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Abstract
Here we walk through an end-to-end gene-level RNA-Seq differential
expression workflow using Bioconductor packages. We will start from the
FASTQ files, show how these were aligned to the reference genome, and
prepare a count matrix which tallies the number of RNA-seq reads/fragments
within each gene for each sample. We will perform exploratory data analysis
(EDA) for quality assessment and to explore the relationship between samples,
perform differential gene expression analysis, and visually explore the results.
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Introduction
Bioconductor has many packages which support analysis of high-throughput sequence data, including RNA sequenc-
ing (RNA-seq). The packages which we will use in this workflow include core packages maintained by the Biocon-
ductor core team for importing and processing raw sequencing data and loading gene annotations. We will also use 
contributed packages for statistical analysis and visualization of sequencing data. Through scheduled releases every 
6 months, the Bioconductor project ensures that all the packages within a release will work together in harmony 
(hence the “conductor” metaphor). The packages used in this workflow are loaded with the library function and can be 
installed by following the Bioconductor package installation instructions.

If you have questions about this workflow or any Bioconductor software, please post these to the Bioconductor support 
site. If the questions concern a specific package, you can tag the post with the name of the package, or for general 
questions about the workflow, tag the post with rnaseqgene. Note the posting guide for crafting an optimal question 
for the support site.

Experimental data
The data used in this workflow is stored in the airway package that summarizes an RNA-seq experiment wherein airway 
smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory 
effects1. Glucocorticoids are used, for example, by people with asthma to reduce inflammation of the airways. In the 
experiment, four primary human airway smooth muscle cell lines were treated with 1 micromolar dexamethasone for 
18 hours. For each of the four cell lines, we have a treated and an untreated sample. For more description of the experi-
ment see the PubMed entry 24926665 and for raw data see the GEO entry GSE52778.

Preparing count matrices
As input, the count-based statistical methods, such as DESeq22, edgeR3, limma with the voom method4, DSS5, EBSeq6 
and BaySeq7, expect input data as obtained, e.g., from RNA-seq or another high-throughput sequencing experiment, 
in the form of a matrix of integer values. The value in the i-th row and the j-th column of the matrix tells how many 
reads (or fragments, for paired-end RNA-seq) have been unambiguously assigned to gene i in sample j. Analogously, 
for other types of assays, the rows of the matrix might correspond e.g., to binding regions (with ChIP-Seq), species of 
bacteria (with metagenomic datasets), or peptide sequences (with quantitative mass spectrometry).

The values in the matrix must be raw counts of sequencing reads/fragments. This is important for DESeq2’s statistical 
model to hold, as only the raw counts allow assessing the measurement precision correctly. It is important to never 
provide counts that were pre-normalized for sequencing depth/library size, as the statistical model is most powerful 
when applied to raw counts, and is designed to account for library size differences internally.

Aligning reads to a reference genome
The computational analysis of an RNA-seq experiment begins earlier: we first obtain a set of FASTQ files that contain 
the nucleotide sequence of each read and a quality score at each position. These reads must first be aligned to a refer-
ence genome or transcriptome. It is important to know if the sequencing experiment was single-end or paired-end, as 
the alignment software will require the user to specify both FASTQ files for a paired-end experiment. The output of this 
alignment step is commonly stored in a file format called SAM/BAM.

A number of software programs exist to align reads to a reference genome, and the development is too rapid for this 
document to provide an up-to-date list. We recommend consulting benchmarking papers that discuss the advantages 
and disadvantages of each software, which include accuracy, sensitivity in aligning reads over splice junctions, speed, 
memory footprint, usability, and many other features.

The reads for this experiment were aligned to the Ensembl release 758 human reference genome using the STAR 
read aligner9. In this example, we have a file in the current directory called files with each line containing an 
identifier for each experiment, and we have all the FASTQ files in a subdirectory fastq. If you have downloaded 
the FASTQ files from the Sequence Read Archive, the identifiers would be SRA run IDs, e.g. SRR1039520. You 
should have two files for a paired-end experiment for each ID, fastq/SRR1039520_1.fastq1 and fastq/ 
SRR1039520_2.fastq, which give the first and second read for the paired-end fragments. If you have performed 
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a single-end experiment, you would only have one file per ID. We have also created a subdirectory, aligned, where 
STAR will output its alignment files.

for f in 'cat files'; do STAR --genomeDir ../STAR/ENSEMBL.homo_sapiens.release-75 \
--readFilesIn fastq/$f\_1.fastq fastq/$f\_2.fastq \
--runThreadN 12 --outFileNamePrefix aligned/$f.; done

SAMtools10 was used to generate BAM files. The –@ flag can be used to allocate additional threads.

for f in 'cat files'; do samtools view -bS aligned/$f.Aligned.out.sam \
-o aligned/$f.bam; done

The BAM files for a number of sequencing runs can then be used to generate count matrices, as described in the 
following section.

Locating alignment files
Besides the count matrix that we will use later, the airway package also contains eight files with a small subset of the 
total number of reads in the experiment. The reads were selected which aligned to a small region of chromosome 1. We 
chose a subset of reads because the full alignment files are large (a few gigabytes each), and because it takes between 
10–30 minutes to count the fragments for each sample. We will use these files to demonstrate how a count matrix can be 
constructed from BAM files. Afterwards, we will load the full count matrix corresponding to all samples and all data, 
which is already provided in the same package, and will continue the analysis with that full matrix.

We load the data package with the example data:

library("airway")

The R function system.file can be used to find out where on your computer the files from a package have been installed. 
Here we ask for the full path to the extdata directory, where R packages store external data, that is part of the airway 
package.

dir <- system.file("extdata", package="airway", mustWork=TRUE)

In this directory, we find the eight BAM files (and some other files):

list.files(dir)

##  [1] "GSE52778_series_matrix.txt"	 "Homo_sapiens.GRCh37.75_subset.gtf"

##  [3] "sample_table.csv"		  "SraRunInfo_SRP033351.csv"

##  [5] "SRR1039508_subset.bam"	 "SRR1039508_subset.bam.bai"

##  [7] "SRR1039509_subset.bam"	 "SRR1039512_subset.bam"

##  [9] "SRR1039513_subset.bam"	 "SRR1039516_subset.bam"

## [11] "SRR1039517_subset.bam"	 "SRR1039520_subset.bam"

## [13] "SRR1039521_subset.bam"

Typically, we have a table with detailed information for each of our samples that links samples to the associated FASTQ 
and BAM files. For your own project, you might create such a comma-separated value (CSV) file using a text editor or 
spreadsheet software such as Excel.
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Table 1. Various software which can be used to prepare RNA-seq count matrices.

function package framework output DESeq2 input function

summarizeOverlaps GenomicAlignments R/Bioc. SummarizedExp. DESeqDataSet

featureCounts Rsubread R/Bioc. matrix DESeqDataSetFromMatrix

htseq-count HTSeq Python files DESeqDataSetFromHTSeq

We load such a CSV file with read.csv:

csvfile <- file.path(dir,"sample_table.csv")
(sampleTable <- read.csv(csvfile,row.names=1))

##	    SampleName    cell   dex albut        Run avgLength Experiment     Sample    BioSample

## SRR1039508 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568 SAMN02422669

## SRR1039509 GSM1275863  N61311   trt untrt SRR1039509       126  SRX384346 SRS508567 SAMN02422675

## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512       126  SRX384349 SRS508571 SAMN02422678

## SRR1039513 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572 SAMN02422670

## SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516       120  SRX384353 SRS508575 SAMN02422682

## SRR1039517 GSM1275871 N080611   trt untrt SRR1039517       126  SRX384354 SRS508576 SAMN02422673

## SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520       101  SRX384357 SRS508579 SAMN02422683

## SRR1039521 GSM1275875 N061011   trt untrt SRR1039521        98  SRX384358 SRS508580 SAMN02422677

Note: here and elsewhere in the workflow, the parentheses () around the entire code of the last line above is an R trick 
to print the output of the function in addition to saving it to sampleTable. This is equivalent to assigning and then 
showing the object in two steps:

sampleTable <- read.csv(csvfile,row.names=1)
sampleTable

Once the reads have been aligned, there are a number of tools that can be used to count the number of reads/fragments 
that can be uniquely assigned to genomic features for each sample. These often take as input SAM/BAM alignment 
files and a file specifying the genomic features, e.g. a GFF3 or GTF file specifying the gene models.

The following tools can be used generate count matrices: summarizeOverlaps11, featureCounts12, or htseq-count13 
(Table 1).

We now proceed using the summarizeOverlaps method of counting. Using the Run column in the sample table, we 
construct the full paths to the files we want to perform the counting operation on:

filenames <- file.path(dir, paste0(sampleTable$Run, "_subset.bam"))
file.exists(filenames)

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We indicate in Bioconductor that these files are BAM files using the BamFileList function from the Rsamtools package 
that provides an R interface to BAM files. Here we also specify details about how the BAM files should be treated, e.g., 
only process 2 million reads at a time. See ?BamFileList for more information.

library("Rsamtools")
bamfiles <- BamFileList(filenames, yieldSize=2000000)

Note: make sure that the chromosome names of the genomic features in the annotation you use are consistent with the 
chromosome names of the reference used for read alignment. Otherwise, the scripts might fail to count any reads to fea-
tures due to the mismatching names. For example, a common mistake is when the alignment files contain chromosome 
names in the style of 1 and the gene annotation in the style of chr1, or the other way around. See the seqlevelsStyle 
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function in the GenomeInfoDb package for solutions. We can check the chromosome names (here called “seqnames”) 
in the alignment files like so:

seqinfo(bamfiles[1])

## Seqinfo object with 84 sequences from an unspecified genome:
##   seqnames   seqlengths isCircular genome
##   1		  249250621       <NA>   <NA>
##   10          135534747       <NA>   <NA>
##   11          135006516       <NA>   <NA>
##   12          133851895       <NA>   <NA>
##   13          115169878       <NA>   <NA>
##   ...	               ...        ...    ...
##   GL000210.1      27682       <NA>   <NA>
##   GL000231.1      27386       <NA>   <NA>
##   GL000229.1      19913       <NA>   <NA>
##   GL000226.1      15008       <NA>   <NA>
##   GL000207.1       4262       <NA>   <NA>

Defining gene models
Next, we need to read in the gene model that will be used for counting reads/fragments. We will read the gene model 
from an Ensembl GTF file8, using makeTxDbFromGFF from the GenomicFeatures package. GTF files can be down-
loaded from Ensembl’s FTP site or other gene model repositories. A TxDb object is a database that can be used to gen-
erate a variety of range-based objects, such as exons, transcripts, and genes. We want to make a list of exons grouped 
by gene for counting read/fragments.

There are other options for constructing a TxDb. For the known genes track from the UCSC Genome Browser14, one 
can use the pre-built Transcript DataBase: TxDb.Hsapiens.UCSC.hg19.knownGene. If the annotation file is acces-
sible from AnnotationHub (as is the case for the Ensembl genes), a pre-scanned GTF file can be imported using 
makeTxDbFromGRanges. Finally, the makeTxDbFromBiomart function can be used to automatically pull a gene 
model from Biomart using biomaRt15.

Here we will demonstrate loading from a GTF file:

library("GenomicFeatures")

We indicate that none of our sequences (chromosomes) are circular using a 0-length character vector.

gtffile <- file.path(dir,"Homo_sapiens.GRCh37.75_subset.gtf")
(txdb <- makeTxDbFromGFF(gtffile, format="gtf", circ_seqs=character()))

## TxDb object:

## # Db type: TxDb

## # Supporting package: GenomicFeatures

## # Data source:/Users/michael/Library/R/3.2/library/airway/extdata/Homo_sapiens.GRCh37.75_subset.gtf

## # Organism: NA

## # miRBase build ID: NA

## # Genome: NA

## # transcript_nrow: 65

## # exon_nrow: 279

## # cds_nrow: 158

## # Db created by: GenomicFeatures package from Bioconductor

## # Creation time: 2015-09-09 14:48:56 -0400 (Wed, 09 Sep 2015)

## # GenomicFeatures version at creation time: 1.20.3

## # RSQLite version at creation time: 1.0.0

## # DBSCHEMAVERSION: 1.1
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The following line produces a GRangesList of all the exons grouped by gene11. Each element of the list is a GRanges 
object of the exons for a gene.

(ebg <- exonsBy(txdb, by="gene"))

## GRangesList object of length 20:
## $ENSG00000009724
## GRanges object with 18 ranges and 2 metadata columns:
##	  seqnames	        ranges strand |   exon_id       exon_name
##	     <Rle>	     <IRanges>  <Rle>  | <integer>      <character>
##    [1]	 1 [11086580, 11087705]     -  |	      98 ENSE00000818830
##    [2]	 1 [11090233, 11090307]     -  |	      99 ENSE00000472123
##    [3]	 1 [11090805, 11090939]     -  |	     100 ENSE00000743084
##    [4]	 1 [11094885, 11094963]     -  |	     101 ENSE00000743085
##    [5]	 1 [11097750, 11097868]     -  |	     103 ENSE00003520086
##    ...      ...		    ...   ... ...	     ...             ...
##   [14]	 1 [11106948, 11107176]     -  |	     111 ENSE00003467404
##   [15]	 1 [11106948, 11107176]     -  |	     112 ENSE00003489217
##   [16]	 1 [11107260, 11107280]     -  |	     113 ENSE00001833377
##   [17]	 1 [11107260, 11107284]     -  |	     114 ENSE00001472289
##   [18]	 1 [11107260, 11107290]     -  |	     115 ENSE00001881401
##								      
## ...
## <19 more elements>
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Read counting step
After these preparations, the actual counting is easy. The function summarizeOverlaps from the GenomicAlignments 
package will do this. This produces a SummarizedExperiment object that contains a variety of information about the 
experiment, and will be described in more detail below.

Note: If it is desired to perform counting using multiple cores, one can use the register and MulticoreParam or Snow-
Param functions from the BiocParallel package before the counting call below. Expect that the summarizeOver-
laps call will take at least 30 minutes per file for a human RNA-seq file with 30 million aligned reads. By sending the 
files to separate cores, one can speed up the entire counting process.

library("GenomicAlignments")
library("BiocParallel")

Here we specify to use one core, not multiple cores. We could have also skipped this line and the counting step would 
run in serial.

register(SerialParam())

The following call creates the SummarizedExperiment object with counts:

se <- summarizeOverlaps(features=ebg, reads=bamfiles,
                        mode="Union",
                        singleEnd=FALSE,
                        ignore.strand=TRUE,
                        fragments=TRUE )
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We specify a number of arguments besides the features and the reads. The mode argument describes what kind 
of read overlaps will be counted. These modes are shown in Figure 1 of the Counting reads with summarizeOverlaps 
vignette for the GenomicAlignments package. Note that fragments will be counted only once to each gene, even if they 
overlap multiple exons of a gene which may themselves be overlapping. Setting singleEnd to FALSE indicates that 
the experiment produced paired-end reads, and we want to count a pair of reads (a fragment) only once toward the 
count for a gene.

In order to produce correct counts, it is important to know if the RNA-seq experiment was strand-specific or not. This 
experiment was not strand-specific so we set ignore.strand to TRUE. The fragments argument can be used 
when singleEnd=FALSE to specify if unpaired reads should be counted (yes if fragments=TRUE).

SummarizedExperiment
The SummarizedExperiment container is diagrammed in Figure 1 and discussed in the latest Bioconductor paper16. In 
our case we have created a single matrix named “counts” that contains the fragment counts for each gene and sample, 
which is stored in assay. It is also possible to store multiple matrices, accessed with assays. The rowRanges for 
our object is the GRangesList we used for counting (one GRanges of exons for each row of the count matrix). The com-
ponent parts of the SummarizedExperiment are accessed with an R function of the same name: assay (or assays), 
rowRanges and colData.

This example code above actually only counted a small subset of fragments from the original experiment. Nevertheless, 
we can still investigate the resulting SummarizedExperiment by looking at the counts in the assay slot, the pheno-
typic data about the samples in colData slot (in this case an empty DataFrame), and the data about the genes in the 
rowRanges slot.

Figure 1. The component parts of a SummarizedExperiment object. The assay (pink block) contains the matrix of 
counts, the rowRanges (blue block) contains information about the genomic ranges and the colData (green block) 
contains information about the samples. The highlighted line in each block represents the first row (note that the first row 
of colData lines up with the first column of the assay).
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se

## class: SummarizedExperiment
## dim: 20 8
## exptData(0):
## assays(1): counts
## rownames(20): ENSG00000009724 ENSG00000116649 ... ENSG00000271794 ENSG00000271895
## rowRanges metadata column names(0):
## colnames(8): SRR1039508_subset.bam SRR1039509_subset.bam ... SRR1039520_subset.bam 
##   SRR1039521_subset.bam
## colData names(0):

dim(se)

## [1] 20 8

assayNames(se)

## [1] "counts"

head(assay(se), 3)

##               SRR1039508_subset.bam  SRR1039509_subset.bam  SRR1039512_subset.bam
## ENSG00000009724	                  38                    28                     66
## ENSG00000116649	                1004                  1255                   1122
## ENSG00000120942	                 218                   256                    233
##                SRR1039513_subset.bam  SRR1039516_subset.bam  SRR1039517_subset.bam
## ENSG00000009724		          24                    42                     41
## ENSG00000116649		        1313                  1100                   1879
## ENSG00000120942		         252                   269                    465
##               SRR1039520_subset.bam SRR1039521_subset.bam
## ENSG00000009724                  47                    36
## ENSG00000116649                  745                  1536	
## ENSG00000120942                 207                   400

colSums(assay(se))

## SRR1039508_subset.bam SRR1039509_subset.bam SRR1039512_subset.bam SRR1039513_subset.bam
##	           6478                 6501                  7699                  6801
## SRR1039516_subset.bam SRR1039517_subset.bam SRR1039520_subset.bam SRR1039521_subset.bam

##	           8009                 10849                  5254                 9168

The rowRanges, when printed, only shows the first GRanges, and tells us there are 19 more elements:

rowRanges(se)

## GRangesList object of length 20:
## $ENSG00000009724
## GRanges object with 18 ranges and 2 metadata columns:
##    seqnames		  ranges strand    |   exon_id	      exon_name
##       <Rle>	        <IRanges>  <Rle>    | <integer>	    <character>
##  [1]      1 [11086580, 11087705]	    -    |        98 ENSE00000818830
##  [2]      1 [11090233, 11090307]	    -    |        99 ENSE00000472123
##  [3]      1 [11090805, 11090939]	    -    |       100 ENSE00000743084
##  [4]      1 [11094885, 11094963]	    -    |       101 ENSE00000743085
##  [5]      1 [11097750, 11097868]	    -    |       103 ENSE00003520086
##  ...    ...		     ...     ... ...       ...	            ...
## [14]      1 [11106948, 11107176]	    -    |       111 ENSE00003467404
## [15]      1 [11106948, 11107176]	    -    |       112 ENSE00003489217
## [16]      1 [11107260, 11107280]	    -    |       113 ENSE00001833377
## [17]      1 [11107260, 11107284]	    -    |       114 ENSE00001472289
## [18]      1 [11107260, 11107290]	    -    |       115 ENSE00001881401
##							     
## ...
## <19 more elements>
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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The rowRanges also contains metadata about the construction of the gene model in the metadata slot. Here we use 
a helpful R function, str, to display the metadata compactly:

str(metadata(rowRanges(se)))

##List of 1

## $ genomeInfo:List of 14

##  ..$ Db type			        : chr "TxDb"

##  ..$ Supporting package	               : chr "GenomicFeatures"

##  ..$ Data source			       : chr "/Users/michael/Library/R/3.2/library/airway/extd

##  ..$ Organism			        : chr NA

##  ..$ miRBase build ID		       : chr NA

##  ..$ Genome			        : chr NA

##  ..$ transcript_nrow		       : chr "65"

##  ..$ exon_nrow		                : chr "279"

##  ..$ cds_nrow		                : chr "158"

##  ..$ Db created by                        : chr "GenomicFeatures package from Bioconductor"

##  ..$ Creation time		       : chr "2015-09-09 14:48:56 -0400 (Wed, 09 Sep 2015)"

##  ..$ GenomicFeatures version at creation time: chr "1.20.3"

##  ..$ RSQLite version at creation time   : chr "1.0.0"

##  ..$ DBSCHEMAVERSION	     	      : chr "1.1"

The colData:

colData(se)

## DataFrame with 8 rows and 0 columns

The colData slot, so far empty, should contain all the metadata. Because we used a column of sampleTable to 
produce the bamfiles vector, we know the columns of se are in the same order as the rows of sampleTable. We 
can assign the sampleTable as the colData of the summarized experiment, by converting it into a DataFrame and 
using the assignment function:

(colData(se) <- DataFrame(sampleTable))

## DataFrame with 8 rows and 9 columns

##	     SampleName     cell      dex    albut        Run avgLength Experiment      Sample

##	       <factor> <factor> <factor> <factor>   <factor> <integer>   <factor>   <factor>

## SRR1039508 GSM1275862   N61311    untrt    untrt SRR1039508	       126  SRX384345  SRS508568

## SRR1039509 GSM1275863   N61311      trt    untrt SRR1039509	       126  SRX384346  SRS508567

## SRR1039512 GSM1275866  N052611    untrt    untrt SRR1039512	       126  SRX384349  SRS508571

## SRR1039513 GSM1275867  N052611      trt    untrt SRR1039513	        87  SRX384350  SRS508572

## SRR1039516 GSM1275870  N080611    untrt    untrt SRR1039516	       120  SRX384353  SRS508575

## SRR1039517 GSM1275871  N080611      trt    untrt SRR1039517	       126  SRX384354  SRS508576

## SRR1039520 GSM1275874  N061011    untrt    untrt SRR1039520	       101  SRX384357  SRS508579

## SRR1039521 GSM1275875  N061011      trt    untrt SRR1039521	        98  SRX384358  SRS508580

##	       BioSample	

##	         <factor>

## SRR1039508 SAMN02422669	

## SRR1039509 SAMN02422675	

## SRR1039512 SAMN02422678	

## SRR1039513 SAMN02422670	

## SRR1039516 SAMN02422682	

## SRR1039517 SAMN02422673	

## SRR1039520 SAMN02422683	

## SRR1039521 SAMN02422677
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Branching point
At this point, we have counted the fragments which overlap the genes in the gene model we specified. This is a branch-
ing point where we could use a variety of Bioconductor packages for exploration and differential expression of the 
count data, including edgeR3, limma with the voom method4, DSS5, EBSeq6 and BaySeq7. We will continue, using 
DESeq22. The SummarizedExperiment object is all we need to start our analysis. In the following section we will show 
how to use it to create the data object used by DESeq2.

The DESeqDataSet, sample information, and the design formula
Bioconductor software packages often define and use a custom class for storing data that makes sure that all the 
needed data slots are consistently provided and fulfill the requirements. In addition, Bioconductor has general data 
classes (such as the SummarizedExperiment) that can be used to move data between packages. Additionally, the core 
Bioconductor classes provide useful functionality: for example, subsetting or reordering the rows or columns of a  
SummarizedExperiment automatically subsets or reorders the associated rowRanges and colData, which can help to 
prevent accidental sample swaps that would otherwise lead to spurious results. With SummarizedExperiment this is all 
taken care of behind the scenes.

In DESeq2, the custom class is called DESeqDataSet. It is built on top of the SummarizedExperiment class, and it is 
easy to convert SummarizedExperiment objects into DESeqDataSet objects, which we show below. One of the two 
main differences is that the assay slot is instead accessed using the counts accessor function, and the DESeqDataSet 
class enforces that the values in this matrix are non-negative integers.

A second difference is that the DESeqDataSet has an associated design formula. The experimental design is specified 
at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat the samples in the analysis 
(one exception is the size factor estimation, i.e., the adjustment for differing library sizes, which does not depend on 
the design formula). The design formula tells which columns in the sample information table (colData) specify the 
experimental design and how these factors should be used in the analysis.

The simplest design formula for differential expression would be ~ condition, where condition is a column in 
colData(dds) that specifies which of two (or more groups) the samples belong to. For the airway experiment, we will 
specify ~ cell + dex meaning that we want to test for the effect of dexamethasone (dex) controlling for the effect 
of different cell line (cell). We can see each of the columns just using the $ directly on the SummarizedExperiment 
or DESeqDataSet:

se$cell

## [1] N61311  N61311  N052611 N052611 N080611 N080611 N061011 N061011
## Levels: N052611 N061011 N080611 N61311

se$dex

## [1] untrt trt   untrt trt   untrt trt   untrt trt
## Levels: trt untrt

Note: it is prefered in R that the first level of a factor be the reference level (e.g. control, or untreated samples), so we 
can relevel the dex factor like so:

se$dex <- relevel(se$dex, "untrt")
se$dex

## [1] untrt trt   untrt trt   untrt trt   untrt trt
## Levels: untrt trt

For running DESeq2 models, you can use R’s formula notation to express any fixed-effects experimental design. Note 
that DESeq2 uses the same formula notation as, for instance, the lm function of base R. If the research aim is to deter-
mine for which genes the effect of treatment is different across groups, then interaction terms can be included and tested 
using a design such as ~ group + treatment + group:treatment. See the manual page for ?results for 
more examples. We will show how to use an interaction term to test for condition-specific changes over time in a time 
course example below.
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In the following sections, we will demonstrate the construction of the DESeqDataSet from two starting points:

•	 from a SummarizedExperiment object
•	 from a count matrix and a sample information table

For a full example of using the HTSeq Python package for read counting, please see the pasilla vignette. For an 
example of generating the DESeqDataSet from files produced by htseq-count, please see the DESeq2 vignette.

Starting from SummarizedExperiment
We now use R’s data command to load a prepared SummarizedExperiment that was generated from the publicly avail-
able sequencing data files associated with the Himes et al.1 paper, described above. The steps we used to produce this 
object were equivalent to those you worked through in the previous sections, except that we used all the reads and all the 
genes. For more details on the exact steps used to create this object, type vignette(“airway”) into your R session.

data("airway")
se <- airway

Again, we want to specify that untrt is the reference level for the dex variable:

se$dex <- relevel(se$dex, "untrt")
se$dex

## [1] untrt trt   untrt trt   untrt trt   untrt trt
## Levels: untrt trt

We can quickly check the millions of fragments that uniquely aligned to the genes (the second argument of round tells 
how many decimal points to keep).

round( colSums(assay(se)) / 1e6, 1 )

## SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520 SRR1039521

##       20.6       18.8       25.3       15.2       24.4       30.8       19.1      21.2

Supposing we have constructed a SummarizedExperiment using one of the methods described in the previous section, 
we now need to make sure that the object contains all the necessary information about the samples, i.e., a table with 
metadata on the count matrix’s columns stored in the colData slot:

colData(se)

## DataFrame with 8 rows and 9 columns

##	     SampleName     cell      dex    albut        Run avgLength  Experiment    Sample

##	       <factor> <factor> <factor> <factor>   <factor> <integer>    <factor>  <factor>

## SRR1039508 GSM1275862   N61311    untrt    untrt SRR1039508       126   SRX384345 SRS508568

## SRR1039509 GSM1275863   N61311      trt    untrt SRR1039509       126   SRX384346 SRS508567

## SRR1039512 GSM1275866  N052611    untrt    untrt SRR1039512       126   SRX384349 SRS508571

## SRR1039513 GSM1275867  N052611      trt    untrt SRR1039513        87   SRX384350 SRS508572

## SRR1039516 GSM1275870  N080611    untrt    untrt SRR1039516       120   SRX384353 SRS508575

## SRR1039517 GSM1275871  N080611      trt    untrt SRR1039517       126   SRX384354 SRS508576

## SRR1039520 GSM1275874  N061011    untrt    untrt SRR1039520       101   SRX384357 SRS508579

## SRR1039521 GSM1275875  N061011      trt    untrt SRR1039521        98   SRX384358 SRS508580

##	        BioSample	

##	         <factor>

## SRR1039508 SAMN02422669	

## SRR1039509 SAMN02422675	

## SRR1039512 SAMN02422678	

## SRR1039513 SAMN02422670	

## SRR1039516 SAMN02422682	

## SRR1039517 SAMN02422673	

## SRR1039520 SAMN02422683	

## SRR1039521 SAMN02422677
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Here we see that this object already contains an informative colData slot – because we have already prepared it for 
you, as described in the airway vignette. However, when you work with your own data, you will have to add the perti-
nent sample/phenotypic information for the experiment at this stage. We highly recommend keeping this information in 
a comma-separated value (CSV) or tab-separated value (TSV) file, which can be exported from an Excel spreadsheet, 
and the assign this to the colData slot, making sure that the rows correspond to the columns of the SummarizedExper-
iment. We made sure of this correspondence earlier by specifying the BAM files using a column of the sample table.

Once we have our fully annotated SummarizedExperiment object, we can construct a DESeqDataSet object from it that 
will then form the starting point of the analysis. We add an appropriate design for the analysis:

library("DESeq2")

dds <- DESeqDataSet(se, design = ~ cell + dex)

If we only wanted to perform transformations and exploratory data analysis (as explained later in this workflow) we 
could use a ~ 1 for the design, but we would need to remember to substitute a real design, e.g. ~ condition, before 
we run DESeq for differential testing or else we would only be testing the intercept.

Starting from count matrices
In this section, we will show how to build an DESeqDataSet supposing we only have a count matrix and a table of 
sample information.

Note: if you have prepared a SummarizedExperiment you should skip this section. While the previous section would 
be used to construct a DESeqDataSet from a SummarizedExperiment, here we first extract the individual object (count 
matrix and sample info) from the SummarizedExperiment in order to build it back up into a new object – only for 
demonstration purposes. In practice, the count matrix would either be read in from a file or perhaps generated by an 
R function like featureCounts from the Rsubread package12.

The information in a SummarizedExperiment object can be accessed with accessor functions. For example, to see the 
actual data, i.e., here, the fragment counts, we use the assay function. (The head function restricts the output to the first 
few lines.)

countdata <- assay(se)
head(countdata, 3)

##	         SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

## ENSG00000000003       679        448        873        408       1138       1047        770

## ENSG00000000005         0          0          0          0          0          0          0

## ENSG00000000419       467        515        621        365        587        799        417

##	         SRR1039521	

## ENSG00000000003       572	

## ENSG00000000005         0	

## ENSG00000000419       508

In this count matrix, each row represents an Ensembl gene, each column a sequenced RNA library, and the values give 
the raw numbers of fragments that were uniquely assigned to the respective gene in each library. We also have informa-
tion on each of the samples (the columns of the count matrix). If you’ve counted reads with some other software, it is 
very important to check that the columns of the count matrix correspond to the rows of the sample information table.

coldata <- colData(se)

We now have all the ingredients to prepare our data object in a form that is suitable for analysis, namely:

•	 countdata: a table with the fragment counts

•	 coldata: a table with information about the samples
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To now construct the DESeqDataSet object from the matrix of counts and the sample information table, we use:

(ddsMat <- DESeqDataSetFromMatrix(countData = countdata,
                                  colData = coldata,
                                  design = ~ cell + dex))

## class: DESeqDataSet
## dim: 64102 8
## exptData(0):
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample

We will continue with the object generated from the SummarizedExperiment section.

Exploratory analysis and visualization
There are two separate paths in this workflow; the one we will see first involves transformations of the counts in order 
to visually explore sample relationships. In the second part, we will go back to the original raw counts for statistical 
testing. This is critical because the statistical testing methods rely on original count data (not scaled or transformed) for 
calculating the precision of measurements.

Pre-filtering the dataset
Our count matrix with our DESeqDataSet contains many rows with only zeros, and additionally many rows with only a 
few fragments total. In order to reduce the size of the object, and to increase the speed of our functions, we can remove 
the rows that have no or nearly no information about the amount of gene expression. Here we remove rows of the 
DESeqDataSet that have no counts, or only a single count across all samples:

nrow(dds)

## [1] 64102

dds <- dds[ rowSums(counts(dds)) > 1, ]
nrow(dds)

## [1] 29391

The rlog transformation
Many common statistical methods for exploratory analysis of multidimensional data, for example clustering and prin-
cipal components analysis (PCA), work best for data that generally has the same range of variance at different ranges 
of the mean values. When the expected amount of variance is approximately the same across different mean values, the 
data is said to be homoskedastic. For RNA-seq raw counts, however, the variance grows with the mean. For example, 
if one performs PCA directly on a matrix of size-factor-normalized read counts, the result typically depends only on 
the few most strongly expressed genes because they show the largest absolute differences between samples. A simple 
and often used strategy to avoid this is to take the logarithm of the normalized count values plus a small pseudocount; 
however, now the genes with the very lowest counts will tend to dominate the results because, due to the strong Poisson 
noise inherent to small count values, and the fact that the logarithm amplifies differences for the smallest values, these 
low count genes will show the strongest relative differences between samples.

As a solution, DESeq2 offers transformations for count data that stabilize the variance across the mean. One such trans-
formation is the regularized-logarithm transformation or rlog2. For genes with high counts, the rlog transformation will 
give similar result to the ordinary log2 transformation of normalized counts. For genes with lower counts, however, the 
values are shrunken towards the genes’ averages across all samples. Using an empirical Bayesian prior on inter-sample 
differences in the form of a ridge penalty, the rlog-transformed data then becomes approximately homoskedastic, and 
can be used directly for computing distances between samples and making PCA plots. Another transformation, the 
variance stabilizing transformation17, is discussed alongside the rlog in the DESeq2 vignette.
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Figure 2. Scatterplot of transformed counts from two samples. Shown are scatterplots using the log2 transform of 
normalized counts (left side) and using the rlog (right side).

Note: the rlog transformation is provided for applications other than differential testing. For differential testing we rec-
ommend the DESeq function applied to raw counts, as described later in this workflow, which also takes into account 
the dependence of the variance of counts on the mean value during the dispersion estimation step.

The function rlog returns a SummarizedExperiment object that contains the rlog-transformed values in its assay slot.

rld <- rlog(dds, blind=FALSE)
head(assay(rld), 3)

##	         SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

## ENSG00000000003  9.385536   9.051592   9.517044   9.284930   9.839980   9.530510   9.663767

## ENSG00000000419  8.868967   9.138776   9.036191   9.075538   8.971927   9.132297   8.860846

## ENSG00000000457  7.962223   7.881317   7.823335   7.921887   7.750083   7.886432   7.957928

##	         SRR1039521	

## ENSG00000000003  9.277281	

## ENSG00000000419  9.061085	

## ENSG00000000457  7.912412

We specify blind=FALSE, which means that differences between cell lines and treatment should not add to the 
variance-mean profile of the experiment. However, the experimental design is not used directly in the transformation, 
only in estimating the global amount of variability in the counts. For a fully unsupervised transformation, one can set 
blind=TRUE (which is the default).

Note: for large datasets (hundreds of samples), the variance stabilizing transformation will be faster to compute.

To show the effect of the transformation, in Figure 2 we plot the first sample against the second, first simply using the 
log2 function (after adding 1, to avoid taking the log of zero), and then using the rlog-transformed values. For the log2 
approach, we need to first estimate size factors to account for sequencing depth, and then specify normalized=TRUE. 
Sequencing depth correction is done automatically for the rlog method (and for varianceStabilizingTransformation).

par( mfrow = c( 1, 2 ) )
dds <- estimateSizeFactors(dds)
plot(log2(counts(dds, normalized=TRUE)[,1:2] + 1),
     pch=16, cex=0.3)
plot(assay(rld)[,1:2],
     pch=16, cex=0.3)
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Figure 3. Heatmap of sample-to-sample distances using the rlog-transformed values.

We can see how genes with low counts (bottom left-hand corner) seem to be excessively variable on the ordinary loga-
rithmic scale, while the rlog transform compresses differences for the low count genes for which the data provide little 
information about differential expression.

Sample distances
A useful first step in an RNA-seq analysis is often to assess overall similarity between samples: Which samples are 
similar to each other, which are different? Does this fit to the expectation from the experiment’s design?

We use the R function dist to calculate the Euclidean distance between samples. To ensure we have a roughly equal 
contribution from all genes, we use it on the rlog-transformed data. We need to transpose the matrix of values  
using t, because the dist function expects the different samples to be rows of its argument, and different dimensions 
(here, genes) to be columns.

sampleDists <- dist( t( assay(rld) ) )

sampleDists

##	     SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

## SRR1039509   46.25524						    

## SRR1039512   39.94490   55.67572					   

## SRR1039513   63.36642   45.19462   49.30007				  

## SRR1039516   45.28129   59.89304   44.32383   64.54450			 

## SRR1039517   65.34730   52.25475   60.05523   50.64861   48.05714		

## SRR1039520   40.20215   58.19904   37.35413   59.19401   47.15396   64.44641	

## SRR1039521   64.09339   45.70177   58.59277   37.10803   66.36711   53.09669   50.72310

We visualize the distances in a heatmap in Figure 3, using the function pheatmap from the pheatmap package.

library("pheatmap")
library("RColorBrewer")
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Figure 4. Heatmap of sample-to-sample distances using the Poisson Distance.

In order to plot the sample distance matrix with the rows/columns arranged by the distances in our distance matrix, we 
manually provide sampleDists to the clustering_distance argument of the pheatmap function. Otherwise 
the pheatmap function would assume that the matrix contains the data values themselves, and would calculate distances 
between the rows/columns of the distance matrix, which is not desired. We also manually specify a blue color palette 
using the colorRampPalette function from the RColorBrewer package.

sampleDistMatrix <- as.matrix( sampleDists )
rownames(sampleDistMatrix) <- paste( rld$dex, rld$cell, sep="-" )
colnames(sampleDistMatrix) <- NULL
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix,
         clustering_distance_rows=sampleDists,
         clustering_distance_cols=sampleDists,
         col=colors)

Note that we have changed the row names of the distance matrix to contain treatment type and patient number instead 
of sample ID, so that we have all this information in view when looking at the heatmap.

Another option for calculating sample distances is to use the Poisson Distance18, implemented in the PoiClaClu 
package. This measure of dissimilarity between counts also takes the inherent variance structure of counts into consid-
eration when calculating the distances between samples. The PoissonDistance function takes the original count matrix 
(not normalized) with samples as rows instead of columns, so we need to transpose the counts in dds.

library("PoiClaClu")
poisd <- PoissonDistance(t(counts(dds)))

We plot the Poisson Distance heatmap in Figure 4.
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samplePoisDistMatrix <- as.matrix( poisd$dd )
rownames(samplePoisDistMatrix) <- paste( rld$dex, rld$cell, sep="-" )
colnames(samplePoisDistMatrix) <- NULL
pheatmap(samplePoisDistMatrix,
         clustering_distance_rows=poisd$dd,
         clustering_distance_cols=poisd$dd,
         col=colors)

PCA plot
Another way to visualize sample-to-sample distances is a principal components analysis (PCA). In this ordination 
method, the data points (here, the samples) are projected onto the 2D plane such that they spread out in the two direc-
tions that explain most of the differences (Figure 5). The x-axis is the direction that separates the data points the most. 
The values of the samples in this direction are written PC1. The y-axis is a direction (it must be orthogonal to the first 
direction) that separates the data the second most. The values of the samples in this direction are written PC2. The 
percent of the total variance that is contained in the direction is printed in the axis label. Note that these percentages 
do not add to 100%, because there are more dimensions that contain the remaining variance (although each of these 
remaining dimensions will explain less than the two that we see).

plotPCA(rld,  intgroup = c("dex", "cell"))

Here, we have used the function plotPCA that comes with DESeq2. The two terms specified by intgroup are the 
interesting groups for labeling the samples; they tell the function to use them to choose colors. We can also build the 
PCA plot from scratch using the ggplot2 package19. This is done by asking the plotPCA function to return the data used 
for plotting rather than building the plot. See the ggplot2 documentation for more details on using ggplot.

Figure 5. PCA plot using the rlog-transformed values. Each unique combination of treatment and cell line is given its 
own color.
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Figure 6. PCA plot using the rlog-transformed values with custom ggplot2 code. Here we specify cell line (plotting 
symbol) and dexamethasone treatment (color).

(data <- plotPCA(rld, intgroup = c( "dex", "cell"), returnData=TRUE))

##                  PC1        PC2           group   dex    cell       name
## SRR1039508 -17.88882  -4.157888 untrt :  N61311 untrt  N61311 SRR1039508
## SRR1039509   8.43675  -1.650879   trt :  N61311   trt  N61311 SRR1039509
## SRR1039512 -10.27798  -5.066577 untrt : N052611 untrt N052611 SRR1039512
## SRR1039513  17.64271  -3.910902   trt : N052611   trt N052611 SRR1039513
## SRR1039516 -14.74069  15.990031 untrt : N080611 untrt N080611 SRR1039516
## SRR1039517  10.95638  20.806181   trt : N080611   trt N080611 SRR1039517
## SRR1039520 -12.12010 -11.962545 untrt : N061011 untrt N061011 SRR1039520
## SRR1039521  17.99175 -10.047421   trt : N061011   trt N061011 SRR1039521

percentVar <- round(100 * attr(data, "percentVar"))

We can then use this data to build up a second plot in Figure 6, specifying that the color of the points should reflect 
dexamethasone treatment and the shape should reflect the cell line.

library("ggplot2")

ggplot(data, aes(PC1, PC2, color=dex, shape=cell)) + geom_point(size=3) +
   xlab(paste0("PC1: ",percentVar[1],"% variance")) +
   ylab(paste0("PC2: ",percentVar[2],"% variance"))

From the PCA plot, we see that the differences between cells (the different plotting shapes) are considerable, though 
not stronger than the differences due to treatment with dexamethasone (red vs blue color). This shows why it will be 
important to account for this in differential testing by using a paired design (“paired”, because each dex treated sample 
is paired with one untreated sample from the same cell line). We are already set up for this design by assigning the 
formula ~ cell + dex earlier.
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MDS plot
Another plot, very similar to the PCA plot, can be made using the multidimensional scaling (MDS) function in base R. 
This is useful when we don’t have a matrix of data, but only a matrix of distances. Here we compute the MDS for the 
distances calculated from the rlog transformed counts and plot these (Figure 7):

mdsData <- data.frame(cmdscale(sampleDistMatrix))
mds <- cbind(mdsData, as.data.frame(colData(rld)))
ggplot(mds, aes(X1,X2,color=dex,shape=cell)) + geom_point(size=3)

Creating the same plot for the PoissonDistance (also Figure 7):

mdsPoisData <- data.frame(cmdscale(samplePoisDistMatrix))
mdsPois <- cbind(mdsPoisData, as.data.frame(colData(dds)))
ggplot(mdsPois, aes(X1,X2,color=dex,shape=cell)) + geom_point(size=3)

Differential expression analysis
Running the differential expression pipeline
As we have already specified an experimental design when we created the DESeqDataSet, we can run the differential 
expression pipeline on the raw counts with a single call to the function DESeq:

dds <- DESeq(dds)

This function will print out a message for the various steps it performs. These are described in more detail in the manual 
page for DESeq, which can be accessed by typing ?DESeq. Briefly these are: the estimation of size factors (controlling 
for differences in the sequencing depth of the samples), the estimation of dispersion values for each gene, and fitting 
a generalized linear model.

A DESeqDataSet is returned that contains all the fitted parameters within it, and the following section describes how 
to extract out results tables of interest from this object.

Building the results table
Calling results without any arguments will extract the estimated log2 fold changes and p values for the last variable in 
the design formula. If there are more than 2 levels for this variable, results will extract the results table for a comparison 
of the last level over the first level. This comparison is printed at the top of the output: dex trt vs untrt.

Figure 7. MDS plots. Shown are the plots based on the rlog-transformed values (left) and the Poisson Distance (right).
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(res <- results(dds))

## log2 fold change (MAP): dex trt vs untrt

## Wald test p-value: dex trt vs untrt

## DataFrame with 29391 rows and 6 columns

##                  baseMean log2FoldChange      lfcSE       stat      pvalue        padj

##                  <numeric>     <numeric>  <numeric>  <numeric>   <numeric>   <numeric>

## ENSG00000000003 708.6021697   -0.37423028 0.09872592 -3.7905980 0.000150285 0.001224146

## ENSG00000000419 520.2979006    0.20214241 0.10929202  1.8495625 0.064376631 0.189223539

## ENSG00000000457 237.1630368    0.03624420 0.13682871  0.2648874 0.791096181 0.907794192

## ENSG00000000460  57.9326331   -0.08520813 0.24645454 -0.3457357 0.729541350 0.875201476

## ENSG00000000938   0.3180984   -0.11522629 0.14589383 -0.7897955 0.429647219          NA

## ...                    ...           ...       ...         ...         ...         ...

## ENSG00000273485  1.2864477    0.03490688  0.2986168  0.1168952   0.9069431          NA

## ENSG00000273486 15.4525365   -0.09662406  0.3385222 -0.2854290   0.7753155   0.8990371

## ENSG00000273487  8.1632350    0.56255493  0.3731295  1.5076666   0.1316399   0.3177048

## ENSG00000273488  8.5844790    0.10794134  0.3680474  0.2932811   0.7693073   0.8960855

## ENSG00000273489  0.2758994    0.11249632  0.1420250  0.7920882   0.4283092          NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res, use.names=TRUE)

## DataFrame with 6 rows and 2 columns
##                        type                               description
##		    <character>                               <character>
## baseMean       intermediate mean of normalized counts for all samples
## log2FoldChange      results  log2 fold change (MAP): dex trt vs untrt
## lfcSE		       results          standard error: dex trt vs untrt
## stat                results          Wald statistic: dex trt vs untrt
## pvalue              results       Wald test p-value: dex trt vs untrt
## padj                results                      BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, dividing by size factors, taken over 
all samples in the DESeqDataSet. The remaining four columns refer to a specific contrast, namely the comparison of 
the trt level over the untrt level for the factor variable dex. We will find out below how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression seems to 
have changed due to treatment with dexamethasone in comparison to untreated samples. This value is reported on a 
logarithmic scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression is increased by a 
multiplicative factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE, the standard 
error estimate for the log2 fold change estimate. We can also express the uncertainty of a particular effect size estimate 
as the result of a statistical test. The purpose of a test for differential expression is to test whether the data provides suf-
ficient evidence to conclude that this value is really different from zero. DESeq2 performs for each gene a hypothesis 
test to see whether evidence is sufficient to decide against the null hypothesis that there is zero effect of the treatment 
on the gene and that the observed difference between treatment and control was merely caused by experimental vari-
ability (i.e., the type of variability that you can expect between different samples in the same treatment group). As usual 
in statistics, the result of this test is reported as a p value, and it is found in the column pvalue. Remember that a 
p value indicates the probability that a fold change as strong as the observed one, or even stronger, would be seen under 
the situation described by the null hypothesis.

We can also summarize the results with the following line of code, which reports some additional information, that will 
be covered in later sections.
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summary(res)

##
## out of 29391 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)     : 2647, 9%
## LFC < 0 (down)   : 2250, 7.7%
## outliers [1]     : 0, 0%
## low counts [2]   : 11756, 40%
## (mean count < 5.2)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results

Note that there are many genes with differential expression due to dexamethasone treatment at the FDR level of 10%. 
This makes sense, as the smooth muscle cells of the airway are known to react to glucocorticoid steroids. However, 
there are two ways to be more strict about which set of genes are considered significant:

•	 lower the false discovery rate threshold (the threshold on padj in the results table)

•	 raise the log2 fold change threshold from 0 using the lfcThreshold argument of results

If we lower the false discovery rate threshold, we should also tell this value to results(), so that the function will 
use an alternative threshold for the optimal independent filtering step:

res.05 <- results(dds, alpha=.05)
table(res.05$padj < .05)

##
## FALSE  TRUE
## 12095  4070

If we want to raise the log2 fold change threshold, so that we test for genes that show more substantial changes due to 
treatment, we simply supply a value on the log2 scale. For example, by specifying lfcThreshold=1, we test for 
genes that show significant effects of treatment on gene counts more than doubling or less than halving, because 21 = 2.

resLFC1 <- results(dds, lfcThreshold=1)
table(resLFC1$padj < 0.1)

##
## FALSE  TRUE
## 14492   204

Sometimes a subset of the p values in res will be NA (“not available”). This is DESeq’s way of reporting that all 
counts for this gene were zero, and hence no test was applied. In addition, p values can be assigned NA if the gene was 
excluded from analysis because it contained an extreme count outlier. For more information, see the outlier detection 
section of the DESeq2 vignette.

If you use the results from an R analysis package in published research, you can find the proper citation for the software 
by typing citation("pkgName"), where you would substitute the name of the package for pkgName. Citing 
methods papers helps to support and reward the individuals who put time into open source software for genomic data 
analysis.

Other comparisons
In general, the results for a comparison of any two levels of a variable can be extracted using the contrast argument 
to results. The user should specify three values: the name of the variable, the name of the level for the numerator, and 
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the name of the level for the denominator. Here we extract results for the log2 of the fold change of one cell line over 
another:

results(dds, contrast=c("cell", "N061011", "N61311"))

## log2 fold change (MAP): cell N061011 vs N61311

## Wald test p-value: cell N061011 vs N61311

## DataFrame with 29391 rows and 6 columns

##                   baseMean log2FoldChange      lfcSE        stat    pvalue      padj

##                  <numeric>      <numeric>  <numeric>   <numeric> <numeric> <numeric>

## ENSG00000000003 708.6021697     0.29054171 0.13600021  2.13633281 0.0326523 0.1981039

## ENSG00000000419 520.2979006    -0.05069310 0.14916364 -0.33984894 0.7339703 0.9238903

## ENSG00000000457 237.1630368     0.01474318 0.18161982  0.08117606 0.9353019 0.9862379

## ENSG00000000460  57.9326331     0.20241839 0.28064506  0.72126120 0.4707488 0.8108444

## ENSG00000000938   0.3180984     0.00000000 0.07169692  0.00000000 1.0000000        NA

## ...                    ...            ...        ...         ...       ...       ...

## ENSG00000273485   1.2864477   -0.180248108 0.16456445 -1.095304052 0.2733835        NA

## ENSG00000273486  15.4525365   -0.029979349 0.30827915 -0.097247409 0.9225299        NA

## ENSG00000273487   8.1632350   -0.001914497 0.28117903 -0.006808819 0.9945674        NA

## ENSG00000273488   8.5844790    0.380608540 0.29209485  1.303030638 0.1925643        NA

## ENSG00000273489   0.2758994    0.000000000 0.06955643  0.000000000 1.0000000        NA

If results for an interaction term are desired, the name argument of results should be used. Please see the help for the 
results function for more details.

Multiple testing
In high-throughput biology, we are careful to not use the p values directly as evidence against the null, but to correct 
for multiple testing. What would happen if we were to simply threshold the p values at a low value, say 0.05? There are 
5722 genes with a p value below 0.05 among the 29391 genes, for which the test succeeded in reporting a p value:

sum(res$pvalue < 0.05, na.rm=TRUE)

## [1] 5722

sum(!is.na(res$pvalue))

## [1] 29391

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the treatment with 
dexamethasone. Then, by the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05. 
This amounts to 1470 genes. If we just considered the list of genes with a p value below 0.05 as differentially expressed, 
this list should therefore be expected to contain up to 1470/5722 = 26% false positives.

DESeq2 uses the Benjamini-Hochberg (BH) adjustment20 as implemented in the base R p.adjust function; in brief, this 
method calculates for each gene an adjusted p value that answers the following question: if one called significant all 
genes with an adjusted p value less than or equal to this gene’s adjusted p value threshold, what would be the fraction 
of false positives (the false discovery rate, FDR) among them, in the sense of the calculation outlined above? These 
values, called the BH-adjusted p values, are given in the column padj of the res object.

The FDR is a useful statistic for many high-throughput experiments, as we are often interested in reporting or focusing 
on a set of interesting genes, and we would like to put an upper bound on the percent of false positives in this set.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted p value 
below 10% = 0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

## [1] 4897
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We subset the results table to these genes and then sort it by the log2 fold change estimate to get the significant genes 
with the strongest down-regulation:

resSig <- subset(res, padj < 0.1)
head(resSig[ order(resSig$log2FoldChange), ])

## log2 fold change (MAP): dex trt vs untrt

## Wald test p-value: dex trt vs untrt

## DataFrame with 6 rows and 6 columns

##                  baseMean log2FoldChange     lfcSE       stat       pvalue         padj

##                 <numeric>      <numeric> <numeric>  <numeric>    <numeric>    <numeric>

## ENSG00000162692 508.17023      -3.452454 0.1763751 -19.574503 2.551125e-85 3.460700e-82

## ENSG00000146006  46.80760      -2.856273 0.3366877  -8.483451 2.186122e-17 1.073879e-15

## ENSG00000105989 333.21469      -2.850960 0.1754638 -16.248133 2.302720e-59 1.194366e-56

## ENSG00000214814 243.27698      -2.759539 0.2224907 -12.402938 2.519140e-35 4.113429e-33

## ENSG00000267339  26.23357      -2.743928 0.3511985  -7.813041 5.582443e-15 2.182846e-13

## ENSG00000013293 244.49733      -2.646116 0.1981216 -13.356020 1.092517e-40 2.240295e-38

... and with the strongest up-regulation:

head(resSig[ order(resSig$log2FoldChange, decreasing=TRUE), ])

## log2 fold change (MAP): dex trt vs untrt

## Wald test p-value: dex trt vs untrt

## DataFrame with 6 rows and 6 columns

##                  baseMean log2FoldChange    lfcSE      stat         pvalue          padj

##                 <numeric>     <numeric> <numeric> <numeric>      <numeric>     <numeric>

## ENSG00000179593  67.24305      4.880507 0.3308119  14.75312   2.937594e-49  9.418996e-47

## ENSG00000109906 385.07103      4.860877 0.3321627  14.63403   1.704000e-48  5.181040e-46

## ENSG00000152583 997.43977      4.315374 0.1723805  25.03400  2.608143e-138 4.599460e-134

## ENSG00000250978  56.31819      4.090157 0.3288246  12.43872   1.610666e-35  2.679631e-33

## ENSG00000163884 561.10717      4.078073 0.2103212  19.38974   9.421379e-84  1.038413e-80

## ENSG00000168309 159.52692      3.991146 0.2547755  15.66534   2.610147e-55  1.180255e-52

Plotting results
A quick way to visualize the counts for a particular gene is to use the plotCounts function that takes as arguments the 
DESeqDataSet, a gene name, and the group over which to plot the counts (Figure 8).

topGene <- rownames(res)[which.min(res$padj)]
plotCounts(dds, gene=topGene, intgroup=c("dex"))

We can also make custom plots using the ggplot function from the ggplot2 package (Figure 9).

data <- plotCounts(dds, gene=topGene, intgroup=c("dex","cell"), returnData=TRUE)
ggplot(data, aes(x=dex, y=count, color=cell)) +
  scale_y_log10() +
  geom_point(position=position_jitter(width=.1,height=0), size=3)

ggplot(data, aes(x=dex, y=count, fill=dex)) +
  scale_y_log10() +
  geom_dotplot(binaxis="y", stackdir="center")

ggplot(data, aes(x=dex, y=count, color=cell, group=cell)) +
  scale_y_log10() + geom_point(size=3) + geom_line()

An MA-plot21 provides a useful overview for an experiment with a two-group comparison (Figure 10).
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Figure 8. Normalized counts for a single gene over treatment group.

Figure 9. Normalized counts over treatment using different ggplot2 styles. The plots are customized using ggplot2 
options for jitter (left), dots (middle), or with lines connecting cell line (right). Note that the DESeq2 test that was used 
takes into account the cell line effect, so the rightmost figure more closely depicts the difference being tested.

Figure 10. An MA-plot of changes induced by treatment. The log2 fold change for a particular comparison is plotted 
on the y-axis and the average of the counts normalized by size factor is shown on the x-axis (“M” for minus, because a 
log ratio is equal to log minus log, and “A” for average). Each gene is represented with a dot. Genes with an adjusted p 
value below a threshold (here 0.1, the default) are shown in red.
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plotMA(res, ylim=c(-5,5))

The DESeq2 package uses statistical techniques to moderate log2 fold changes from genes with very low counts and 
highly variable counts, as can be seen by the narrowing of the vertical spread of points on the left side of the MA-plot. 
For a detailed explanation of the rationale of moderated fold changes, please see the DESeq2 paper2. This plot demon-
strates that only genes with a large average normalized count contain sufficient information to yield a significant call.

We can also make an MA-plot for the results table in which we raised the log2 fold change threshold (Figure 11). 
We can label individual points on the MA-plot as well. Here we use the with R function to plot a circle and text for a 
selected row of the results object. Within the with function, only the baseMean and log2FoldChange values for 
the selected rows of res are used.

plotMA(resLFC1, ylim=c(-5,5))
topGene <- rownames(resLFC1)[which.min(resLFC1$padj)]
with(resLFC1[topGene, ], {
  points(baseMean, log2FoldChange, col="dodgerblue", cex=2, lwd=2)
  text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue")
})

Another useful diagnostic plot is the histogram of the p values (Figure 12). This plot is best formed by excluding genes 
with very small counts, which otherwise generate spikes in the histogram.

hist(res$pvalue[res$baseMean > 1], breaks=0:20/20, col="grey50", border="white")

Gene clustering
In the sample distance heatmap made previously, the dendrogram at the side shows us a hierarchical clustering of the 
samples. Such a clustering can also be performed for the genes. Since the clustering is only relevant for genes that actu-
ally carry a signal, one usually would only cluster a subset of the most highly variable genes. Here, for demonstration, 
let us select the 20 genes with the highest variance across samples. We will work with the rlog transformed counts:

library("genefilter")
topVarGenes <- head(order(rowVars(assay(rld)),decreasing=TRUE),20)

Figure 11. An MA-plot of a test for large log2 fold changes. The red points indicate genes for which the log2 fold 
change was significantly higher than 1 or less than -1 (treatment resulting in more than doubling or less than halving of 
the normalized counts) with adjusted p value less than 0.1. The point circled in blue indicates the gene with the lowest 
adjusted p value.
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Figure 12. Histogram of p values for genes with mean normalized count larger than 1.

Figure 13. Heatmap of relative rlog-transformed values across samples. Treatment status and cell line information 
are shown with colored bars at the top of the heatmap. Note that a set of genes at the top of the heatmap are separating 
the N061011 cell line from the others. In the center of the heatmap, we see a set of genes for which the dexamethasone 
treated samples have higher gene expression.

The heatmap becomes more interesting if we do not look at absolute expression strength but rather at the amount by 
which each gene deviates in a specific sample from the gene’s average across all samples. Hence, we center each genes’ 
values across samples, and plot a heatmap (Figure 13). We provide a data.frame that instructs the pheatmap function 
how to label the columns.
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mat <- assay(rld)[ topVarGenes, ]
mat <- mat - rowMeans(mat)
df <- as.data.frame(colData(rld)[,c("cell","dex")])
pheatmap(mat, annotation_col=df)

Independent filtering
The MA plot highlights an important property of RNA-seq data. For weakly expressed genes, we have no chance of 
seeing differential expression, because the low read counts suffer from such high Poisson noise that any biological 
effect is drowned in the uncertainties from the sampling at a low rate. We can also show this by examining the ratio of 
small p values (say, less than, 0.05) for genes binned by mean normalized count. We will use the results table subjected 
to the threshold to show what this looks like in a case when there are few tests with small p value.

In the following code chunk, we create bins using the quantile function, bin the genes by base mean using cut, rename 
the levels of the bins using the middle point, calculate the ratio of p values less than 0.05 for each bin, and finally plot 
these ratios (Figure 14).

qs <- c(0, quantile(resLFC1$baseMean[resLFC1$baseMean > 0], 0:6/6))
bins <- cut(resLFC1$baseMean, qs) 
levels(bins) <- paste0("~",round(signif(.5*qs[-1] + .5*qs[-length(qs)],2)))
ratios <- tapply(resLFC1$pvalue, bins, function(p) mean(p < .05, na.rm=TRUE))
barplot(ratios, xlab="mean normalized count", ylab="ratio of small p values")

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test found them to be non-
significant anyway. However, these genes have an influence on the multiple testing adjustment, whose performance 
improves if such genes are removed. By removing the low count genes from the input to the FDR procedure, we can 
find more genes to be significant among those that we keep, and so improved the power of our test. This approach is 
known as independent filtering.

Figure 14. The ratio of small p values for genes binned by mean normalized count. Here the p values are for a 
test of log2 fold change greater than 1 or less than -1. This plot demonstrates that genes with low mean count are 
underpowered, and best excluded before multiple test correction.
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The DESeq2 software automatically performs independent filtering that maximizes the number of genes with adjusted 
p value less than a critical value (by default, alpha is set to 0.1). This automatic independent filtering is performed by, 
and can be controlled by, the results function.

The term independent highlights an important caveat. Such filtering is permissible only if the statistic that we filter on 
(here the mean of normalized counts across all samples) is independent of the actual test statistic (the p value) under 
the null hypothesis. Otherwise, the filtering would invalidate the test and consequently the assumptions of the BH 
procedure. The independent filtering software used inside DESeq2 comes from the genefilter package, that contains a 
reference to a paper describing the statistical foundation for independent filtering22.

Annotating and exporting results
Our result table so far only contains information about Ensembl gene IDs, but alternative gene names may be more 
informative for collaborators. Bioconductor’s annotation packages help with mapping various ID schemes to each 
other. We load the AnnotationDbi package and the annotation package org.Hs.eg.db:

library("AnnotationDbi")
library("org.Hs.eg.db")

This is the organism annotation package (“org”) for Homo sapiens (“Hs”), organized as an AnnotationDbi database 
package (“db”), using Entrez Gene IDs (“eg”) as primary key. To get a list of all available key types, use:

columns(org.Hs.eg.db)

##  [1] "ENTREZID"     "PFAM"        "IPI"         "PROSITE" "ACCNUM"   "ALIAS"
##  [7] "CHR"          "CHRLOC"      "CHRLOCEND"   "ENZYME"  "MAP"      "PATH"
## [13] "PMID"         "REFSEQ"      "SYMBOL"      "UNIGENE" "ENSEMBL"  "ENSEMBLPROT"
## [19] "ENSEMBLTRANS" "GENENAME"    "UNIPROT"     "GO"      "EVIDENCE" "ONTOLOGY"
## [25] "GOALL"        "EVIDENCEALL" "ONTOLOGYALL" "OMIM"    "UCSCKG"

We can use the mapIds function to add individual columns to our results table. We provide the row names of our results 
table as a key, and specify that keytype=ENSEMBL. The column argument tells the mapIds function which infor-
mation we want, and the multiVals argument tells the function what to do if there are multiple possible values for 
a single input value. Here we ask to just give us back the first one that occurs in the database. To add the gene symbol 
and Entrez ID, we call mapIds twice.

res$symbol <- mapIds(org.Hs.eg.db,
                     keys=row.names(res),
                     column="SYMBOL",
                     keytype="ENSEMBL",
                     multiVals="first")
res$entrez <- mapIds(org.Hs.eg.db,
                     keys=row.names(res),
                     column="ENTREZID",
                     keytype="ENSEMBL",
                     multiVals="first")
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Now the results have the desired external gene IDs:

resOrdered <- res[order(res$padj),]

head(resOrdered)

## log2 fold change (MAP): dex trt vs untrt

## Wald test p-value: dex trt vs untrt

## DataFrame with 6 rows and 8 columns

##                   baseMean log2FoldChange     lfcSE      stat        pvalue          padj

##		  <numeric>	    <numeric> <numeric> <numeric>     <numeric>     <numeric>

## ENSG00000152583   997.4398	     4.315374 0.1723805  25.03400 2.608143e-138 4.599460e-134

## ENSG00000165995   495.0929	     3.188413 0.1277306  24.96201 1.581556e-137 1.394537e-133

## ENSG00000101347 12703.3871	     3.617791 0.1499256  24.13057 1.194421e-128 6.472441e-125

## ENSG00000120129  3409.0294	     2.871106 0.1190242  24.12204 1.468090e-128 6.472441e-125

## ENSG00000189221  2341.7673	     3.230290 0.1373499  23.51869 2.626434e-122 9.263434e-119

## ENSG00000211445 12285.6151	     3.552498 0.1589749  22.34628 1.312430e-110 3.857449e-107

##		     symbol      entrez

##	         <character> <character>

## ENSG00000152583    SPARCL1        8404

## ENSG00000165995     CACNB2         783

## ENSG00000101347     SAMHD1       25939

## ENSG00000120129      DUSP1        1843

## ENSG00000189221       MAOA        4128

## ENSG00000211445       GPX3        2878

Exporting results
You can easily save the results table in a CSV file, that you can then share or load with a spreadsheet program such as 
Excel. The call to as.data.frame is necessary to convert the DataFrame object (IRanges package) to a data.frame object 
that can be processed by write.csv. Here, we take just the top 100 genes for demonstration.

resOrderedDF <- as.data.frame(resOrdered)[1:100,]
write.csv(resOrderedDF, file="results.csv")

Another more sophisticated package for exporting results from various Bioconductor analysis packages is the Report-
ingTools package23. ReportingTools will automatically generate dynamic HTML documents, including links to external 
databases using gene identifiers and boxplots summarizing the normalized counts across groups. See the Reporting-
Tools vignettes for full details. The simplest version of creating a dynamic ReportingTools report is performed with 
the following code:

library("ReportingTools")
htmlRep <- HTMLReport(shortName="report", title="My report",
                      reportDirectory="./report")
publish(resOrderedDF, htmlRep)
url <- finish(htmlRep)
browseURL(url)

Plotting fold changes in genomic space
If we have used the summarizeOverlaps function to count the reads, then our DESeqDataSet object is built on top of 
ready-to-use Bioconductor objects specifying the genomic ranges of the genes. We can therefore easily plot our dif-
ferential expression results in genomic space. While the results function by default returns a DataFrame, using the 
format argument, we can ask for GRanges or GRangesList output.
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(resGR <- results(dds, lfcThreshold=1, format="GRanges"))

## GRanges object with 29391 ranges and 6 metadata columns:

##              seqnames                 ranges strand   |          baseMean      log2FoldChange

##                 <Rle>              <IRanges> <Rle>   |         <numeric>           <numeric>

##  ENSG00000000003    X [ 99883667,  99894988]     -   |  708.602169691234  -0.374230275713608

##  ENSG00000000419   20 [ 49551404,  49575092]     -   |  520.297900552084   0.202142414893829

##  ENSG00000000457    1 [169818772, 169863408]     -   |  237.163036796015  0.0362442044069634

##  ENSG00000000460    1 [169631245, 169823221]     +   |  57.9326331250967 -0.0852081341501509

##  ENSG00000000938    1 [ 27938575,  27961788]     -   | 0.318098378392895  -0.115226286496983

##              ...  ...                    ...   ... ...              ...                ...

##  ENSG00000273485   10 [105209953, 105210609]     +   | 1.28644765243289  0.0349068755370733

##  ENSG00000273486    3 [136556180, 136557863]     -   | 15.4525365439045 -0.0966240584195589

##  ENSG00000273487    1 [ 92654794,  92656264]     +   |  8.1632349843654   0.562554926745931

##  ENSG00000273488    3 [100080031, 100080481]     +   | 8.58447903624707   0.107941339873098

##  ENSG00000273489    7 [131178723, 131182453]     -   | 0.275899382507797   0.112496317318932

##                              lfcSE      stat    pvalue      padj

##                          <numeric> <numeric> <numeric> <numeric>

##  ENSG00000000003 0.098725921418789         0         1         1

##  ENSG00000000419 0.109292016112333         0         1         1

##  ENSG00000000457 0.136828705643854         0         1         1

##  ENSG00000000460 0.246454541134745         0         1         1

##  ENSG00000000938 0.145893828687766         0         1      <NA>

##              ...               ...       ...       ...       ...

##  ENSG00000273485 0.298616754374375         0         1      <NA>

##  ENSG00000273486 0.338522172238827         0         1      <NA>

##  ENSG00000273487 0.373129529007307         0         1      <NA>

##  ENSG00000273488 0.368047431494871         0         1      <NA>

##  ENSG00000273489 0.142024983011115         0         1      <NA>

##  -------

##  seqinfo: 722 sequences (1 circular) from an unspecified genome

We need to add the symbol again for labeling the genes on the plot:

resGR$symbol <- mapIds(org.Hs.eg.db, names(resGR), "SYMBOL", "ENSEMBL")

We will use the Gviz package for plotting the GRanges and associated metadata: the log fold changes due to dexam-
ethasone treatment.

library("Gviz")

The following code chunk specifies a window of 1 million base pairs upstream and downstream from the gene with the 
smallest p value. We create a subset of our full results, for genes within the window We add the gene symbol as a name, 
if the symbol exists or is not duplicated in our subset.

window <- resGR[topGene] + 1e6
strand(window) <- "*"
resGRsub <- resGR[resGR %over% window]
naOrDup <- is.na(resGRsub$symbol) | duplicated(resGRsub$symbol)
resGRsub$group <- ifelse(naOrDup, names(resGRsub), resGRsub$symbol)

We create a vector specifying if the genes in this subset had a low false discovery rate.

sig <- factor(ifelse(resGRsub$padj < .1 & !is.na(resGRsub$padj),"sig","notsig"))
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We can then plot the results using Gviz functions (Figure 15). We create an axis track specifying our location in the 
genome, a track that will show the genes and their names, colored by significance, and a data track that will draw verti-
cal bars showing the moderated log fold change produced by DESeq2, which we know are only large when the effect 
is well supported by the information in the counts.

options(ucscChromosomeNames=FALSE)
g <- GenomeAxisTrack()
a <- AnnotationTrack(resGRsub, name="gene ranges", feature=sig)
d <- DataTrack(resGRsub, data="log2FoldChange", baseline=0,
               type="h", name="log2 fold change", strand="+")
plotTracks(list(g,d,a), groupAnnotation="group", notsig="grey", sig="hotpink")

Removing hidden batch effects
Suppose we did not know that there were different cell lines involved in the experiment, only that there was treatment 
with dexamethasone. The cell line effect on the counts then would represent some hidden and unwanted variation that 
might be affecting many or all of the genes in the dataset. We can use statistical methods designed for RNA-seq from 
the sva package24 to detect such groupings of the samples, and then we can add these to the DESeqDataSet design, 
in order to account for them. The SVA package uses the term surrogate variables for the estimated variables that we 
want to account for in our analysis. Another package for detecting hidden batches is the RUVSeq package25, with the 
acronym “Remove Unwanted Variation”.

library("sva")

Figure 15. Plotting log2 fold changes in a genomic region surrounding the gene with smallest adjusted p value. 
Genes highlighted in pink have adjusted p value less than 0.1.
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Figure 16. Surrogate variables 1 and 2 plotted over cell line. Here, we know the hidden source of variation (cell line), 
and therefore can see how the SVA procedure is able to identify sources of variation which are correlated with cell line.

Below we obtain a matrix of normalized counts for which the average count across samples is larger than 1. As we 
described above, we are trying to recover any hidden batch effects, supposing that we do not know the cell line informa-
tion. So we use a full model matrix with the dex variable, and a reduced, or null, model matrix with only an intercept 
term. Finally we specify that we want to estimate 2 surrogate variables. For more information read the manual page for 
the svaseq function by typing ?svaseq.

dat <- counts(dds, normalized=TRUE)
idx <- rowMeans(dat) > 1
dat <- dat[idx,]
mod <- model.matrix(~ dex, colData(dds))
mod0 <- model.matrix(~ 1, colData(dds))
svseq <- svaseq(dat, mod, mod0, n.sv=2)

## Number of significant surrogate variables is:  2
## Iteration (out of 5 ):1  2  3  4  5

svseq$sv

##            [,1]        [,2]
## [1,]  0.2481108 -0.52600157
## [2,]  0.2629867 -0.58115433
## [3,]  0.1502704  0.27428267
## [4,]  0.2023800  0.38419545
## [5,] -0.6086586 -0.07854931
## [6,] -0.6101210 -0.02923693
## [7,]  0.1788509  0.25708985
## [8,]  0.1761807  0.29937417

Because we actually do know the cell lines, we can see how well the SVA method did at recovering these variables 
(Figure 16).
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par(mfrow=c(2,1),mar=c(3,5,3,1))
stripchart(svseq$sv[,1] ~ dds$cell,vertical=TRUE,main="SV1")
abline(h=0)
stripchart(svseq$sv[,2] ~ dds$cell,vertical=TRUE,main="SV2")
abline(h=0)

Finally, in order to use SVA to remove any effect on the counts from our surrogate variables, we simply add these two 
surrogate variables as columns to the DESeqDataSet and then add them to the design:

ddssva <- dds
ddssva$SV1 <- svseq$sv[,1]
ddssva$SV2 <- svseq$sv[,2]
design(ddssva) <- ~ SV1 + SV2 + dex

We could then produce results controlling for surrogate variables by running DESeq with the new design:

ddssva <- DESeq(ddssva)

Time course experiments
DESeq2 can be used to analyze time course experiments, for example to find those genes that react in a condition-
specific manner over time, compared to a set of baseline samples. Here we demonstrate a basic time course analysis 
with the fission data package, that contains gene counts for an RNA-seq time course of fission yeast26. The yeast were 
exposed to oxidative stress, and half of the samples contain a deletion of the gene atf21. We use a design formula 
that models the strain difference at time 0, the difference over time, and any strain-specific differences over time (the 
interaction term strain:minute).

library("fission")
data("fission")
ddsTC <- DESeqDataSet(fission, ~ strain + minute + strain:minute)

The following chunk of code performs a likelihood ratio test, where we remove the strain-specific differences over 
time. Genes with small p values from this test are those which at one or more time points after time 0 showed a strain-
specific effect. Note therefore that this will not give small p values to genes that moved up or down over time in the 
same way in both strains.

ddsTC <- DESeq(ddsTC, test="LRT", reduced = ~ strain + minute)
resTC <- results(ddsTC)
resTC$symbol <- mcols(ddsTC)$symbol
head(resTC[order(resTC$padj),],4)

## log2 fold change (MLE): strainmut.minute180

## LRT p-value: '~ strain + minute + strain:minute' vs '~ strain + minute'

## DataFrame with 4 rows and 7 columns

##             baseMean log2FoldChange     lfcSE     stat       pvalue         padj       symbol

##            <numeric>     <numeric> <numeric> <numeric>    <numeric>    <numeric> <character>

## SPBC2F12.09c 174.6712   -2.65763737 0.7498270 99.23199 7.671942e-20 5.186233e-16       atf21

## SPAC1002.18  444.5050   -0.05118463 0.2030554 57.72116 3.590886e-11 1.213719e-07        urg3

## SPAC1002.19  336.3732   -0.39267927 0.5749887 43.26296 3.268243e-08 7.364441e-05        urg1

## SPAC1002.17c 261.7731   -1.13882844 0.6072772 39.13718 2.228530e-07 3.766216e-04        urg2

This is just one of the tests that can be applied to time series data. Another option would be to model the counts as a 
smooth function of time, and to include an interaction term of the condition with the smooth function. It is possible to 
build such a model using spline basis functions within R.

We can plot the counts for the groups over time using ggplot2, for the gene with the smallest adjusted p value, testing 
for condition-dependent time profile and accounting for differences at time 0 (Figure 17). Keep in mind that the interac-
tion terms are the difference between the two groups at a given time after accounting for the difference at time 0.
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Figure 17. Normalized counts for a gene with condition-specific changes over time.

data <- plotCounts(ddsTC, which.min(resTC$padj),

                   intgroup=c("minute","strain"), returnData=TRUE)
ggplot(data, aes(x=minute, y=count, color=strain, group=strain)) +

  geom_point() + stat_smooth(se=FALSE,method="loess") + scale_y_log10()

Wald tests for the log2 fold changes at individual time points can be investigated using the test argument to results:

resultsNames(ddsTC)

## [1] "Intercept"          "strain_mut_vs_wt"   "minute_15_vs_0"      "minute_30_vs_0"

## [5] "minute_60_vs_0"     "minute_120_vs_0"    "minute_180_vs_0"     "strainmut.minute15"

## [9] "strainmut.minute30" "strainmut.minute60" "strainmut.minute120" "strainmut.minute180"

res30 <- results(ddsTC, name="strainmut.minute30", test="Wald")
res30[which.min(resTC$padj),]

## log2 fold change (MLE): strainmut.minute30

## Wald test p-value: strainmut.minute30

## DataFrame with 1 row and 6 columns

##		   baseMean log2FoldChange     lfcSE       stat       pvalue      padj

##		  <numeric>      <numeric> <numeric>  <numeric>    <numeric> <numeric>

## SPBC2F12.09c     174.6712      -2.601034 0.6314737   -4.11899 3.805364e-05 0.2572426

We can furthermore cluster significant genes by their profiles. We extract a matrix of the shrunken log2 fold changes 
using the coef function:

betas <- coef(ddsTC)

colnames(betas)

## [1] "Intercept"          "strain_mut_vs_wt"   "minute_15_vs_0"      "minute_30_vs_0"

## [5] "minute_60_vs_0"     "minute_120_vs_0"    "minute_180_vs_0"     "strainmut.minute15"

## [9] "strainmut.minute30" "strainmut.minute60" "strainmut.minute120" "strainmut.minute180"
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We can now plot the log2 fold changes in a heatmap (Figure 18).

library("pheatmap")
topGenes <- head(order(resTC$padj),20)
mat <- betas[topGenes, -c(1,2)]
thr <- 3
mat[mat < -thr] <- -thr
mat[mat > thr] <- thr
pheatmap(mat, breaks=seq(from=-thr, to=thr, length=101),
         cluster_col=FALSE)

Session information
As the last part of this document, we call the function sessionInfo, which reports the version numbers of R and all the 
packages used in this session. It is good practice to always keep such a record of this as it will help to track down what 
has happened in case an R script ceases to work or gives different results because the functions have been changed 
in a newer version of one of your packages. By including it at the bottom of a script, your reports will become more 
reproducible.

The session information should also always be included in any emails to the Bioconductor support site along with all 
code used in the analysis.

Figure 18. Heatmap of log2 fold changes for genes with smallest adjusted p value. The bottom set of genes show 
strong induction of expression for the baseline samples in minutes 15–60 (red boxes in the bottom left corner), but then 
have slight differences for the mutant strain (shown in the boxes in the bottom right corner).

Page 35 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

https://support.bioconductor.org/


sessionInfo()

## R version 3.2.1 (2015-06-18)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.10.3 (Yosemite)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
##  [1] grid  stats4  parallel  stats  graphics  grDevices  datasets  utils  methods
## [10] base
##
## other attached packages:
##  [1] fission_0.102.0             sva_3.14.0            mgcv_1.8-7
##  [4] nlme_3.1-122               Gviz_1.12.1           org.Hs.eg.db_3.1.2
##  [7] RSQLite_1.0.0              DBI_0.3.1             genefilter_1.50.0
## [10] ggplot2_1.0.1              PoiClaClu_1.0.2       RColorBrewer_1.1-2
## [13] pheatmap_1.0.7             DESeq2_1.8.1          RcppArmadillo_0.5.400.2.0
## [16] Rcpp_0.12.0                BiocParallel_1.2.20   GenomicAlignments_1.4.1
## [19] GenomicFeatures_1.20.3     AnnotationDbi_1.30.1  Biobase_2.28.0
## [22] Rsamtools_1.20.4           Biostrings_2.36.4     XVector_0.8.0
## [25] airway_0.102.0             GenomicRanges_1.20.6  GenomeInfoDb_1.4.2
## [28] IRanges_2.2.7              S4Vectors_0.6.4       BiocGenerics_0.14.0
## [31] knitr_1.11                 BiocStyle_1.6.0       rmarkdown_0.8
##
## loaded via a namespace (and not attached):
##  [1] splines_3.2.1              Formula_1.2-1         latticeExtra_0.6-26
##  [4] BSgenome_1.36.3            yaml_2.1.13           lattice_0.20-33
##  [7] biovizBase_1.16.0          digest_0.6.8          colorspace_1.2-6
## [10] htmltools_0.2.6            Matrix_1.2-2          plyr_1.8.3
## [13] XML_3.98-1.3               biomaRt_2.24.0        zlibbioc_1.14.0
## [16] xtable_1.7-4               scales_0.3.0          annotate_1.46.1
## [19] nnet_7.3-10                proto_0.3-10          survival_2.38-3
## [22] magrittr_1.5               evaluate_0.7.2        MASS_7.3-43
## [25] foreign_0.8-66             tools_3.2.1           formatR_1.2
## [28] matrixStats_0.14.2         stringr_1.0.0         munsell_0.4.2
## [31] locfit_1.5-9.1              cluster_2.0.3         lambda.r_1.1.7
## [34] futile.logger_1.4.1        RCurl_1.95-4.7        dichromat_2.0-0
## [37] VariantAnnotation_1.14.13  bitops_1.0-6          labeling_0.3
## [40] gtable_0.1.2               reshape2_1.4.1        gridExtra_2.0.0
## [43] rtracklayer_1.28.9         Hmisc_3.16-0          futile.options_1.0.0
## [46] stringi_0.5-5              geneplotter_1.46.0    rpart_4.1-10
## [49] acepack_1.3-3.3
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I find the workflow a very useful document, especially in teaching someone with limited R/Bioconductor
experience, starting from the count table. In addition to DE analysis, the workflow included exploratory
analysis and some diagnostics -- again, very handy as teaching material.

A few comments:
I like the example using a subset of reads in "locating alignment files" so alignment can be done
instantly in a toy example. It would be more apparent, that in addition to having very small BAM
files, if it is explicitly explained that a small GTF file is created for this example. The subsection
before, on "Aligning reads to a reference genome", is harder to reproduce. Unlike the examples
below, there is no toy fastq file here. It would be nice to either have some toy examples here as
well, or to provide the links to some actual fastq files. The link to the GEO entry is provided, which
does not directly point to fastq files.
 
To make the workflow even easier to follow and reproduce, maybe a list of required packages can
be provided at the very beginning.
 
I agree with Dr. Risso that at least the main steps in the DE analysis should be mentioned, so that
the user understands the major components that affect the analysis. The main workflow cannot
include too many examples, but possible alternatives in normalization (for example, different
choices in adjusting for sequencing depth and one may consider adjusting for more than just
depth) and in dispersion estimation can be simply mentioned here so that users can check these
out by themselves.
 
In the airway example, there is one important detail that is worth having a checkpoint. Here,

"Because we used a column of  to produce the  vector, we know the columnssampleTable bamfiles
of  are in the same order as the rows of sampleTable. " The authors emphasized this later withse
the recommendation of keeping the column (sample) information in a separate file, and "making
sure that the rows correspond to the columns of the SummarizedExperiment". 

I would recommend a checkpoint here (for example, by comparing ) andrownames(colData(se)
so that the users will always confirm the correct order. If this is messedrownames(sampleTable)), 

up, all following analysis is a waste.
 
Regrading DE and multiple testing: It is worth mentioning that the "p-value" returned is a nominal
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Regrading DE and multiple testing: It is worth mentioning that the "p-value" returned is a nominal

. The Wald test p-values are not necessarily valid p-values in all experiments. Though "byp-value
the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05", this
only applies to valid p-values.   And if FDR is computed by adjusting nominal p-values, the nominal

 may not be actual FDR either.FDR
 
In diagnostics, Fig 14 is a useful tool. We find that the joint distribution the p-values and baseMean
provides similar information --  there is no power for genes with very low base Mean. However, one
would not want to guide filtering after the analysis has already been done. Thought the authors
explicitly wrote that the filtering should be independent, placing the example here may leave a
reader with the impression that filtering can be done post hoc. The fact that genes with low counts
have low power can be established without analyzing the actual data, and we recommend making
the filtering decision truly independently, for example, using simulation in the design stage .

Minor issues:
I wonder what the "avgLength" is in the sampleTable. SRR1039513 has avgLength 87 but if I read
in the sam file I see that every read has length 63 just like the others.
 
The format of the R code is not consistent, such that some of these can be copied correctly, and
some not (mostly involving quotation marks). For example in the second lines of R code,

, the quotation around "airway".dir <- system.file("extdata", package=“airway", mustWork=TRUE)
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Love and colleagues describe a typical RNA-seq gene-level differential expression workflow, using their
popular DESeq2 Bioconductor package, as well as other core and contributed Bioconductor packages.
The paper is a valuable resource for researchers that are new to RNA-seq differential expression (DE)
statistical analysis and/or want to learn how to carry out such analysis within R/Bioconductor.
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The paper is a valuable resource for researchers that are new to RNA-seq differential expression (DE)
statistical analysis and/or want to learn how to carry out such analysis within R/Bioconductor.

The advantage of the presented workflow over pipelines is that (almost) the whole analysis (fromad-hoc 
aligned reads to DE results)  is carried out within the open source Bioconductor project, facilitating
transparency and reproducibility. I was pleased to be able to completely reproduce all the results and
figures of the paper on my machine (although I was able to download the .Rmd file only from the
Bioconductor and not from the F1000Research article page -- see next paragraph).

I have only a few points that the authors should address.
Most of the critical statistical steps of the DE analysis are "hidden" inside a single call to the
"DESeq" wrapper function. I can see why the authors created and make use of this function in the
workflow, as a typical practitioner will not need to worry about the internal computations. However,
the authors should consider adding a section illustrating the steps carried out by the DESeq
function (normalization, dispersion estimation, model fitting), as this will have a great educational
value.
 
Right below Figure 6 (mid page 18 in the pdf) the authors state that the model should account for
"differences between cells [...] by using a paired design. [...] We are already set up for this design
by assigning the formula ~ cell + dex earlier." The term "paired design" usually refers to a design
where the same units are tested before and after a treatment, and the effect of the treatment is
usually tested by modeling the differences between the measurements before and after. The
specified formula describes a factorial design, where the effects of treatment and cell line are
included as main effects in the model. Please make sure that the right terminology is used.
 
I found the section on independent filtering a bit confusing. Reading the fourth paragraph of the
section (first paragraph of page 28 in the pdf), I understand that DESeq2 will decide how many
genes to filter out by maximizing the number of genes with a low adjusted p-value. However, the
next paragraph states that this type of filtering is permissible only if independent of the test
statistics. How can the filtering be independent if the threshold is chosen by maximizing the
number of significant genes?
 
It would be a nice addition to the manuscript to have a concluding paragraph describing how to
download and reproduce the workflow.

Minor issues:
The first time the authors mention Figure 1 they are referring to Figure 1 of a different paper, hence
this should not link to the authors' Figure 1.
 
Fourth paragraph of "The DESeqDataSet, sample information, and the design formula": the
authors write colData(dds) although dds is not yet defined.
 
The third paragraph of page 12 (of the pdf) is a bit confusing. Perhaps, it could be rephrased in
terms of unsupervised problems. It's not clear why somebody with a supervised problem would
want to omit the design at the EDA stage.
 
Figure 4: the authors say that one should use unnormalized counts to compute the Poisson
distances. Wouldn't this affect the heatmap if there are large sequencing depth differences
between the samples? Or is the function internally adjusting for sequencing depth?
 

The first paragraph of the "PCA plot" section should be re-written more clearly.
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The first paragraph of the "PCA plot" section should be re-written more clearly.
 
The "reduced" argument of the DESeq function, used in the "Time course experiments" section,
deserves a brief explanation for those readers that are not familiar with Likelihood Ratio Tests.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Discuss this Article
Version 1

Referee Response 26 Oct 2015
, University of California, Berkeley, USADavide Risso

I would like to suggest to the authors and/or editors to make it easier / clearer for the reader to relate the
F1000Research version of the workflow to the Bioconductor version. Unless I missed it, I did not see any
link or mention of the Bioconductor workflow page (

) here. Will the F1000Research channel replacehttp://www.bioconductor.org/help/workflows/rnaseqGene/
the Bioconductor page as the only repository for the workflows in the future? Or will the two co-exist? If the
latter, perhaps the two pages should link each other, as they complement each other: e.g., the
Bioconductor page has a downloadable package while the F1000Research page has comments and
discussions.
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