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Purpose: We developed and evaluated the performance of a novel computer-based
image analysis system for grading plus disease in retinopathy of prematurity (ROP),
and identified the image features, shapes, and sizes that best correlate with expert
diagnosis.

Methods: A dataset of 77 wide-angle retinal images from infants screened for ROP
was collected. A reference standard diagnosis was determined for each image by
combining image grading from 3 experts with the clinical diagnosis from
ophthalmoscopic examination. Manually segmented images were cropped into a
range of shapes and sizes, and a computer algorithm was developed to extract
tortuosity and dilation features from arteries and veins. Each feature was fed into our
system to identify the set of characteristics that yielded the highest-performing
system compared to the reference standard, which we refer to as the ‘‘i-ROP’’ system.

Results: Among the tested crop shapes, sizes, and measured features, point-based
measurements of arterial and venous tortuosity (combined), and a large circular
cropped image (with radius 6 times the disc diameter), provided the highest
diagnostic accuracy. The i-ROP system achieved 95% accuracy for classifying preplus
and plus disease compared to the reference standard. This was comparable to the
performance of the 3 individual experts (96%, 94%, 92%), and significantly higher than
the mean performance of 31 nonexperts (81%).

Conclusions: This comprehensive analysis of computer-based plus disease suggests
that it may be feasible to develop a fully-automated system based on wide-angle
retinal images that performs comparably to expert graders at three-level plus disease
discrimination.

Translational Relevance: Computer-based image analysis, using objective and
quantitative retinal vascular features, has potential to complement clinical ROP
diagnosis by ophthalmologists.
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Introduction

Retinopathy of prematurity (ROP) is a leading
cause of childhood blindness in the United States and
throughout the world, and it is largely treatable with
appropriate and timely diagnosis.1 In 2005, a revised
international classification system was developed.2,3

The most critical parameter of this classification system
is ‘‘plus disease,’’ defined as arterial tortuosity and
venous dilation greater than that found in a standard
published photograph. Furthermore, an intermediate
‘‘preplus disease’’ is defined as vascular abnormality
that is less than that in the standard published
photograph.3 Clinical studies have shown that infants
with ROP and ‘‘plus disease’’ require treatment to
prevent blindness, and infants with preplus disease
require very close observation. Although it is essential
to diagnose plus and preplus disease accurately,
multiple studies have shown significant variability in
clinical diagnosis, even among experts.4–7

Automated image analysis may improve the
delivery and quality of ROP care. An automated
grading scale could provide a more objective and
consistent determination of plus disease and could be
combined with telemedicine ROP screening programs
to improve access to care in rural and less developed
regions. Despite major advances in our understanding
of ROP pathogenesis, risk factors, and treatment, the
worldwide prevalence of disease is projected to rise
due to increased survival of preterm infants, and to
persistent challenges in ROP education.8–11 Telemed-
icine has been used to address these challenges in
delivery of care, and computer-based image analysis
could complement these systems.12–15

There have been numerous studies on computer-
aided quantification of vascular features in ROP.13–15

However, previous studies have had several limitations:
(1) Little work to our knowledge has focused on
comparative analysis to identify image features that are
most important for diagnosis.16,17 (2) Most previous
studies have worked on two-level classification (plus
versus not plus), and do not address preplus
disease.13,14 (3) The ‘‘reference standards’’ for evalua-
tion of computer systems have been very limited, often
consisting of diagnosis by a single clinician. (4) There
has been no standardization regarding which specific
image sizes and vascular parameters should be
measured (Patel SN, et al. IOVS. 2014;55:ARVO E-
Abstract 5929).18 (5) The optimal method for combin-
ing quantitative parameters from multiple vessel
segments is unknown. Most studies have used regular

statistics (e.g., minimum, maximum, and median) of
measured parameters (e.g., tortuosity, integrated cur-
vature),14,15 but these statistics may provide biased
estimates about disease severity since an image
contains healthy and abnormal vessels. This study
was designed to address all of these gaps in knowledge.

In this study, we evaluated the accuracy of plus
and preplus diagnosis by computer-based image
analysis (CBIA), compared to a reference standard
defined by consensus of image reviews by three
expert ROP image graders combined with the
clinical diagnosis by ophthalmoscopy. Images were
cropped to different sizes and shapes for analysis,
and the diagnostic impact of analyzing arteries,
veins, and all vessels together was examined. We
propose a novel feature representation scheme using
Gaussian Mixture Models (GMM) to separate out
the signal from normal and abnormal vessels to
determine whether there might be improved diag-
nostic performance. We identified the highest
performing image analysis system, which we have
named the i-ROP system.

Methods

This study was approved by the Institutional
Review Board at Oregon Health & Science Univer-
sity, and followed the tenets of the Declaration of
Helsinki.

Reference Standard Diagnosis

We acquired 77 wide-angle retinal images during
routine clinical care and they were independently
graded by three expert ROP graders (MFC, RVPC,
SO) as plus, preplus, or normal, and compared to the
clinical diagnosis. Images were selected to represent a
typical clinical distribution of disease severity, with
most images in the ‘‘normal’’ range. Two graders
(MFC, RVPC) were experienced clinicians in ROP,
and the third (SO) was an experienced ROP study
coordinator. When all four grades were concordant,
the grade was taken as the reference standard. When
there were discordant grades among experts, or
between the clinical diagnosis and the experts, these
were adjudicated by consensus of the three experts
using methods described previously,19 to determine
the reference standard.

Image Preparation

Using graphics editing software (Photoshop CS5;
Adobe Systems, San Jose, CA), a ‘‘mask’’ outlining
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each vessel was created manually for each retinal

image, and each vessel was classified as either an

artery or vein by author consensus. For quantitative

analysis, images then were cropped into two shapes

(rectangle or circle) of a range of sizes based on

methodology described previously (Patel SN, et al.

IOVS. 2014;55:ARVO E-Abstract 5929).20 The seg-

mentation and cropping processes are illustrated in

Figure 1.

i-ROP System Development

Manually segmented images were fed into the

image processing system to obtain an automated

diagnosis. The procedure consisted of 3 stages: (1)

preprocessing images to extract vessel centerlines and

construct the vasculature tree, (2) extracting image

features that account for tortuosity and dilation, and

(3) building an automated diagnosis system to classify
images using the extracted features (Fig. 2).

Preprocessing
Preprocessing was performed using previously

described methods.21 The vasculature structure was
represented as a tree of vessel segments, where a
‘‘segment’’ is defined as a curvilinear structure
between two junction points, or between a junction
point and an endpoint. We then fitted cubic splines to
the segments to provide a smoothed continuous line
along each vessel segment, from which we sampled
points at equidistant intervals along the length of the
vessel. The final representation of the tree was
composed of these sampled points (Figs. 3a, 3b).

Feature Extraction
We defined and extracted 11 features that quantify

either tortuosity or dilation and that have been

Figure 1. Illustration of manual mask generation and cropping processes: (a) original retinal image, (b) mask for manually segmented
arteries (yellow) and veins (gray) overlaid on the original image. Optic disc (OD) center is marked with a green ‘‘x’’, (c) generation of
circular crops where each circle is centered at the OD center with diameters ranging from 1 to 6 disc diameters (DD), and (d) generation
of rectangular crops maintaining an aspect ratio of 3 3 4 DD. Rectangles were drawn to capture more temporal (75%) than nasal (25%)
vessels. Superior and inferior vessels were captured equally.
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Figure 2. Computer-based image analysis system overview. The masks generated by manual segmentation were preprocessed to find
the centerlines and construct the vascular tree. The tree and the manual mask then were fed into the feature extraction module, which
outputs segment-based and point-based features quantifying vascular tortuosity and dilation. Given these features, a classification
system was built to identify each image as plus, preplus, or normal.

Figure 3. Preprocessing and feature extraction: (a) the resulting vasculature tree after preprocessing is overlaid on manual
segmentation. Centerlines of each vessel segment are smoothed by cubic splines and displayed with different colors. (b) Original center-
line points (red) and spline fitted points (blue) are displayed for part of an example vessel segment shown in red rectangle in (a). Velocity
and acceleration vectors also are displayed in green and cyan, respectively, for some example points. Note that as tortuosity increases, the
magnitude of acceleration vector increases. (c) Bar plot of acceleration magnitude and curvature values computed for the points
displayed in (b). The points where green acceleration vectors are displayed in (b) are shown with corresponding green bars in the graph.
(d) Diameter for a center-line point is computed by drawing an orthogonal line (red lines) and finding its intersection (green crosses) with
the vessel boundary. This is illustrated for some sample points.
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described in the literature (Table 1).14,22,24 Tortuosity

features were extracted using methods described
previously.23 Average segment diameter and average

point diameter were computed to quantify dilation

(Table 1, Fig. 3d). These features are divided into two
groups depending on where the feature is computed:

segment-based and point-based features, and were

analyzed separately for arteries and/or veins.

Following an expectation maximization procedure

designed to learn parameters of statistical models, we
fit two component Gaussian Mixture Models

(GMMs) to the pool of numbers { f1, f2, . . . fN} for

each image feature, expecting to model healthy and

abnormal vessels in different components. The

probability of f being from this pool of numbers

was defined as:

pð f Þ ¼ x1Nð f; l1;r1Þ þ x2Nð f;l2; r2Þ ð1Þ

where the ith component is characterized by weightxi,

and Nð:;li; riÞ denotes the normal distribution with

mean li and variance ri. Each image then was

represented with the parameters of the GMM:

Table 1. List of Extracted Features

Feature Formula

CTI ¼ Cumulative tortuosity index cti(x) ¼ Lc(x) / Lx(x)

IC ¼ Integrated curvature icðxÞ ¼
Z b

a
jjðsÞjds.

ISC ¼ Integrated squared curvature iscðxÞ ¼
Z b

a
jðsÞ2ds

IC/Lc ¼ IC normalized by Curve length icLc(x) ¼ ic(x) / Lc(x)
ISC/Lc ¼ ISC normalized by curve length iscLc(x) ¼ isc(x) / Lc(x)
IC/Lx ¼ IC normalized by chord length icLx(x) ¼ ic(x) / Lx(x)
ISC/Lx ¼ ISC normalized by chord length iscLx(x) ¼ isc(x) / Lx(x)

Acceleration axðtÞ ¼ jj ]2cðtÞ
]t2 jj

Curvature jðsÞ
Average segment Diameter asd(x) ¼ #pixels / Lc(x)
Average point diameter See Fig. 3d

The formulas are written for a segment x, that is parameterized by the curve c(t) between points a and b. Lc and Lx
denote curve and chord length respectively and j(s) is the curvature computed for a point s on the curve.

Figure 4. Clustering of vessel segments based on the GMM on integrated curvature (IC) feature for an example image. In the left, white
squares indicate the junction/end points of vessels. Each segment is shown with its corresponding cluster color. Right figure displays the
histogram of the IC feature for that image, along with the GMM. The yellow line indicates the probability density function (PDF) of all the
segments. The mean of each mixture component is shown with dashed lines with its respective color.
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l1; l2;r1; r2;x1;x2. As seen in Figure 4, when we
clustered the vessel segments based on the likelihoods
we get from the two-component GMM, the segments
can be divided into two groups: one group with highly
tortuous vessels and the other group with more
straight vessels. This procedure helped us represent
the image-features extracted from a vasculature
structure as a probability distribution (with two
components, respectively representing the straight
and tortuous segments) rather than a set of values
coming from regular statistics, such as mean and
median.

Classification
To build a CBIA system that accurately classified

images as plus, preplus, or normal, we wanted to see
whether images with similar feature distributions were
more likely to be classified in the same class (i.e., plus,
preplus, normal) by an expert. We computed the
similarity between two images based on the distance
between their distributions. The Euclidean distance
between the GMM distributions of image j and image
k was computed as:

dðj; kÞ ¼
Z
ðpjð f Þ � pkð f ÞÞ2df ð2Þ

where pj and pk represent the distributions of the
images as indicated in Equation 1. Thus the similarity
between them was defined as sð j; kÞ ¼ e�dð j;kÞ.

We used this similarity definition as a kernel in
training Support Vector Machine (SVM) classifiers
that are designed to optimize the margin between
samples of different classes.25 The kernel definitions
determine what kind of similarity will be used
between samples when the decision margin is being
optimized. We trained separate classifiers for each
crop shape, crop size, feature combination, and vessel
type. We identified the highest performing classifica-
tion system as our i-ROP system for performance
evaluation and validation.

Performance Evaluation

We followed a k-fold cross-validation procedure
for evaluating performance of the i-ROP system. The
goal of cross validation is to assess the accuracy of a
predictive model by checking how well it generalizes
to previously unseen data. In this procedure, the
dataset was divided into k disjoint folds (in this case
10). For each fold, the classifier was trained using the
samples in the remaining k-1 folds. Then, the
diagnosis for each sample in the selected fold was
determined using the trained classifier. The accuracy

of the fold was computed as the percentage of
correctly classified samples in the fold. Then, the
average of all accuracy values was reported as the
estimated performance of the i-ROP system.

To compare the performance of the system with
the performance of the experts, the accuracy for each
expert as well as the confusion matrix was computed.
As ROP diagnosis involves a high degree of inter-
expert variability, we also computed percentage
agreement and Kappa statistics between pairs of
experts to give a sense of the amount of interexpert
variability in our dataset.26 To provide a reference
with a group of ‘‘nonexperts,’’ a subset of 22 of the
original 77 images were separately graded by 31
ophthalmology trainees from the United States and
Canada for comparison. Mean accuracy of this group
was compared to the i-ROP system and the experts.

Multidimensional Scaling (MDS)

In this work, each image was represented with the
GMM distribution of its image features, which is
different than the traditional approach of represent-
ing the image with a single statistic (e.g., mean
tortuosity, maximum dilation). Using simple descrip-
tive statistics, one can compare directly the tortuosity
or dilation between two images. To perform the same
comparison with the proposed similarity measure and
illustrate its efficiency, we performed nonlinear
dimensionality reduction on the distance matrix that
was used in the i-ROP system. We reduced the
samples into a 1-dimensional space following MDS,
which is a commonly used technique in pattern
recognition.31 Multidimensional scaling produced
the new coordinates that best preserved the given
pairwise distances between images. Similar to repre-
senting the image with simple statistics, the coordi-
nates of the images in this reduced dimension can be
seen as an index to compare the amount of tortuosity/
dilation between them.

Results

Reference Standard Diagnosis

The dataset consisted of 77 wide-angle retinal
images, which were graded as 14 plus, 16 preplus, and
47 normal images through the reference standardiza-
tion process. Table 2 displays the pairwise diagnostic
agreement among experts, the clinical diagnosis as
determined by the original treating physician, and the
reference standard.
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Impact of Feature Extraction Method and
Vessel Type

Table 3 reports the accuracy of the classifiers by
image feature formula and vessel type (arteries only,
veins only, and arteries and veins). Of all of the

comparisons, the highest performance was achieved

for the measurement of acceleration in a 6DD circular

crop considering all vessels combined and performed

with 95% accuracy compared to the reference

standard. We defined this as the i-ROP system.

Table 2. Percentage Agreement (and Kappa Statistics) Between Pairs of Experts, the Original Clinical Diagnosis,
and Reference Standard

Number of Images in Agreement/77 (Percentage Agreement, j)

Expert 1 Expert 2 Expert 3 Clinical Diagnosis

Expert 1 – 73/77 70/77 68/77
95% (0.90) 91% (0.83) 88% (0.78)

Expert 2 73/77 – 70/77 69/77
95% (0.90) 91% (0.83) 90% (0.80)

Expert 3 70/77 70/77 – 66/77
91% (0.83) 91% (0.83) 86% (0.73)

Clinical diagnosis 68/77 69/77 66/77 –
88% (0.78) 90% (0.80) 86% (0.73)

Reference standard 72/77 74/77 71/77 72/77
94% (0.88) 96% (0.93) 92% (0.86) 94% (0.88)

Table 3. Automatic Diagnosis Results for All Image Features When Features are Extracted From Veins, Arteries,
or Both Arteries and Veins Together (Units are Percent Agreement With Reference Standard; Darker Box Shading
Corresponds to Higher Diagnostic Performance)
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Performance of the i-ROP System

This system agreed with the reference standard

diagnosis in 73/77 (95%) images. In comparison, the

accuracies of the 3 experts compared to the reference

standard were 72/77 (94%), 74/77 (96%), and 71/77

(92%).

To consider this in another way, the number of

‘‘misclassifications’’ by the i-ROP system was compa-
rable to that of the experts. This is shown in Table 4,
which displays the confusion matrices, as well as the
percent agreement and kappa statistic for the i-ROP
system and the three experts compared to the reference
standard diagnosis. The i-ROP system had 5 misclas-
sifications (of 77 possible) versus the reference stan-
dard, compared to 5 for Expert 1, 3 for Expert 2, and 6
for Expert 3. Sensitivity of the i-ROP system for
detecting preplus or worse disease was 29/30 (97%),
compared to 28/30 (93%) for Expert 1, 29/30 (97%) for
Expert 2, and 27/30 (90%) for Expert 3. Sensitivity of
the i-ROP system for detecting plus disease was 13/14
(93%), compared to 13/14 (93%) for Expert 1, 12/14
(86%), for Expert 2, and 13/14 (93%) for Expert 3.

In comparison, a group of 31 nonexperts (United
States and Canadian ophthalmology trainees) were
shown a subset of 22 of the original 77 images for
classification. The overall mean classification accura-
cy of the group was 81%. Within that subset, 7/22
images were graded as preplus or plus by the reference
standard. The mean sensitivity of the group at
detecting preplus or worse disease was 85%, and the
mean sensitivity of nonexperts for detecting plus
disease was 87%.

Efficiency of the GMM-Based Similarity
Measure in Comparing Pairwise Image
Tortuosity

Figure 5 displays the resulting 1-dimensional
coordinates after MDS. For comparison purposes,

Table 4. Confusion Matrices for I-ROP System and All
Experts (Percentage Agreement with Reference
Standard Diagnosis, Kappa)

Plus Pre-Plus Normal

i-ROP system; 95%, 0.91
Plus 13 1 0
Pre-Plus 2 12 2
Normal 0 0 47

Expert 2; 96%, 0.93
Plus 12 2 0
Pre-Plus 0 15 1
Normal 0 0 47

Expert 1; 94%, 0.88
Plus 13 1 0
Pre-Plus 2 12 2
Normal 0 0 47

Expert 3; 92%, 0.86
Plus 13 1 0
Pre-Plus 1 12 3
Normal 0 1 46

Figure 5. Results of nonlinear dimensionality reduction by applying MDS on GMM-based distance (top) and regular statistics (minimum,
maximum, mean) of the acceleration feature. Left shows the 1-D MDS coordinates and the minimum, maximum, and mean of
acceleration respectively. Right shows the rank of image when it is ordered based on corresponding MDS coordinate or acceleration
statistic.
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we also showed the minimum, maximum, and mean
of the acceleration point estimates. The MDS
coordinates illustrate the superior classification effi-
ciency of the GMM compared to the descriptive
statistics. In the right panel of Figure 5, we ordered
the coordinates and plotted the rank order. The
minimum and maximum value of ‘‘acceleration’’
provided poor disease discrimination. Mean acceler-
ation was generally able to discriminate well between
normal and plus (two level discrimination), but
performed poorly at three level discrimination incor-
porating preplus classification. The rank order of the
MDS coordinates for acceleration was very good at
three-level discrimination.

Discussion

This is the first study, to our knowledge, that has
performed a comprehensive analysis of the impact of
image and vessel feature analysis, as well as crop size
and shape, affecting the performance of a CBIA
system for evaluation of plus disease in ROP.
Historically, CBIA system development for ROP
has been challenging in part due to poor interexpert
agreement and imperfect reference standards.14

Therefore, strengths of the current analysis are the
rigorous process used to create the reference standard,
and the high interexpert agreement at three-level
classification (Table 2).19

Key study findings are: (1) The i-ROP system
performs as well as expert image readers, when
provided with manually segmented images, (2) the
performance of our CBIA system was maximized with
larger image crop sizes, and when arteries and veins
were analyzed together, and (3) among 11 vascular
features analyzed, the point-based tortuosity features
of acceleration and curvature performed better than
the segment-based or dilation features.

i-ROP System Performance

There are several key advantages between the i-
ROP system and previously-reported systems.6,7

First, most previous CBIA systems6,7 have focused
on two-level classification (i.e., plus versus not plus)
which is easier to develop compared to three-level
classification (plus, preplus, normal) systems, in part
because of poor interexpert agreement at three-level
classification.14 Using the i-ROP system, there were
no normal images classified as having plus disease
and no plus disease images classified as normal
(Table 4). At three-level classification our i-ROP

system was 95% accurate, performing as well as (or
better than) any of the individual experts. While it is
challenging to directly compare the performance of
the i-ROP system to prior CBIA systems due to
different reference standards, classification levels,
and performance measures, no prior system has
performed as well as the human experts it was
compared against at three level classification.14

Wittenberg et al.14 recently reviewed the four most
well characterized CBIA systems, two of which
demonstrated .90% sensitivity for the detection of
plus disease (with moderate specificity) at two-level
classification.

Second, previous studies have not used a cross-
validation procedure. This cross-validation procedure
increases the generalizability of the performance of
this system to other datasets, though this was not
tested directly in this analysis. Lastly, previous studies
used a simple threshold-based classification using
mean and maximum of the extracted image features
on smaller datasets.14 Instead, we used GMM-based
feature representation that is shown to perform better
than using regular statistics of image features in
classification.23

Implications for Future Automated CBIA
System Development

The finding that the performance of the system
was maximized when arteries and veins were analyzed
together is advantageous, as accurate separation of
arteries and veins has proven quite challenging for
human and automated grading systems.15,27–30 Addi-
tionally, the observation that the point-based features
of acceleration and curvature outperformed segment-
based features may suggest that the i-ROP system
may perform similarly without requiring manually
segmented images as inputs. This may be due to the
fact that GMM fitting can be more robust with point-
based features, since the number of vessel points is
much larger than the number of vessel segments in an
image.

Implications for Expert Diagnosis

The i-ROP system was trained against a reference
standard consisting of the consensus diagnosis of 3
experts and the clinical diagnosis. Therefore, the
performance of image features, vessel selection, and
crop size has implications as to what features the
experts are considering in the diagnosis of plus
disease. Full exploration of these implications is
beyond the scope of this report, but these findings
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suggest that experts may consider tortuosity more
than dilation, may consider nonstandard features,
such as venous tortuosity, as well as use information
from outside of the most posterior vessels.32,33

Limitations

There are several potential limitations to this
study: (1) We used manually-segmented images with
a tracing algorithm to avoid the possible noise and
bias that might come from an automated segmen-
tation algorithm. Therefore, it is not possible to
determine how the system would have performed
using a completely automated segmentation algo-
rithm, which limits the immediate clinical applica-
bility of these findings. (2) This analysis was limited
to images that were of sufficient quality for grading
and computer-based modeling. In the real-world,
there can be technical and anatomic obstacles to
producing gradable images. Overcoming these ob-
stacles was not the focus of this analysis, but also
will be necessary for large-scale implementation of
future automated systems. (3) Since our aim was to
perform a comparison between image features, the
proposed i-ROP system only used a single image
feature. Training a classifier using more features
might create an even more precise system and fusing
multiple classifiers, each of which is trained on
different image features, or training classifiers using
multiple image features, as has been done before
with prior CBIA systems, are important potential
extensions of this work.34 (4) Though we used a
cross-validation procedure to maximize generaliz-
ability to other datasets, an important next step of
this work will be to validate it using completely
separate images.

Future Applications

The development of accurate computer-based
automated grading systems could eventually comple-
ment the subjective clinician grading of plus disease
with a more objective metric, and improve the
reliability of plus disease recognition. Additionally,
an automated system could be incorporated into the
expanding sphere of telemedicine for the diagnosis of
ROP in regions where human resources are scarce.
The results of this study suggest that with the right
inputs, a trained CBIA system, such as the proposed i-
ROP system can perform as well as experts. The main
future application will be to fully automate the i-ROP
system, which would have important implications for

improving the care of infants with ROP around the
world.
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