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Tet3 mediates stable glucocorticoid-induced
alterations in DNA methylation and Dnmt3a/Dkk1
expression in neural progenitors

R Bose1, S Spulber1, P Kilian1, N Heldring1, P Lönnerberg2, A Johnsson2, M Conti1, O Hermanson*,1 and S Ceccatelli*,1

Developmental exposure to excess glucocorticoids (GCs) has harmful neurodevelopmental effects, which include persistent
alterations in the differentiation potential of embryonic neural stem cells (NSCs). The mechanisms, however, are largely unknown.
Here, we investigated the effects of dexamethasone (Dex, a synthetic GC analog) by MeDIP-like genome-wide analysis of
differentially methylated DNA regions (DMRs) in NSCs isolated from embryonic rat cortices. We found that Dex-induced genome-
wide DNA hypomethylation in the NSCs in vitro. Similarly, in utero exposure to Dex resulted in global DNA hypomethylation in the
cerebral cortex of 3-day-old mouse pups. Dex-exposed NSCs displayed stable changes in the expression of the DNA
methyltransferase Dnmt3a, and Dkk1, an essential factor for neuronal differentiation. These alterations were dependent on Tet3
upregulation. In conclusion, we propose that GCs elicit strong and persistent effects on DNAmethylation in NSCs with Tet3 playing
an essential role in the regulation of Dnmt3a and Dkk1. Noteworthy is the occurrence of similar changes in Dnmt3a and Dkk1 gene
expression after exposure to excess GC in vivo.
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Glucocorticoid (GC) hormones are critical for the terminal
maturation of organs, but fetal exposure to high levels of GCs
have detrimental effects on the development of the nervous
system, including impaired neurogenesis, alterations of
the hypothalamic-pituitary-adrenal axis, and behavioral
changes.1–8 The fetus is protected from surges of GC by
placental enzymes (namely 11bHSD2) that convert circulat-
ing GC into inactive, water soluble metabolites.9 Conditions
that are associated with high fetal GC levels include severe
maternal stress, placental failure, and exogenous adminis-
tration of GC agonists in cases of high risk of premature
delivery (reviewed in Harris and Seckl10). We have previously
shown that neurons and neural stem cells (NSCs) of rats
prenatally exposed to high levels of the synthetic GC
dexamethasone (Dex) exhibit a long-lasting increased
susceptibility to oxidative stress.11,12 Dex treatment in vitro
decreases NSC proliferation, neuronal differentiation, and
modifies the expression of genes associated with cellular
senescence and mitochondrial functions in a GC receptor
(GR)-mediated manner.13 The phenotypical alterations are
associated with a decrease in total DNA methylation and the
expression of DNA methyltransferases (DNMTs), and nota-
bly these global changes persists in 'daughter' NSCs never

directly exposed to Dex, suggesting a bona fide epigenetic
mechanism.13

DNA methylation is catalyzed and maintained by DNMTs
(Dnmt1, Dnmt3a, and Dnmt3b).14 Dnmt1 and Dnmt3a are
required for proper proliferation as well as neuronal and glial
differentiation of NSCs.15–17 Genetic deletion of Dnmt3a
leads to premature glial differentiation,16,18,19 and conditional
knockout mice exhibit decreased adult neurogenesis.17,20,21

The understanding of the dynamic regulation of DNA
methylation has increased significantly with the discovery of
the ten-eleven translocation (Tet) family of methylcytosine
dioxygenases (Tet1, Tet2, and Tet3). Tets catalyze the
oxidation of 5-methylcytosine (5-mC) and generate 5-mC
derivatives, including 5-hydroxymethylcytosine (5-hmC).
Recent reports have demonstrated that deficiency of
Tet1 is associated with impaired embryonic and adult
neurogenesis22,23 whereas overexpression of Tet1 impairs
memory formation in mice.24 Tet3 is required for normal
survival, proliferation, and differentiation of neural progenitor
cells, but the mechanisms involved are not clarified.25,26

Hence, a fine tuning of both Dnmts and Tets appears to be
critical for the correct development and function of the brain.
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In this study, we aimed at elucidating the mechanisms
underlying the programming effects of the GC agonist Dex on
the epigenome in cortical NSCs. By analyzing genome-wide
DNA methylation with a MeDIP-like approach, we found a
dramatic decrease in DNA methylation and identified numer-
ous differentially methylated regions (DMRs) in Dex-exposed
proliferating NSCs. The genome-wide Dex-induced changes
in methylation were associated with a downregulation of
Dnmt3a and an upregulation of Tet3 in both parent (P) NSCs
and daughter (D) cells, which were never directly exposed to
Dex. Interestingly, we found a similar global DNA hypomethy-
lation along with Dnmt3a downregulation and Tet1–3 upregu-
lation in the cerebral cortex of pups exposed to Dex in utero.
We have previously identified Dickkopf 1 (Dkk1) as a direct
target of Dex acting via GR binding to the Dkk1 promoter.27

Proteins of the Dkk family inhibit the canonical Wnt signaling
and are essential for brain development.28,29 We now show
that the Dex-induced Dkk1 upregulation is heritable and
dependent on Tet3 expression. Our results show that transient
exposure to excess GC have dramatic and long-lasting effects
on the epigenome of NSCs and specifically point to a critical
Tet3-mediated dysregulation of Dnmt3a and Dkk1, both
essential factors for proper forebrain development.

Results

Dex exposure induces persistent alterations in DNA
methylation in NSCs. To study the relationship between
the response of NSCs to GC and chromatin modifications,
we investigated the genome-wide DNA methylation in control
and Dex-exposed NSCs derived from cortices of embryonic
rats. We used a MeDIP-like approach in combination with
high-throughput sequencing. Analysis by qPCR confirmed
the separation of hypermethylated and non-methylated
DNA in both control and Dex-exposed cells (Supplementary
Figure S1). After sequencing, the prepared libraries were
mapped onto the rat genome (Figure 1a). A range of 11
289 181–34 476 024 raw reads was generated and the PCR
product bias was removed before mapping to the genome
(Supplementary Table S3). The genome-wide DNA methyla-
tion levels were quantified by analyzing mapped sequencing
reads as methylation peaks, using the supernatant of
each sample as standard background, and are referred
to as total number of peaks (Supplementary Table S4). The
total number of methylation peaks corresponding to each
chromosome in control and Dex-exposed NSCs are shown
in Figure 1a.
Next, we removed the peaks shared by control and Dex-

exposed cells, so that the remaining peaks were unique to
each specific sample, and referred to as DMRs.30,31 This
yielded 110 000 DMRs in control, 37 005 DMRs in Dex-
exposed NSCs, and 54 801 common methylation peaks
(Figure 1b). To specifically characterize the changes in DNA
methylation in NSCs, we deeply analyzed the DNA methyla-
tion pattern by dispersing the DMRs in different directions of
genomic contexts normalizing with refGene. The overview of
DMRs distribution related to refGene including CpG islands
(CGI) and promoters showed a decrease in DMRs in Dex-
exposed cells as compared to control cells (Figure 1c). Similar

results were found when DMRs were distributed more
specifically into promoters, exons, introns, and UTRs within
CGI of refGene (Figure 1d).
We then analyzed the DNA methylation pattern in proliferat-

ing NSCs directly exposed to Dex ('parent', P1) and in cells that
were never directly exposed ('daughter cells' after two
passages from Dex exposure (D3). Dex-D3 cells showed
increased genome-wide DNA methylation, also confirmed by
the increase in 5-mC levels (Supplementary Figure S2).
Interestingly, ~ 63% of the methylation peaks were preserved
in Dex-D3 cells, as compared to only 36% in control D3 NSCs
(Figure 1e), indicating that a large subset of Dex-induced
alterations in genome-wide DNA methylation are stable across
passages. We also identified hypermethylated genes whose
promoters are located within the CGI in both P1 and D3 NSCs
using GREAT ontology (GO) tools (http://www.geneontology.
org) (Supplementary Tables S8 and S9). Interestingly, genes
known to play a role in the regulation of cell proliferation, cell
differentiation, migration, cellular senescence, DNA methyla-
tion, ion channels, mitochondrial function, and oxidative
stress appeared among the ones differentially methylated
(Supplementary Tables S10 and S11).
For further analyses, we selected relevant genes identified

as DMR enriched, such as Txnip and Cyba, which are known
to play a role in increased susceptibility to oxidative stress and
mitochondrial function, and therefore of interest in relation
to the Dex-induced phenotype of NSCs.13,27 The mRNA
expression of both genes was upregulated in Dex-exposed-
proliferating NSCs (Figure 2a), in agreement with the promoter
hypomethylation revealed by bisulfite conversion followed by
MSP (Supplementary Figure S3). We then investigated
whether the stability of the phenotype in D3 NSCs would
correlate with changes in the expression of the selected
genes. Both promoter methylation status (Supplementary
Figure S3) and mRNA expression upregulation (Figure 2b)
were persistent in Dex-exposed D3-proliferating NSCs, in line
with our earlier report.13 Similar changeswere alsomaintained
in Dex-exposed differentiating NSCs (Figure 2c). To address
the relevance of these findings in vivo, we analyzed the cortex
of postnatal day 3 (PND3) mouse pups exposed to Dex in
utero and detected an upregulation of both Txnip and Cyba
mRNA expression (Figure 2d).

Tet3 mediates the epigenetic effects of Dex and regulates
Dnmt3a and Dkk1 expression. To investigate the mechan-
isms underlying the persistence of a large proportion of
methylation peaks induced by Dex, we focused our investiga-
tion on the genes mediating epigenetic effects. We found
that Tet3, but not Tet1 or 2, was upregulated concomitantly
with Dnmt3a downregulation in Dex-proliferating P1 NSCs
(Figure 3a). This is consistent with DNA hypomethylation,
and was confirmed by the decrease in 5-mC, while the level
of 5-hmC were not significantly altered (Figure 3a). Prolifer-
ating daughter (D3) cells displayed a similar pattern of
alterations in gene expression, but, intriguingly, this was
associated with an increase in 5-mC levels (Figure 3b).
TheDnmt3a downregulation associated with Tet3 upregula-

tion was present also in differentiating NSCs exposed to Dex,
and was accompanied by decreased 5-mC and increased
5-hmC levels (Figure 3c). In addition, Tet1 and 2 were
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upregulated in differentiating NSCs exposed to Dex. The
distinct pattern of gene expression regulation observed in
differentiating NSCs was also present in the cortex of PND3
pups exposed to Dex in utero (Figure 3d), and this was
associated with a decrease in 5-mC and an increase in 5-hmC
levels. These results suggest that whereas an imbalance in
Dnmt3a and Tet3 expression was sufficient to alter 5-mC
levels, alterations in global 5-hmC levels were dependent on a
general upregulation of Tet3 as well as Tet1 and Tet2.
To investigate whether the observed effects were GR

dependent, we performed siRNA-mediated knockdown of
GR expression in P1-proliferating NSCs (Figure 4a). In

contrast to the Dnmt3a downregulation, the Dex-induced
upregulation of Tet3 appeared not to be GR dependent
(Figures 4b and c). The GR-mediated action may explain the
direct effects of Dex onDnmt3a observed in NSCs, however, it
cannot account for the heritable changes in gene expression
present in cells that were never directly exposed to Dex. To
further investigate the role of Tet3, we knocked down its
expression using siRNA interference in P1-proliferating NSCs
(fold change 0.46± 0.16; Figure 5a). Interestingly, Tet3
knockdown reversed the Dex-induced downregulation of
Dnmt3a expression (Figure 5b) and increased 5-mC levels
(Figure 5c).
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Exposure to Dex alters the differentiation potential of NSCs
and we have shown that Dkk1, which is upregulated in a GR-
dependent manner (Supplementary Figure S4), is a critical
mediator of the acute effects of Dex on the differentiation of
human neural progenitors.27 Dkk1mRNA is upregulated even
in D3-proliferating NSCs never directly exposed to Dex, aswell
as in differentiating NSCs (Figure 6a), suggesting that other
mechanisms may be also involved. We then explored whether
the expression of Dkk1 was Tet3 dependent; Tet3 knockdown
not only resulted in a downregulation of Dkk1 in control NSCs,
but also abolished the Dex-induced upregulation of Dkk1 in
NSCs (Figure 6b). In summary, our results demonstrate that
Tet3 is required for the stable Dex-induced alterations in DNA
methylation as well as for Dnmt3a and Dkk1 expression
changes.

Discussion

Here we have shown that GC induces strong and to a certain
extent stable effects on DNA methylation in NSCs, and that
Tet3 is an important regulator of Dnmt3a and Dkk1.
The genome-wide DNA methylation analysis revealed a
decrease in DMRs following Dex exposure in proliferating
NSCs. The pattern of DNA methylation is very dynamic, and
the methylation status of many gene promoters changes from
P1 to D3. This is expected since global DNA methylation is
dependent on the expression levels and activity of a large
number of factors, including DNMTs, Tets, and DNA repair
machinery. In vivo, Crudo et al.32 reported that the hypo-
methylation induced by acute administration of synthetic GC is
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not persistent, but is followed by hypermethylation of other
gene promoters 14 days after the initial exposure. In line with
these data, we also found that the Dex-induced pattern of
global DNA methylation detected in P1 cells was partially
reversed in D3 cells, which display increased global DNA
methylation as compared to control D3 NSCs. Nevertheless,
the pattern of gene promoter methylation in Dex-exposed-
proliferating NSCs is rather stable, and we further focused on
analyzing the mRNA expression of genes with stable changes
in methylation peaks in the promoter region. Of relevance in
relation to the Dex-induced NSC phenotype is that genes
critical for the regulation of cell proliferation, differentiation,
migration, senescence, DNA methylation, ion channels,
mitochondrial function, and oxidative stress displayed stable
promoter methylation in P1 and D3-proliferating NSCs. We
show that the persistent upregulation of Txnip, which inhibits
the reducing activity of thioredoxin, and Cyba, a NAD(P)H
oxidase enzyme, in proliferating NSCs is associated with
promoter hypomethylation. In addition, the expression of both
Txnip andCybawas upregulated in differentiating cells as well
as in the postnatal mouse cortex. These data are consistent

with the increased susceptibility to oxidative stress that we
have previously reported after exposure to Dex.11,13

Epigenetic regulation during development involves several
key players.22,33 The expression profiles of Tet family
members vary depending on cell type and differentiation
stage. In P1-proliferating NSCs, the absolute expression
levels of Tet1 and 2 are very low, while in differentiating NSCs
they are considerably higher. This variation in the expression
may influence the detection of the Dex effects on individual
Tets. The net effect is decreased 5-mC levels (i.e., global DNA
hypomethylation), while the increase in 5-hmC levels
becomes significant when not only Tet3, but also Tet1 and
Tet2 are upregulated. This is in agreement with earlier reports
on redundancy and compensatory actions of both Dnmts34,35

and Tet family proteins36–39 in accounting for global effects.
Here, we show that Dnmt3a downregulation and Tet3
upregulation are a persistent outcome of Dex exposure in
NSCs, and thatDnmt3a upregulation is Tet3 dependent. Thus,
if the GR dependence of Dnmt3a may explain the direct Dex
effects observed in P1-proliferating NSCs, their persistence in
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D3 cells, as well as in differentiating cells and in postnatal
mouse cortex can be attributed to Tet3.
Tet3 has been recognized as an important player in

neuronal differentiation of neural progenitor cells, but the
downstream mechanism remained elusive.25,26 Here, we
show that the role of Tet3 in neuronal differentiation is linked
to its action onDkk1. Dkk1 plays a critical role in regulating the
terminal differentiation of neural progenitors during central
nervous system development.28,29 We reported earlier that
Dex exposure reduces proliferations and neuronal differentia-
tion in human neural progenitors by upregulating DKK1
expression in a GR-dependent manner.20 The current findings
suggest that the persistent effects of Dex on Dkk1 upregula-
tion are mediated by Tet3. Altogether, the persistent Tet3
upregulation, which appears to be independent from GR
activation, but accounts for the changes in Dnmt3a and Dkk1
expression, plays a central role in the Dex-induced long-term
effects in NSCs.
In conclusion, we provide evidence for a Tet3-dependent

mechanism underlying the Dex-induced epigenetic reprogram-
ming leading to heritable alterations of a fundamental player in
cortical development. This mechanism may also play a role in
the epigenetic programming occurring in response to early-life
events that are linked to high levels of GC,24,25 and may open
new perspectives for preventive and therapeutic strategies.

Materials and Methods
Embryonic cortical NSC culture and exposure procedures. All
experiments involving work with laboratory animals were approved by the local
Animal Ethics Committee (Stockholm Northern Ethics Board of Animal
Experimentation, ethical permission numbers: N79/08, N97/11, and N123/12).
Primary cultures of NSCs were prepared as previously described.11 The cells were
obtained from embryonic cortices (n= 6–8 per cell preparation) from timed-
pregnant Sprague-Dawley rats (Harlan Laboratories, Horst, The Netherlands) at
E15 (the day of copulatory plug defined as E0) and dissected in HBSS (Life
Technologies, Carlsbad, CA, USA). The tissue was mechanically dispersed, and
meninges and larger cell clumps were allowed to sediment for 10 min. The cells
were plated at a density of 40 000 per cm2 on a dish precoated with poly-L-ornithine
and fibronectin (Sigma-Aldrich, Stockholm, Sweden). The cells were maintained in
N-2 medium enriched with 10 ng/ml basic fibroblast growth factor (bFGF; R&D

systems, Minneapolis, MN, USA) added every 24 h. The medium was changed
every other day to keep cells in an undifferentiated and proliferative state. The cells
were mechanically passaged via scraping in HBSS. Afterwards, the cells were
gently mixed in N-2 medium, counted, and plated at the desired density. Under
these culture conditions, NSC doubling time was ~ 20 h. To investigate the heritable
effects of Dex on proliferating NSCs, we exposed NSCs to Dex (1 μM) for 48 h as
described earlier.13 Parental (P1) cells were harvested at the end of the exposure to
Dex. We then passaged the cells in the presence of bFGF, but without adding Dex
to the culture medium to obtain daughter cells (D2 and D3). Mitotically heritable
effects were investigated in D3 cells that had never been exposed to Dex, 72 h after
respective passaging.

Immunocytochemistry. NSCs were fixed in 4% PFA for 1 h at 4°C, followed
by washing in PBS. The NSCs were incubated with mouse anti-tubulin III (Tuj1,
1 : 400; Covance, Princeton, NJ, USA) and rabbit anti-glial fibrillary acidic protein
(GFAP, 1 : 800; DakoCytomation, Glostrup, Denmark) diluted in PBS containing
0.3% Triton X-100 and 0.5% bovine serum albumin (BSA; Boehringer Mannheim,
Mannheim, Germany) overnight in a humid chamber at 4°C. The cells were then
rinsed with PBS and incubated with an appropriate secondary FITC-conjugated
antibody for 1 h at RT (1 : 200; Alexa, Invitrogen, Carlsbad, CA, USA). Cell nuclei
were counterstained with Hoechst 33342 (Sigma-Aldrich) (1 mg/ml) for 5 min. After
rinsing with PBS, the coverslips were mounted onto slides with VECTASHIELD
mounting medium (Vector Laboratories, Inc., Burlingame, CA, USA). The cells were
examined using fluorescence microscope (Nikon Eclipse Ti-S, BergmanLabora AB,
Danderyd, Sweden) and images were captured using Nikon camera (Nikon Digital
Sight DS-Qi1MC, BergmanLabora AB). All experiments were performed in
triplicates and repeated three times. Semiquantitative analyses were performed
by counting at least 100 cells per coverslip in triplicates.

siRNA-mediated knockdown. siRNA specific to rat GR was delivered
using a Nucleofector kit according to the manufacturer's instructions (Amaxa, Lonza,
Basel, Switzerland). Nucleofected NSCs were transferred into a 6-cm dish
containing warm N-2 medium. At 3 h after neucleofection, NSCs were treated with
1 μM Dex for 24 h.
A Smartpool mix of four siRNA-targeting rat Tet3 and negative siRNA control were

purchased from Dharmacon (Thermo Scientific, Stockholm, Sweden). NSCs were
grown in N-2 medium with 10 ng/ml bFGF for 24 h. Then N-2 medium were replaced
with a Smartpool mix and media supplement. The cells were incubated with
Smartpool mix for 72 h in the presence of bFGFand treated with 1 μMDex for the last
24 h. Then cells were harvested for global DNA methylation and gene expression
analysis. Knockdown efficiency was analyzed by quantitative rtPCR. All experiments
were performed in triplicates and repeated at least three times.

In vivo experiments. We investigated the long-lasting effects of Dex in mouse
pups. To this end, we injected pregnant female C57Bl/6 mice with Dex dissolved in
sterile saline (0.05 mg/kg/day; injection volume 10 ml/kg) from gestational day (GD)
14 until delivery (GD19–20). The control females were injected with an equivalent
volume of sterile saline. On PND3, the male offspring were killed by decapitation
and the brain was rapidly dissected on ice and stored at − 80°C until processing.
Next, RNA and DNA were extracted from dissected cortices using RNA and DNA
extraction kits as instructed by the manufacturer. RNA was used for the analysis of
gene expression by qPCR, while the DNA was used for measuring global DNA
methylation and hydroxymethylation as described below. PCR primer sequences for
analysis of mice tissues are available in Supplementary Table S1.

Extraction of total RNA, cDNA synthesis, and real-time PCR. Total
RNA was isolated from NSCs using the RNeasy Mini kit (Qiagen, VWR, Stockholm,
Sweden). Integrity and concentration of extracted RNA was measured by NanoDrop
1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). cDNA was
prepared using 1 μg total RNA and 0.5 μg of oligo-dT primer following the
instructions of Superscript II first-strand cDNA synthesis kit (Invitrogen).
Amplification reactions were performed with 1 μl cDNA, SYBR Green mix (Applied
Biosystems, Stockholm, Sweden) and 0.2 μM of forward and reverse primers. The
reaction volume was adjusted to 25 μl with DEPC water. Negative control reactions
contained water instead of cDNA as template. Quantitative real-time PCR was
performed using an ABI Prism 7000 Sequence Detection System with SDS version
2.1 software (Applied Biosystems). The PCR cycle conditions were 50°C for 2 min,
95°C for 10 min, 95°C for 15 s, and 60°C for 1 min (40 cycles). To evaluate the
amplification of a specific sample, final melting curve (from 60°C up to 95°C) was
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Figure 6 Dkk1 mRNA expression regulation. (a) Exposure to Dex induces
persistent upregulation of Dkk1 in proliferating NSCs (P1 and D3), as well as in
spontaneously differentiating NSCs (Diff). (b) Tet3 knockdown by siRNA (siTet3)
reduced the constitutive expression and blocks the Dex-induced upregulation of
Dkk1. The amount of target genes was normalized to Hprt and the relative increase
was calculated as 2�DDCT . Data presented as average±S.D. of at least three
independent replicates. *Po0.05 versus Con (control), Student’s t-test; #Po0.05
versus siTet3, Student’s t-test
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added under continuous fluorescence measurements. All expression values were
normalized against the housekeeping gene HPRT (ΔCT=CTtarget gene−
CTHPRT). Relative expression levels were calculated as ΔΔCT=ΔCTDex–
ΔCTcontrol and relative expression changes were calculated as 2-ΔΔCT.
Representative values are shown as mean± S.E.M. All experiments were
performed in triplicates and repeated at least three times. PCR primer sequences
for analysis of NSCs are available in Supplementary Table S1.

Genomic DNA extraction. DNA was prepared using the XL GenDNA
extraction module kit (Diagenode, Liège, Belgium) according to the manufacturer's
instructions. Quality and quantity of DNA was measured using NanoDrop
spectrophotometer (Thermo Scientific) and Quant-iT PicoGreen dsDNA reagent
and kits (Invitrogen).

DNAmethylation and hydroxymethylation assay. DNA was prepared
using the GeneElute mammalian genomic DNA miniprep kit (Sigma-Aldrich)
according to the manufacturer's instructions. DNA quality and concentration was
measured by NanoDrop 1000 spectrophotometer (Thermo Scientific). Separately
global DNA methylation (5-mC) and hydroxymethylation (5-hmC) were determined
using two different quantification kits (Epigentek, New York, NY, USA) as instructed
by the manufacturer.

Methyl-DNA immunoprecipitation sequencing, MBD-seq. DNA
was sonicated using Bioruptor 200 (Diagenode) at high frequency with 30 s off/
on cycles. The average length of sonicated DNA was 200 bp, which was determined
by the gel electrophoresis. We used 1.2 μg of sonicated DNA for subsequent MBD2
enrichment using MethylMiner methylated DNA enrichment kit (Life Technologies).
Briefly, first 10 μl of Dynabeads (Life Technologies) M-280 streptavidin were cleaned
by 1 × bind/wash buffer and 3.5 μg of BMD-biotin protein was mixed with clean
Dynabeads (Life Technologies) on a rotating mixer for 1 h. Then DNA fragments
were incubated with the coupled MBD-beads overnight at 4°C. After removing non-
captured DNA as supernatant, captured DNA was isolated by NaCl gradient elution
(0.5 and 1 M). The accuracy of the assay was confirmed by using kit-supplied
control DNA. Isolation of hypermethylated (0.5 and 1 M) and non-methylated DNAs
(supernatant) were confirmed by quantitative real-time PCR analysis using Tsh2b
(methylation-specific primer) or Gapdh (non-methylation-specific primer) and those
primer sequences were bought from Diagenode. The recovered DNA was quantified
by Qubit (Invitrogen) and 50 ng of immunoprecipited DNA was used for library
preparation using a kit from New England Biolabs (NEB# E6240S/L, BioNordika
Sweden AB, Stockholm, Sweden). Subsequently, the library was analyzed by HiSeq
2000, Illumina, Inc (San Diego, CA, USA). The sequence tags were then aligned to
the rat genome (assembly rn4) with the Bowtie alignment tool (http://bowtie-bio.
sourceforge.net/index.shtml). To avoid any PCR bias, we allowed only one read per
chromosomal position. Next, the peaks (hypermethylated regions) were identified
using MACS software40,41 and the rat CGIs were downloaded from the UCSC
database (http://genome.ucsc.edu).
The genome-wide DNA methylation levels were quantified by analyzing mapped

sequencing reads as methylation peaks, using the supernatant of each sample as standard
background and are referred to as total number of peaks (Supplementary Table S4).

Statistical analysis. One-way analysis of variance (ANOVA) followed by
Bonferroni's post hoc test was performed. Student's t-test was used for comparisons
of two groups. The significance value was set at Po0.05.
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