. It was also observed that if all other parameters stay constant 

and only σ(EI)fvaries,
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(3)

Similar results were obtained when (EI)f was identical for all fibers and (EA)f was sampled 

from a distribution. In this case the network softening and variance of the stiffness 

distribution scale linearly with .

Figure 4 also shows data for 3D Delaunay and 2D Mikado networks, which all follow the 

scaling laws shown by Eqs. (2) and (3). The Mikado, Voronoi and Delaunay networks 

considered have average nodal coordinations of 3.76, 4.00 and 21.12 respectively. The 

scaling prefactor for Delaunay networks is smaller. This can be attributed to the difference 

in the nodal coordination number. Furthermore, the dimensionality of the system (2D vs. 

3D) does not affect the scaling laws. Note also that the structure of Voronoi networks 

(which is closer to that of open cell foams) is very different from that of the Mikado 

networks (mimicking paper and fiber mats used in consumer products) and Delaunay 

networks, but the scaling laws of Eqs. 2 and 3 are not affected by these factors.

We further investigated axially-dominated systems in which the fibers have compressive 

axial stiffness much smaller than their tensile stiffness. This models situations in which fiber 

buckling occurs under local compressive loading and the post-critical, bending-dominated 

stiffness of buckled fibers is very small compared to their stiffness in tension. To this end, 

we rendered (EA)f different in tension and compression, the tension-compression asymmetry 

being characterized by the ratio . As the results shown using filled 

blue circles in Fig. 4 indicate, Eqs. (2) and (3) hold in this case as well.

We also tested networks of harmonic springs that have no bending or shear deformation 

mode. The results are shown with filled black squares in Fig. 4 and indicate that Eqs. (2) and 

(3) hold for these networks too. The spring network simulations are performed using the 

Delaunay network geometry to insure stability. In this case, the network modulus is 

measured in units of  where  is the average spring stiffness and the stiffness of the 

springs in the model is sampled from a distribution with a coefficient of variation .

As discussed in the literature, the network modulus is generally influenced by size effects 

(Dirrenbergerl et al., 2014; Hatami-Marbini et al., 2013; Shahsavari and Picu, 2012). We 

tested the effect of the model size on the results reported above and observed that the 

softening behavior (Fig. 4(a) and Eq. (2)) is not affected by the size effect. In contrast, the 

variance of the network modulus, E, vanishes for infinitely large networks. In Fig. 4 the pink 

circles and navy diamonds correspond to networks containing different numbers of fibers. 

The circles correspond to a network whose dimensions were increased by a factor of 1.5 

relative to the reference network, while the diamonds correspond to a network with 1/3 the 

reference network density. Varying Nf leaves the scaling laws (2) and (3) unchanged and 

only affects the pre-factor in Eq. (3).

In Fig. 5 the red plus symbols show the dependence of the variance of the network modulus 

on Nf. Nf was altered by changing the network size in one case and by changing the fiber 
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density in another case. The red plus sign with the smallest Nf corresponds to networks with 

a density 1/3 of the reference network, while the point with the largest Nf corresponds to 

tests with networks that are 1.5 times larger than the reference network. In each of these 

tests the networks had the same geometry. Multiple replicas were considered for each data 

point. A constant value of  was used in all these tests. The CVE and Nf 

values are normalized by the corresponding parameters of a network with Nf = Nf0.

To provide a reference, homogeneous networks of different size were also considered. In 

this case the variability of the modulus is due to geometric variability from replica to replica. 

Different initial seed points were used to create samples with geometric variability. The 

resulting variability of the network modulus is also shown in Fig. 5. The CVE and Nf values 

reported for these tests are normalized by the corresponding parameters from tests with Nf = 

Nf0. The black circles correspond to samples of various sizes while the triangles correspond 

to samples with various fiber densities. Whether the variability in E results from the fiber 

stiffness distribution or in the case of homogeneous networks from geometric variability, the 

variance of the network modulus scale inversely with the number of fibers: .

Since the variability in E, whether caused by geometric variability or by variability in fiber 

properties in composite networks, vanishes at large Nf, it can be concluded that the cases 

reported here (given network geometry, but with fibers of stiffness sampled from a 

distribution) are representative for composite networks of large dimensions.

It is further interesting to inquire whether the effect discussed persists in the non-linear 

range of the network response. Most physical systems with fiber network structure undergo 

large deformations and the linear elastic regime is limited to relatively small strains 

(function of the network density). To clarify this issue, we tested 3D Voronoi composite 

networks in the non-linear range and evaluated the stress-dependent tangent stiffness. We 

used fibers with bimodal distributions of properties in these tests. Fig. 6 shows the stiffness 

vs. stress plot for the reference homogeneous network and for composite networks with 

nonzero CV(EA)f or CV(EI)f.

As previously shown in experiments using collagen networks and simulations using random 

fiber networks (Licup et al., 2015), the curves exhibit constant stiffness at small stresses and 

strains followed by a power law dependence of the stiffness on the stress, Et ~ Tα. α values 

ranging from 1/2 to 3/2 have been reported depending on network architecture and cross-

link properties (Licup et al., 2015; Žagar et al., 2015). The stiffening behavior of the tested 

Voronoi networks is similar to the experimental observations using collagen networks 

showing α = 1 (Licup et al., 2015). We observe the network softening effect associated with 

increasing the variance of the fiber properties distribution in the linear elastic range and in 

the transition to the non-linear range. Deep into the non-linear range, the curves merge and 

the tangent stiffness measured at the same stress value becomes independent of the variance 

of fiber properties. When measured at the same value of the strain, the tangent stiffness has 

a similar trend with increasing strain, but the convergence to the regime in which 

fluctuations in fiber properties have no effects on the stiffness is slower. In the systems 
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studied, the difference in tangent stiffness from microstructural variability persists up to 

strains as high as 50%.

4. Theory

In this section, we provide analytical arguments to support expressions (2) and (3) and 

demonstrate their validity for any structure of beams subjected to small deformations. To 

this end we first find the change in the overall structural stiffness due to generalized forces 

applied to their internal nodes. Then we consider replacing a structural element of the 

structure by the generalized forces it applies to the structure. This leads to a relation between 

the overall structural stiffness and the stiffness of an element. Finally this relation, along 

with statistical arguments, are used to derive the scaling laws (2) and (3) in the limit of small 

beam stiffness variability.

We consider a reference state (state 0) in which the structure is subjected to displacement 

boundary conditions over a part of its boundary, , and zero tractions boundary 

conditions elsewhere. To make the discussion specific, we consider a uniaxial deformation 

in which zero displacements are applied on  in the X1 direction and the displacement d0 is 

applied at all points of Sx in the X1 direction. The traction over Sx in the X1 direction is 

denoted by t0. The displacement field corresponding to these boundary conditions is denoted 

by u0 and the overall stiffness in this state, E0, results from Eq. (1).

4.1. Effect of the variation of the axial stiffness of a structural element on the global 
stiffness

We modify the reference structure of state 0 by the addition of an element which has only a 

finite axial stiffness δ(EA)f, to generate state 1 of overall stiffness E1. We replace the effect 

of the added element by point forces of magnitude  and express E1 in terms of E0 and . 

Then we replace the forces by the element and find E1 in terms of E0 and δ(EA)f.

As shown schematically in Fig. 7, state 1 can be constructed by adding a pair of equal and 

opposite forces to state 0. Consider that in state 0, before adding the two forces, the 

respective element would deform axially by an amount  where  and  are the 

axial displacements of the two ends of the element in state 0. The addition of the force 

couple changes the boundary traction over Sx from t0 to t1. By applying the Maxwell-Betti’s 

reciprocal theorem (Maxwell, 1864) to the states 0 and 1 we can write

(4)

Clearly, the application of the forces  leads to a new displacement field and a new 

elongation of the beam, denoted by . A similar state 2 can be defined by adding two 

similar forces of magnitude  to state 0. Schematics of the considered element in states 0, 1 

and 2 are shown in Similarly Maxwell-Betti’s reciprocal theorem applied to the states 1 and 

2 gives:

Ban et al. Page 9

J Mech Phys Solids. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

Eqs. (4) and (5) and the counterpart of Eq. (4) applied to states 0 and 2 can be combined to 

obtain . This is an indication that the quantity  is 

invariant of the magnitude of the applied loads f||. We denote this quantity by 1/C. It can be 

concluded that for a generic magnitude of forces f||, an elongation Δ|| results that is related to 

f|| by

(6)

We inquire now to what extent the overall stiffness of the structure changes when the axial 

stiffness of a given beam changes by δ(EA). As commonly done in elasticity, we represent 

an increase of stiffness with an effective pair of equal and opposite axial forces to map the 

problem to state 1 defined above. The magnitude of these forces is related to δ(EA) through 

 where l0 is the original length of the beam. Combining this constitutive 

relation with Eq. (6) gives:

(7)

Eqs. (1), (4) and (7) can be combined to obtain the effective modulus:

(8)

It can be concluded that constant C must be non-negative because otherwise a stiffness value 

δ(EA)f can be found such that the second term on the right hand side of Eq. (8) diverges. 

This can also be concluded from the positive definiteness of the structural stiffness matrix.

Eq. (8) shows that increasing the axial stiffness of an element will increase the overall 

stiffness of the structure, as expected. It further shows that this dependence is concave, i.e.

(9)

These arguments hold for a spring network as well. In this case, the variation given to a 

specific spring element is δs, which is related to the variation of the axial stiffness as δs = 

δ(EA)f/l0. It is straightforward to show using the same procedure that in this case too: ∂2E/∂

(δs)2 < 0.
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4.2. Effect of the variation of the bending stiffness of a structural element on the global 
stiffness

In this section arguments similar to those in section 4.1 are provided to relate the variation of 

the global stiffness to the variation of the bending stiffness of a structural element.

Consider a linear elastic structure of beams in a loading state 0 as described in the beginning 

of section 4. Also consider that the bending of a generic linear beam loaded at its ends is 

described by two displacements and two rotations, u⊥, u′⊥, θ and θ′, which can be combined 

to compute the two effective rotation angles ϕ and ϕ′ defined as ϕ = θ − Δ⊥/l0 and ϕ′ = θ′ − 

Δ⊥/l0 where Δ⊥ = u′⊥ − u⊥.

Now consider a loading state 1 constructed by adding a moment M1 and two opposite forces 

to balance it with a magnitude  acting perpendicular to the beam axis, at its ends. This 

state of loading is shown in Fig. 9(a). Using the equilibrium equation for the beam and the 

Maxwell-Betti’s theorem relating the states 0 and 1 it can be concluded that

(10)

As in section 4.1, if a different set of generalized forces, M2, and two opposing forces of 

magnitude  are considered, a similar state 2 can be defined. Then Maxwell-Betti’s 

theorem can be written to relate the boundary tractions in the states 1 and 2 as

(11)

where  and  are the deformation angles at the start node of the beam associated with 

the applied loads of state 1 and 2.

Combining Eqs. (10) and (11) and the counterpart of Eq. (10) for comparing states 0 and 2 

yields , which indicates that (ϕM − ϕ0)/M = C′ is invariant of 

the generalized loads applied. Consequently

(12)

The loading by M and the two balancing forces can be regarded as state A as shown in Fig. 

9(a). The same argument holds if the same loads are applied to the other end of the beam. 

This can be regarded as state B as shown schematically in Fig. 9(b). We denote these 

generalized forces as M′, fM′ and −fM′. Similarly, the change in the deformation angle in the 

end node and the corresponding structural invariant can be denoted by ϕ′M′ and C″ 

respectively to obtain

(13)
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The general state of loading of the beam may be represented as the superposition of the two 

states A and B as shown in Fig. 9(c).

It can be shown that states 0 and C are related through:

(14)

On the other hand the moments and deformation angles can be related using the Euler-

Bernoulli beam theory (Love, 1944). For a beam of bending stiffness δ(EI)f loaded at its 

ends with M̂ and  and two balancing forces  and 

.

The beam is exerting moments M and M′ to the surrounding structure as generalized reaction 

forces in directions that are opposite to M̂ and . Application of the moments is 

accompanied by the application of reactions to the balancing forces. Now consider that the 

application of M̂ and  and the balancing forces, state C, can results from the superposition 

of state A with M̂ and balancing forces only and another state B with  and balancing 

forces only. State C can result by the superposition of states A and B. So ϕ = ϕM + ϕM′ and 

ϕ′ = ϕ′M + ϕ′M′ where ϕM′ and ϕ′M are the contribution from M′ to ϕ and from M to ϕ′ 

respectively. If we only consider the part of loads in state C that are present in state A we get

(15)

Similarly, considering only the part of loads in state C that are present in state B we get

(16)

The Eqs. (15) and (16) hold for any M and M′ in the state C.

We can represent the effect of a bending element with two moments M and M′ and two 

balancing forces f⊥ and −f⊥. The Eqs. (12) and (15) hold between M and ϕM in the general 

state of loading. The two equations can be used to eliminate ϕM to obtain

(17)

Similarly,

(18)
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By replacing M and M′ from Eqs. (17) and (18) into Eq. (14) and substituting in Eq. (1), the 

overall stiffness can be expressed as

(19)

Constants C′ and C″ must be nonnegative to avoid the divergence of the two fractions in Eq. 

(19) for any value of δ(EI)f. Eq. (19) indicates that increasing the bending stiffness of an 

element of the structure leads to the increase of the overall stiffness as expected. Taking the 

second derivative with respect to δ(EI)f it is also observed that

(20)

4.3. Variation of the structural stiffness for a composite beam network

Now we can consider the more general case discussed in section 3 in which all elements of a 

beam structure, a random network in particular, have non-identical stiffness. This situation is 

treated as a small perturbation from the homogeneous case, in which all elements have the 

same stiffness.

We denote the axial or bending stiffness of element i by ki and group these variables in the 

vector k = {k1, k2, …, kNf} and express the network stiffness E as a function of k. In the 

homogeneous case vector k takes the constant value μ0 = {μ0, μ0, …, μ0} and the network 

has stiffness E(μ0) = E0. However in the general case where the ki’s are non-identical E(k) 

can be expanded in series about k = μ0 as

(21)

In section 3 softening is observed using replicas of ki values and one unique network 

geometry. Using replicas of ki a distribution of E is obtained. So it can be concluded that in 

all these replicas the expressions ∂E/∂ki and ∂2E/∂ki∂kj are the same at μ0. So they don’t 

change from replica to replica and are constants when averaging over replicas. Also the ki’s 

can be considered random variables sampled from independent and identical distributions. 

The mean and variance of these identical distributions can be denoted by μ0 and .

The variance of E can be computed using the series in Eq. (21). Retaining only the first 

order terms in (ki − μ0) and by averaging over the replicas of fiber stiffness distribution it 

can be concluded that
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(22)

In other words

(23)

The mean of the distribution of E can also be computed using Eq. (21). Keeping in the 

expansion the terms up to the second order in (ki − μ0) and by averaging over replicas of 

fiber stiffness distribution it can be concludes that

(24)

which can be rearranged as

(25)

Since  are constants for a unique network geometry,

(26)

The structures become softer on average if the Laplacian of E, , computed at μ0 

is negative. Using the results of sections 4.1 and 4.2 it is possible to show that each term in 

this sum is negative.

It can be noted that the argument about softening does not hold for a set of axial elements 

connected in parallel in one dimension. In that case the constant C introduced in Eq. (6) is 

zero for each of the parallel elements. As a result, the Laplacian is zero in that case and the 

mean overall stiffness does not change.

Expressions (23) and (26) provide a theoretical explanation for the numerical results 

presented in Fig. 4 and are the main result of this article.

Taking a more general view, we expect the results presented here to hold for any property of 

a system composed from microstructural elements subjected to fluctuations, provided the 

constitutive behavior is linear and that the fluctuations are sufficiently small.

Conclusions

Composite fiber networks, i.e. structures made from fibers of multiple types, are studied in 

this work. We consider the case where the stiffness of individual fibers in the network is 
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obtained from a distribution. It is observed that increasing the variability of the fiber 

stiffnesses leads to global, network stiffness reduction. Numerical simulations of random 3D 

Voronoi, 3D Delaunay and 2D Mikado networks show that microstructural stiffness 

variability reduces the overall network stiffness on average and the magnitude of the effect 

scales linearly with the variance of the fiber stiffness distribution. We prove these results 

analytically for a generic structure of fibers. We also show that the variance of the network 

stiffness scales linearly with the variance of the fiber stiffness and inversely with the number 

of elements in a network. We use numerical simulations to study the nonlinear deformation 

of the composite Voronoi networks. We observe that in the systems tested the softening 

effect induced by microstructural variability persists in the nonlinear deformation regime up 

to strains as high as 50%.
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Fig. 1. 
Displacement controlled uniaxial stretch test of a 3D fiber network model.
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Fig. 2. 
Normalized overall modulus of homogeneous networks as a function of the ratio of the fiber 

bending and axial stiffness. The values plotted are normalized by the corresponding 

quantities of the reference network, i.e. by E0/(EA)f0 and (EI)f0/(EA)f0 for the vertical and 

horizontal axes, respectively.
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Fig. 3. 
PDF of the normalized network stiffness, E/E0, for networks with non-identical (a) bending 

and (b) axial fiber stiffness. (a) The fiber bending stiffness follows a normal distribution of 

mean  and coefficient of variation . Distributions of 

network stiffness are shown for two values of the coefficients of variations of (solid blue) 

0.1 and (dotted red) 0.2. (b) The axial stiffness of fibers in these models is selected from a 

distribution of mean  and coefficient of variation 

. Distributions of network stiffness are shown for two values of the 
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coefficient of variations of (solid black) 0.2 and (dashed green) 0.9. The network stiffness, 

E, is normalized by the stiffness of the respective reference homogeneous network, E0.
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Fig. 4. 
(a) The normalized softening and (b) normalized variance of the overall network stiffness 

against the coefficient of variation of the stiffness of the constituent fibers. For each data set, 
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both these quantities scale linearly with the variance of the fiber stiffness. The variable on 

the horizontal axis is the coefficient of variation of the distribution of either (EA)f, (EI)f or sf 

as appropriate for the respective test. The various symbols used here are described in Table 

1 or in the text. Each point in this plot was obtained by averaging over five hundred replicas. 

k in the scaling laws denotes the fiber stiffness in a single mode, either (EA)f, (EI)f or sf. The 

values shown by the vertical axes are normalized by the small-strain stiffness of the 

respective homogeneous network stiffness, E0, for each data series.
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Fig. 5. 
Normalized coefficient of variation of the network stiffness against the normalized number 

of constituent fibers. The source of variability in network stiffness was either geometric (for 

homogeneous networks) or due to the variability in fiber properties (in composite networks). 

The data series are described in the text. Each point in this plot was obtained by averaging 

over 500 replicas.
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Fig. 6. 
Variation of the tangent stiffness, Et, with true stress, T, for the reference homogeneous 

network (filled red diamonds) and for composite networks with CV(EA)f equal to (filled 

green triangles) 0.5, (open brown triangles) 0.8 and (open black squares) 0.9 and (open 

black circles) CV(EI)f = 0.9. The two axes are normalized with the small strain stiffness of 

the corresponding reference homogeneous network, E0.
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Fig. 7. 
Schematic representation of state 1.
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Fig. 8. 
Schematic of a structural element in its local coordinates at different states of loading. l0 is 

the original length of the specified element. (a) The element before the structure is loaded. 

The element when the structure is loaded by (b) prescribing d0 (state 0) (c) prescribing d0 

and two point forces of magnitudes  (state 1) and (d) prescribing d0 and two point forces 

of magnitudes  (state 2).
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Fig. 9. 
Schematic of the decomposition of the general state of loading for a beam loaded at its ends. 

The blue curve shows a hypothetical deformed elastic beam, while the black (straight) curve 

shows the initial state of the beam. The two states of loading shown in (a) and (b) can be 

superimposed to construct state (c). Panels (a), (b) and (c) show the states of loading A, B 

and C, respectively.
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 th
is

 s
am

pl
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w
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 n
ot
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lo

se
 to

 e
ith

er
 o
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th
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st

re
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or
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en

di
ng
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in
at
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ot

es
 in
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.

§ In
di

ca
te

s 
te

st
s 

on
 n

et
w

or
ks

 o
f 

lin
ea

r 
sp

ri
ng

s 
(z

er
o 

be
nd

in
g,

 to
rs

io
na

l a
nd

 s
he

ar
 s

tif
fn

es
s)

.
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