
F1000Research

Open Peer Review

, University of California,Davide Risso

Berkeley USA

, Brown University USAZhijin Wu

Discuss this article

 (1)Comments

2

1

RESEARCH ARTICLE

RNA-Seq workflow: gene-level exploratory analysis and
 differential expression [version 1; referees: 2 approved]

Michael I. Love , Simon Anders , Vladislav Kim , Wolfgang Huber3

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Department of Biostatistics, Harvard TH Chan
School of Public Health, Boston, Massachusetts, USA
Institute for Molecular Medicine Finland, Helsinki, Finland
European Molecular Biology Laboratory, Heidelberg, Germany

Abstract
Here we walk through an end-to-end gene-level RNA-Seq differential
expression workflow using Bioconductor packages. We will start from the
FASTQ files, show how these were aligned to the reference genome, and
prepare a count matrix which tallies the number of RNA-seq reads/fragments
within each gene for each sample. We will perform exploratory data analysis
(EDA) for quality assessment and to explore the relationship between samples,
perform differential gene expression analysis, and visually explore the results.

This article is included in the Bioconductor
channel.

 Michael I. Love ()Corresponding author: mlove@jimmy.harvard.edu
 Love MI, Anders S, Kim V and Huber W. How to cite this article: RNA-Seq workflow: gene-level exploratory analysis and differential

 2015, :1070 (doi:)expression [version 1; referees: 2 approved] F1000Research 4 10.12688/f1000research.7035.1
 © 2015 Love MI . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 MIL is supported by NIH grant 5T32CA009337-35. WH and SA acknowledge funding from the European Union’s 7thGrant information:

Framework Programme (Health) via Project Radiant.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declare that they have no competing interests.

 14 Oct 2015, :1070 (doi:) First published: 4 10.12688/f1000research.7035.1

1 2,3 3 3

1

2

3

 Referee Status:

 Invited Referees

 version 1
published
14 Oct 2015

 1 2

report report

 14 Oct 2015, :1070 (doi:)First published: 4 10.12688/f1000research.7035.1
 14 Oct 2015, :1070 (doi:)Latest published: 4 10.12688/f1000research.7035.1

v1

Page 1 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://f1000research.com/articles/4-1070/v1
http://f1000research.com/articles/4-1070/v1
http://f1000research.com/channels/bioconductor
http://f1000research.com/channels/bioconductor
http://dx.doi.org/10.12688/f1000research.7035.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.7035.1
http://f1000research.com/articles/4-1070/v1
http://dx.doi.org/10.12688/f1000research.7035.1
http://dx.doi.org/10.12688/f1000research.7035.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7035.1&domain=pdf&date_stamp=2015-10-14

Introduction
Bioconductor has many packages which support analysis of high-throughput sequence data, including RNA sequenc-
ing (RNA-seq). The packages which we will use in this workflow include core packages maintained by the Biocon-
ductor core team for importing and processing raw sequencing data and loading gene annotations. We will also use
contributed packages for statistical analysis and visualization of sequencing data. Through scheduled releases every
6 months, the Bioconductor project ensures that all the packages within a release will work together in harmony
(hence the “conductor” metaphor). The packages used in this workflow are loaded with the library function and can be
installed by following the Bioconductor package installation instructions.

If you have questions about this workflow or any Bioconductor software, please post these to the Bioconductor support
site. If the questions concern a specific package, you can tag the post with the name of the package, or for general
questions about the workflow, tag the post with rnaseqgene. Note the posting guide for crafting an optimal question
for the support site.

Experimental data
The data used in this workflow is stored in the airway package that summarizes an RNA-seq experiment wherein airway
smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory
effects1. Glucocorticoids are used, for example, by people with asthma to reduce inflammation of the airways. In the
experiment, four primary human airway smooth muscle cell lines were treated with 1 micromolar dexamethasone for
18 hours. For each of the four cell lines, we have a treated and an untreated sample. For more description of the experi-
ment see the PubMed entry 24926665 and for raw data see the GEO entry GSE52778.

Preparing count matrices
As input, the count-based statistical methods, such as DESeq22, edgeR3, limma with the voom method4, DSS5, EBSeq6
and BaySeq7, expect input data as obtained, e.g., from RNA-seq or another high-throughput sequencing experiment,
in the form of a matrix of integer values. The value in the i-th row and the j-th column of the matrix tells how many
reads (or fragments, for paired-end RNA-seq) have been unambiguously assigned to gene i in sample j. Analogously,
for other types of assays, the rows of the matrix might correspond e.g., to binding regions (with ChIP-Seq), species of
bacteria (with metagenomic datasets), or peptide sequences (with quantitative mass spectrometry).

The values in the matrix must be raw counts of sequencing reads/fragments. This is important for DESeq2’s statistical
model to hold, as only the raw counts allow assessing the measurement precision correctly. It is important to never
provide counts that were pre-normalized for sequencing depth/library size, as the statistical model is most powerful
when applied to raw counts, and is designed to account for library size differences internally.

Aligning reads to a reference genome
The computational analysis of an RNA-seq experiment begins earlier: we first obtain a set of FASTQ files that contain
the nucleotide sequence of each read and a quality score at each position. These reads must first be aligned to a refer-
ence genome or transcriptome. It is important to know if the sequencing experiment was single-end or paired-end, as
the alignment software will require the user to specify both FASTQ files for a paired-end experiment. The output of this
alignment step is commonly stored in a file format called SAM/BAM.

A number of software programs exist to align reads to a reference genome, and the development is too rapid for this
document to provide an up-to-date list. We recommend consulting benchmarking papers that discuss the advantages
and disadvantages of each software, which include accuracy, sensitivity in aligning reads over splice junctions, speed,
memory footprint, usability, and many other features.

The reads for this experiment were aligned to the Ensembl release 758 human reference genome using the STAR
read aligner9. In this example, we have a file in the current directory called files with each line containing an
identifier for each experiment, and we have all the FASTQ files in a subdirectory fastq. If you have downloaded
the FASTQ files from the Sequence Read Archive, the identifiers would be SRA run IDs, e.g. SRR1039520. You
should have two files for a paired-end experiment for each ID, fastq/SRR1039520_1.fastq1 and fastq/
SRR1039520_2.fastq, which give the first and second read for the paired-end fragments. If you have performed

Page 2 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/install/#install-bioconductor-packages
https://support.bioconductor.org/
https://support.bioconductor.org/
http://www.bioconductor.org/help/support/posting-guide/
http://bioconductor.org/packages/release/data/experiment/html/airway.html
http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://bioconductor.org/packages/release/bioc/html/EBSeq.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://samtools.github.io/hts-specs/
https://code.google.com/p/rna-star/
https://code.google.com/p/rna-star/

a single-end experiment, you would only have one file per ID. We have also created a subdirectory, aligned, where
STAR will output its alignment files.

for f in 'cat files'; do STAR --genomeDir ../STAR/ENSEMBL.homo_sapiens.release-75 \
--readFilesIn fastq/$f_1.fastq fastq/$f_2.fastq \
--runThreadN 12 --outFileNamePrefix aligned/$f.; done

SAMtools10 was used to generate BAM files. The –@ flag can be used to allocate additional threads.

for f in 'cat files'; do samtools view -bS aligned/$f.Aligned.out.sam \
-o aligned/$f.bam; done

The BAM files for a number of sequencing runs can then be used to generate count matrices, as described in the
following section.

Locating alignment files
Besides the count matrix that we will use later, the airway package also contains eight files with a small subset of the
total number of reads in the experiment. The reads were selected which aligned to a small region of chromosome 1. We
chose a subset of reads because the full alignment files are large (a few gigabytes each), and because it takes between
10–30 minutes to count the fragments for each sample. We will use these files to demonstrate how a count matrix can be
constructed from BAM files. Afterwards, we will load the full count matrix corresponding to all samples and all data,
which is already provided in the same package, and will continue the analysis with that full matrix.

We load the data package with the example data:

library("airway")

The R function system.file can be used to find out where on your computer the files from a package have been installed.
Here we ask for the full path to the extdata directory, where R packages store external data, that is part of the airway
package.

dir <- system.file("extdata", package="airway", mustWork=TRUE)

In this directory, we find the eight BAM files (and some other files):

list.files(dir)

## [1] "GSE52778_series_matrix.txt"	 "Homo_sapiens.GRCh37.75_subset.gtf"

## [3] "sample_table.csv"		 "SraRunInfo_SRP033351.csv"

## [5] "SRR1039508_subset.bam"	 "SRR1039508_subset.bam.bai"

## [7] "SRR1039509_subset.bam"	 "SRR1039512_subset.bam"

## [9] "SRR1039513_subset.bam"	 "SRR1039516_subset.bam"

## [11] "SRR1039517_subset.bam"	 "SRR1039520_subset.bam"

[13] "SRR1039521_subset.bam"

Typically, we have a table with detailed information for each of our samples that links samples to the associated FASTQ
and BAM files. For your own project, you might create such a comma-separated value (CSV) file using a text editor or
spreadsheet software such as Excel.

Page 3 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://www.htslib.org/doc/samtools.html
http://bioconductor.org/packages/release/data/experiment/html/airway.html
http://bioconductor.org/packages/release/data/experiment/html/airway.html

Table 1. Various software which can be used to prepare RNA-seq count matrices.

function package framework output DESeq2 input function

summarizeOverlaps GenomicAlignments R/Bioc. SummarizedExp. DESeqDataSet

featureCounts Rsubread R/Bioc. matrix DESeqDataSetFromMatrix

htseq-count HTSeq Python files DESeqDataSetFromHTSeq

We load such a CSV file with read.csv:

csvfile <- file.path(dir,"sample_table.csv")
(sampleTable <- read.csv(csvfile,row.names=1))

##	 SampleName cell dex albut Run avgLength Experiment Sample BioSample

SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS508568 SAMN02422669

SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508567 SAMN02422675

SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349 SRS508571 SAMN02422678

SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS508572 SAMN02422670

SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120 SRX384353 SRS508575 SAMN02422682

SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126 SRX384354 SRS508576 SAMN02422673

SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101 SRX384357 SRS508579 SAMN02422683

SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358 SRS508580 SAMN02422677

Note: here and elsewhere in the workflow, the parentheses () around the entire code of the last line above is an R trick
to print the output of the function in addition to saving it to sampleTable. This is equivalent to assigning and then
showing the object in two steps:

sampleTable <- read.csv(csvfile,row.names=1)
sampleTable

Once the reads have been aligned, there are a number of tools that can be used to count the number of reads/fragments
that can be uniquely assigned to genomic features for each sample. These often take as input SAM/BAM alignment
files and a file specifying the genomic features, e.g. a GFF3 or GTF file specifying the gene models.

The following tools can be used generate count matrices: summarizeOverlaps11, featureCounts12, or htseq-count13
(Table 1).

We now proceed using the summarizeOverlaps method of counting. Using the Run column in the sample table, we
construct the full paths to the files we want to perform the counting operation on:

filenames <- file.path(dir, paste0(sampleTable$Run, "_subset.bam"))
file.exists(filenames)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We indicate in Bioconductor that these files are BAM files using the BamFileList function from the Rsamtools package
that provides an R interface to BAM files. Here we also specify details about how the BAM files should be treated, e.g.,
only process 2 million reads at a time. See ?BamFileList for more information.

library("Rsamtools")
bamfiles <- BamFileList(filenames, yieldSize=2000000)

Note: make sure that the chromosome names of the genomic features in the annotation you use are consistent with the
chromosome names of the reference used for read alignment. Otherwise, the scripts might fail to count any reads to fea-
tures due to the mismatching names. For example, a common mistake is when the alignment files contain chromosome
names in the style of 1 and the gene annotation in the style of chr1, or the other way around. See the seqlevelsStyle

Page 4 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

function in the GenomeInfoDb package for solutions. We can check the chromosome names (here called “seqnames”)
in the alignment files like so:

seqinfo(bamfiles[1])

Seqinfo object with 84 sequences from an unspecified genome:
seqnames seqlengths isCircular genome
## 1		 249250621 <NA> <NA>
10 135534747 <NA> <NA>
11 135006516 <NA> <NA>
12 133851895 <NA> <NA>
13 115169878 <NA> <NA>
##
GL000210.1 27682 <NA> <NA>
GL000231.1 27386 <NA> <NA>
GL000229.1 19913 <NA> <NA>
GL000226.1 15008 <NA> <NA>
GL000207.1 4262 <NA> <NA>

Defining gene models
Next, we need to read in the gene model that will be used for counting reads/fragments. We will read the gene model
from an Ensembl GTF file8, using makeTxDbFromGFF from the GenomicFeatures package. GTF files can be down-
loaded from Ensembl’s FTP site or other gene model repositories. A TxDb object is a database that can be used to gen-
erate a variety of range-based objects, such as exons, transcripts, and genes. We want to make a list of exons grouped
by gene for counting read/fragments.

There are other options for constructing a TxDb. For the known genes track from the UCSC Genome Browser14, one
can use the pre-built Transcript DataBase: TxDb.Hsapiens.UCSC.hg19.knownGene. If the annotation file is acces-
sible from AnnotationHub (as is the case for the Ensembl genes), a pre-scanned GTF file can be imported using
makeTxDbFromGRanges. Finally, the makeTxDbFromBiomart function can be used to automatically pull a gene
model from Biomart using biomaRt15.

Here we will demonstrate loading from a GTF file:

library("GenomicFeatures")

We indicate that none of our sequences (chromosomes) are circular using a 0-length character vector.

gtffile <- file.path(dir,"Homo_sapiens.GRCh37.75_subset.gtf")
(txdb <- makeTxDbFromGFF(gtffile, format="gtf", circ_seqs=character()))

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source:/Users/michael/Library/R/3.2/library/airway/extdata/Homo_sapiens.GRCh37.75_subset.gtf

Organism: NA

miRBase build ID: NA

Genome: NA

transcript_nrow: 65

exon_nrow: 279

cds_nrow: 158

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2015-09-09 14:48:56 -0400 (Wed, 09 Sep 2015)

GenomicFeatures version at creation time: 1.20.3

RSQLite version at creation time: 1.0.0

DBSCHEMAVERSION: 1.1

Page 5 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/GenomeInfoDb.html
http://www.ensembl.org/info/website/upload/gff.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://www.ensembl.org/info/data/ftp/index.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

The following line produces a GRangesList of all the exons grouped by gene11. Each element of the list is a GRanges
object of the exons for a gene.

(ebg <- exonsBy(txdb, by="gene"))

GRangesList object of length 20:
$ENSG00000009724
GRanges object with 18 ranges and 2 metadata columns:
##	 seqnames	 ranges strand | exon_id exon_name
##	 <Rle>	 <IRanges> <Rle> | <integer> <character>
## [1]	 1 [11086580, 11087705] - |	 98 ENSE00000818830
## [2]	 1 [11090233, 11090307] - |	 99 ENSE00000472123
## [3]	 1 [11090805, 11090939] - |	 100 ENSE00000743084
## [4]	 1 [11094885, 11094963] - |	 101 ENSE00000743085
## [5]	 1 [11097750, 11097868] - |	 103 ENSE00003520086
##
## [14]	 1 [11106948, 11107176] - |	 111 ENSE00003467404
## [15]	 1 [11106948, 11107176] - |	 112 ENSE00003489217
## [16]	 1 [11107260, 11107280] - |	 113 ENSE00001833377
## [17]	 1 [11107260, 11107284] - |	 114 ENSE00001472289
## [18]	 1 [11107260, 11107290] - |	 115 ENSE00001881401
##								
...
<19 more elements>

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Read counting step
After these preparations, the actual counting is easy. The function summarizeOverlaps from the GenomicAlignments
package will do this. This produces a SummarizedExperiment object that contains a variety of information about the
experiment, and will be described in more detail below.

Note: If it is desired to perform counting using multiple cores, one can use the register and MulticoreParam or Snow-
Param functions from the BiocParallel package before the counting call below. Expect that the summarizeOver-
laps call will take at least 30 minutes per file for a human RNA-seq file with 30 million aligned reads. By sending the
files to separate cores, one can speed up the entire counting process.

library("GenomicAlignments")
library("BiocParallel")

Here we specify to use one core, not multiple cores. We could have also skipped this line and the counting step would
run in serial.

register(SerialParam())

The following call creates the SummarizedExperiment object with counts:

se <- summarizeOverlaps(features=ebg, reads=bamfiles,
 mode="Union",
 singleEnd=FALSE,
 ignore.strand=TRUE,
 fragments=TRUE)

Page 6 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

We specify a number of arguments besides the features and the reads. The mode argument describes what kind
of read overlaps will be counted. These modes are shown in Figure 1 of the Counting reads with summarizeOverlaps
vignette for the GenomicAlignments package. Note that fragments will be counted only once to each gene, even if they
overlap multiple exons of a gene which may themselves be overlapping. Setting singleEnd to FALSE indicates that
the experiment produced paired-end reads, and we want to count a pair of reads (a fragment) only once toward the
count for a gene.

In order to produce correct counts, it is important to know if the RNA-seq experiment was strand-specific or not. This
experiment was not strand-specific so we set ignore.strand to TRUE. The fragments argument can be used
when singleEnd=FALSE to specify if unpaired reads should be counted (yes if fragments=TRUE).

SummarizedExperiment
The SummarizedExperiment container is diagrammed in Figure 1 and discussed in the latest Bioconductor paper16. In
our case we have created a single matrix named “counts” that contains the fragment counts for each gene and sample,
which is stored in assay. It is also possible to store multiple matrices, accessed with assays. The rowRanges for
our object is the GRangesList we used for counting (one GRanges of exons for each row of the count matrix). The com-
ponent parts of the SummarizedExperiment are accessed with an R function of the same name: assay (or assays),
rowRanges and colData.

This example code above actually only counted a small subset of fragments from the original experiment. Nevertheless,
we can still investigate the resulting SummarizedExperiment by looking at the counts in the assay slot, the pheno-
typic data about the samples in colData slot (in this case an empty DataFrame), and the data about the genes in the
rowRanges slot.

Figure 1. The component parts of a SummarizedExperiment object. The assay (pink block) contains the matrix of
counts, the rowRanges (blue block) contains information about the genomic ranges and the colData (green block)
contains information about the samples. The highlighted line in each block represents the first row (note that the first row
of colData lines up with the first column of the assay).

Page 7 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html

se

class: SummarizedExperiment
dim: 20 8
exptData(0):
assays(1): counts
rownames(20): ENSG00000009724 ENSG00000116649 ... ENSG00000271794 ENSG00000271895
rowRanges metadata column names(0):
colnames(8): SRR1039508_subset.bam SRR1039509_subset.bam ... SRR1039520_subset.bam
SRR1039521_subset.bam
colData names(0):

dim(se)

[1] 20 8

assayNames(se)

[1] "counts"

head(assay(se), 3)

SRR1039508_subset.bam SRR1039509_subset.bam SRR1039512_subset.bam
## ENSG00000009724	 38 28 66
## ENSG00000116649	 1004 1255 1122
## ENSG00000120942	 218 256 233
SRR1039513_subset.bam SRR1039516_subset.bam SRR1039517_subset.bam
## ENSG00000009724		 24 42 41
## ENSG00000116649		 1313 1100 1879
## ENSG00000120942		 252 269 465
SRR1039520_subset.bam SRR1039521_subset.bam
ENSG00000009724 47 36
## ENSG00000116649 745 1536	
ENSG00000120942 207 400

colSums(assay(se))

SRR1039508_subset.bam SRR1039509_subset.bam SRR1039512_subset.bam SRR1039513_subset.bam
##	 6478 6501 7699 6801
SRR1039516_subset.bam SRR1039517_subset.bam SRR1039520_subset.bam SRR1039521_subset.bam

##	 8009 10849 5254 9168

The rowRanges, when printed, only shows the first GRanges, and tells us there are 19 more elements:

rowRanges(se)

GRangesList object of length 20:
$ENSG00000009724
GRanges object with 18 ranges and 2 metadata columns:
## seqnames		 ranges strand | exon_id	 exon_name
## <Rle>	 <IRanges> <Rle> | <integer>	 <character>
## [1] 1 [11086580, 11087705]	 - | 98 ENSE00000818830
## [2] 1 [11090233, 11090307]	 - | 99 ENSE00000472123
## [3] 1 [11090805, 11090939]	 - | 100 ENSE00000743084
## [4] 1 [11094885, 11094963]	 - | 101 ENSE00000743085
## [5] 1 [11097750, 11097868]	 - | 103 ENSE00003520086
##
## [14] 1 [11106948, 11107176]	 - | 111 ENSE00003467404
## [15] 1 [11106948, 11107176]	 - | 112 ENSE00003489217
## [16] 1 [11107260, 11107280]	 - | 113 ENSE00001833377
## [17] 1 [11107260, 11107284]	 - | 114 ENSE00001472289
## [18] 1 [11107260, 11107290]	 - | 115 ENSE00001881401
##							
...
<19 more elements>

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Page 8 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

The rowRanges also contains metadata about the construction of the gene model in the metadata slot. Here we use
a helpful R function, str, to display the metadata compactly:

str(metadata(rowRanges(se)))

##List of 1

$ genomeInfo:List of 14

## ..$ Db type			 : chr "TxDb"

## ..$ Supporting package	 : chr "GenomicFeatures"

## ..$ Data source			 : chr "/Users/michael/Library/R/3.2/library/airway/extd

## ..$ Organism			 : chr NA

## ..$ miRBase build ID		 : chr NA

## ..$ Genome			 : chr NA

## ..$ transcript_nrow		 : chr "65"

## ..$ exon_nrow		 : chr "279"

## ..$ cds_nrow		 : chr "158"

..$ Db created by : chr "GenomicFeatures package from Bioconductor"

## ..$ Creation time		 : chr "2015-09-09 14:48:56 -0400 (Wed, 09 Sep 2015)"

..$ GenomicFeatures version at creation time: chr "1.20.3"

..$ RSQLite version at creation time : chr "1.0.0"

## ..$ DBSCHEMAVERSION	 	 : chr "1.1"

The colData:

colData(se)

DataFrame with 8 rows and 0 columns

The colData slot, so far empty, should contain all the metadata. Because we used a column of sampleTable to
produce the bamfiles vector, we know the columns of se are in the same order as the rows of sampleTable. We
can assign the sampleTable as the colData of the summarized experiment, by converting it into a DataFrame and
using the assignment function:

(colData(se) <- DataFrame(sampleTable))

DataFrame with 8 rows and 9 columns

##	 SampleName cell dex albut Run avgLength Experiment Sample

##	 <factor> <factor> <factor> <factor> <factor> <integer> <factor> <factor>

## SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508	 126 SRX384345 SRS508568

## SRR1039509 GSM1275863 N61311 trt untrt SRR1039509	 126 SRX384346 SRS508567

## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512	 126 SRX384349 SRS508571

## SRR1039513 GSM1275867 N052611 trt untrt SRR1039513	 87 SRX384350 SRS508572

## SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516	 120 SRX384353 SRS508575

## SRR1039517 GSM1275871 N080611 trt untrt SRR1039517	 126 SRX384354 SRS508576

## SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520	 101 SRX384357 SRS508579

## SRR1039521 GSM1275875 N061011 trt untrt SRR1039521	 98 SRX384358 SRS508580

##	 BioSample	

##	 <factor>

## SRR1039508 SAMN02422669	

## SRR1039509 SAMN02422675	

## SRR1039512 SAMN02422678	

## SRR1039513 SAMN02422670	

## SRR1039516 SAMN02422682	

## SRR1039517 SAMN02422673	

## SRR1039520 SAMN02422683	

SRR1039521 SAMN02422677

Page 9 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

Branching point
At this point, we have counted the fragments which overlap the genes in the gene model we specified. This is a branch-
ing point where we could use a variety of Bioconductor packages for exploration and differential expression of the
count data, including edgeR3, limma with the voom method4, DSS5, EBSeq6 and BaySeq7. We will continue, using
DESeq22. The SummarizedExperiment object is all we need to start our analysis. In the following section we will show
how to use it to create the data object used by DESeq2.

The DESeqDataSet, sample information, and the design formula
Bioconductor software packages often define and use a custom class for storing data that makes sure that all the
needed data slots are consistently provided and fulfill the requirements. In addition, Bioconductor has general data
classes (such as the SummarizedExperiment) that can be used to move data between packages. Additionally, the core
Bioconductor classes provide useful functionality: for example, subsetting or reordering the rows or columns of a
SummarizedExperiment automatically subsets or reorders the associated rowRanges and colData, which can help to
prevent accidental sample swaps that would otherwise lead to spurious results. With SummarizedExperiment this is all
taken care of behind the scenes.

In DESeq2, the custom class is called DESeqDataSet. It is built on top of the SummarizedExperiment class, and it is
easy to convert SummarizedExperiment objects into DESeqDataSet objects, which we show below. One of the two
main differences is that the assay slot is instead accessed using the counts accessor function, and the DESeqDataSet
class enforces that the values in this matrix are non-negative integers.

A second difference is that the DESeqDataSet has an associated design formula. The experimental design is specified
at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat the samples in the analysis
(one exception is the size factor estimation, i.e., the adjustment for differing library sizes, which does not depend on
the design formula). The design formula tells which columns in the sample information table (colData) specify the
experimental design and how these factors should be used in the analysis.

The simplest design formula for differential expression would be ~ condition, where condition is a column in
colData(dds) that specifies which of two (or more groups) the samples belong to. For the airway experiment, we will
specify ~ cell + dex meaning that we want to test for the effect of dexamethasone (dex) controlling for the effect
of different cell line (cell). We can see each of the columns just using the $ directly on the SummarizedExperiment
or DESeqDataSet:

se$cell

[1] N61311 N61311 N052611 N052611 N080611 N080611 N061011 N061011
Levels: N052611 N061011 N080611 N61311

se$dex

[1] untrt trt untrt trt untrt trt untrt trt
Levels: trt untrt

Note: it is prefered in R that the first level of a factor be the reference level (e.g. control, or untreated samples), so we
can relevel the dex factor like so:

se$dex <- relevel(se$dex, "untrt")
se$dex

[1] untrt trt untrt trt untrt trt untrt trt
Levels: untrt trt

For running DESeq2 models, you can use R’s formula notation to express any fixed-effects experimental design. Note
that DESeq2 uses the same formula notation as, for instance, the lm function of base R. If the research aim is to deter-
mine for which genes the effect of treatment is different across groups, then interaction terms can be included and tested
using a design such as ~ group + treatment + group:treatment. See the manual page for ?results for
more examples. We will show how to use an interaction term to test for condition-specific changes over time in a time
course example below.

Page 10 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://bioconductor.org/packages/release/bioc/html/EBSeq.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

In the following sections, we will demonstrate the construction of the DESeqDataSet from two starting points:

•	 from a SummarizedExperiment object
•	 from a count matrix and a sample information table

For a full example of using the HTSeq Python package for read counting, please see the pasilla vignette. For an
example of generating the DESeqDataSet from files produced by htseq-count, please see the DESeq2 vignette.

Starting from SummarizedExperiment
We now use R’s data command to load a prepared SummarizedExperiment that was generated from the publicly avail-
able sequencing data files associated with the Himes et al.1 paper, described above. The steps we used to produce this
object were equivalent to those you worked through in the previous sections, except that we used all the reads and all the
genes. For more details on the exact steps used to create this object, type vignette(“airway”) into your R session.

data("airway")
se <- airway

Again, we want to specify that untrt is the reference level for the dex variable:

se$dex <- relevel(se$dex, "untrt")
se$dex

[1] untrt trt untrt trt untrt trt untrt trt
Levels: untrt trt

We can quickly check the millions of fragments that uniquely aligned to the genes (the second argument of round tells
how many decimal points to keep).

round(colSums(assay(se)) / 1e6, 1)

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520 SRR1039521

20.6 18.8 25.3 15.2 24.4 30.8 19.1 21.2

Supposing we have constructed a SummarizedExperiment using one of the methods described in the previous section,
we now need to make sure that the object contains all the necessary information about the samples, i.e., a table with
metadata on the count matrix’s columns stored in the colData slot:

colData(se)

DataFrame with 8 rows and 9 columns

##	 SampleName cell dex albut Run avgLength Experiment Sample

##	 <factor> <factor> <factor> <factor> <factor> <integer> <factor> <factor>

SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS508568

SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508567

SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349 SRS508571

SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS508572

SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120 SRX384353 SRS508575

SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126 SRX384354 SRS508576

SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101 SRX384357 SRS508579

SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358 SRS508580

##	 BioSample	

##	 <factor>

## SRR1039508 SAMN02422669	

## SRR1039509 SAMN02422675	

## SRR1039512 SAMN02422678	

## SRR1039513 SAMN02422670	

## SRR1039516 SAMN02422682	

## SRR1039517 SAMN02422673	

## SRR1039520 SAMN02422683	

SRR1039521 SAMN02422677

Page 11 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Here we see that this object already contains an informative colData slot – because we have already prepared it for
you, as described in the airway vignette. However, when you work with your own data, you will have to add the perti-
nent sample/phenotypic information for the experiment at this stage. We highly recommend keeping this information in
a comma-separated value (CSV) or tab-separated value (TSV) file, which can be exported from an Excel spreadsheet,
and the assign this to the colData slot, making sure that the rows correspond to the columns of the SummarizedExper-
iment. We made sure of this correspondence earlier by specifying the BAM files using a column of the sample table.

Once we have our fully annotated SummarizedExperiment object, we can construct a DESeqDataSet object from it that
will then form the starting point of the analysis. We add an appropriate design for the analysis:

library("DESeq2")

dds <- DESeqDataSet(se, design = ~ cell + dex)

If we only wanted to perform transformations and exploratory data analysis (as explained later in this workflow) we
could use a ~ 1 for the design, but we would need to remember to substitute a real design, e.g. ~ condition, before
we run DESeq for differential testing or else we would only be testing the intercept.

Starting from count matrices
In this section, we will show how to build an DESeqDataSet supposing we only have a count matrix and a table of
sample information.

Note: if you have prepared a SummarizedExperiment you should skip this section. While the previous section would
be used to construct a DESeqDataSet from a SummarizedExperiment, here we first extract the individual object (count
matrix and sample info) from the SummarizedExperiment in order to build it back up into a new object – only for
demonstration purposes. In practice, the count matrix would either be read in from a file or perhaps generated by an
R function like featureCounts from the Rsubread package12.

The information in a SummarizedExperiment object can be accessed with accessor functions. For example, to see the
actual data, i.e., here, the fragment counts, we use the assay function. (The head function restricts the output to the first
few lines.)

countdata <- assay(se)
head(countdata, 3)

##	 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

ENSG00000000003 679 448 873 408 1138 1047 770

ENSG00000000005 0 0 0 0 0 0 0

ENSG00000000419 467 515 621 365 587 799 417

##	 SRR1039521	

## ENSG00000000003 572	

## ENSG00000000005 0	

ENSG00000000419 508

In this count matrix, each row represents an Ensembl gene, each column a sequenced RNA library, and the values give
the raw numbers of fragments that were uniquely assigned to the respective gene in each library. We also have informa-
tion on each of the samples (the columns of the count matrix). If you’ve counted reads with some other software, it is
very important to check that the columns of the count matrix correspond to the rows of the sample information table.

coldata <- colData(se)

We now have all the ingredients to prepare our data object in a form that is suitable for analysis, namely:

•	 countdata: a table with the fragment counts

•	 coldata: a table with information about the samples

Page 12 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/data/experiment/html/airway.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html

To now construct the DESeqDataSet object from the matrix of counts and the sample information table, we use:

(ddsMat <- DESeqDataSetFromMatrix(countData = countdata,
 colData = coldata,
 design = ~ cell + dex))

class: DESeqDataSet
dim: 64102 8
exptData(0):
assays(1): counts
rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
rowRanges metadata column names(0):
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(9): SampleName cell ... Sample BioSample

We will continue with the object generated from the SummarizedExperiment section.

Exploratory analysis and visualization
There are two separate paths in this workflow; the one we will see first involves transformations of the counts in order
to visually explore sample relationships. In the second part, we will go back to the original raw counts for statistical
testing. This is critical because the statistical testing methods rely on original count data (not scaled or transformed) for
calculating the precision of measurements.

Pre-filtering the dataset
Our count matrix with our DESeqDataSet contains many rows with only zeros, and additionally many rows with only a
few fragments total. In order to reduce the size of the object, and to increase the speed of our functions, we can remove
the rows that have no or nearly no information about the amount of gene expression. Here we remove rows of the
DESeqDataSet that have no counts, or only a single count across all samples:

nrow(dds)

[1] 64102

dds <- dds[rowSums(counts(dds)) > 1,]
nrow(dds)

[1] 29391

The rlog transformation
Many common statistical methods for exploratory analysis of multidimensional data, for example clustering and prin-
cipal components analysis (PCA), work best for data that generally has the same range of variance at different ranges
of the mean values. When the expected amount of variance is approximately the same across different mean values, the
data is said to be homoskedastic. For RNA-seq raw counts, however, the variance grows with the mean. For example,
if one performs PCA directly on a matrix of size-factor-normalized read counts, the result typically depends only on
the few most strongly expressed genes because they show the largest absolute differences between samples. A simple
and often used strategy to avoid this is to take the logarithm of the normalized count values plus a small pseudocount;
however, now the genes with the very lowest counts will tend to dominate the results because, due to the strong Poisson
noise inherent to small count values, and the fact that the logarithm amplifies differences for the smallest values, these
low count genes will show the strongest relative differences between samples.

As a solution, DESeq2 offers transformations for count data that stabilize the variance across the mean. One such trans-
formation is the regularized-logarithm transformation or rlog2. For genes with high counts, the rlog transformation will
give similar result to the ordinary log2 transformation of normalized counts. For genes with lower counts, however, the
values are shrunken towards the genes’ averages across all samples. Using an empirical Bayesian prior on inter-sample
differences in the form of a ridge penalty, the rlog-transformed data then becomes approximately homoskedastic, and
can be used directly for computing distances between samples and making PCA plots. Another transformation, the
variance stabilizing transformation17, is discussed alongside the rlog in the DESeq2 vignette.

Page 13 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

Figure 2. Scatterplot of transformed counts from two samples. Shown are scatterplots using the log2 transform of
normalized counts (left side) and using the rlog (right side).

Note: the rlog transformation is provided for applications other than differential testing. For differential testing we rec-
ommend the DESeq function applied to raw counts, as described later in this workflow, which also takes into account
the dependence of the variance of counts on the mean value during the dispersion estimation step.

The function rlog returns a SummarizedExperiment object that contains the rlog-transformed values in its assay slot.

rld <- rlog(dds, blind=FALSE)
head(assay(rld), 3)

##	 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

ENSG00000000003 9.385536 9.051592 9.517044 9.284930 9.839980 9.530510 9.663767

ENSG00000000419 8.868967 9.138776 9.036191 9.075538 8.971927 9.132297 8.860846

ENSG00000000457 7.962223 7.881317 7.823335 7.921887 7.750083 7.886432 7.957928

##	 SRR1039521	

## ENSG00000000003 9.277281	

## ENSG00000000419 9.061085	

ENSG00000000457 7.912412

We specify blind=FALSE, which means that differences between cell lines and treatment should not add to the
variance-mean profile of the experiment. However, the experimental design is not used directly in the transformation,
only in estimating the global amount of variability in the counts. For a fully unsupervised transformation, one can set
blind=TRUE (which is the default).

Note: for large datasets (hundreds of samples), the variance stabilizing transformation will be faster to compute.

To show the effect of the transformation, in Figure 2 we plot the first sample against the second, first simply using the
log2 function (after adding 1, to avoid taking the log of zero), and then using the rlog-transformed values. For the log2
approach, we need to first estimate size factors to account for sequencing depth, and then specify normalized=TRUE.
Sequencing depth correction is done automatically for the rlog method (and for varianceStabilizingTransformation).

par(mfrow = c(1, 2))
dds <- estimateSizeFactors(dds)
plot(log2(counts(dds, normalized=TRUE)[,1:2] + 1),
 pch=16, cex=0.3)
plot(assay(rld)[,1:2],
 pch=16, cex=0.3)

Page 14 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

Figure 3. Heatmap of sample-to-sample distances using the rlog-transformed values.

We can see how genes with low counts (bottom left-hand corner) seem to be excessively variable on the ordinary loga-
rithmic scale, while the rlog transform compresses differences for the low count genes for which the data provide little
information about differential expression.

Sample distances
A useful first step in an RNA-seq analysis is often to assess overall similarity between samples: Which samples are
similar to each other, which are different? Does this fit to the expectation from the experiment’s design?

We use the R function dist to calculate the Euclidean distance between samples. To ensure we have a roughly equal
contribution from all genes, we use it on the rlog-transformed data. We need to transpose the matrix of values
using t, because the dist function expects the different samples to be rows of its argument, and different dimensions
(here, genes) to be columns.

sampleDists <- dist(t(assay(rld)))

sampleDists

##	 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520

## SRR1039509 46.25524						

## SRR1039512 39.94490 55.67572					

## SRR1039513 63.36642 45.19462 49.30007				

## SRR1039516 45.28129 59.89304 44.32383 64.54450			

## SRR1039517 65.34730 52.25475 60.05523 50.64861 48.05714		

## SRR1039520 40.20215 58.19904 37.35413 59.19401 47.15396 64.44641	

SRR1039521 64.09339 45.70177 58.59277 37.10803 66.36711 53.09669 50.72310

We visualize the distances in a heatmap in Figure 3, using the function pheatmap from the pheatmap package.

library("pheatmap")
library("RColorBrewer")

Page 15 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://cran.fhcrc.org/web/packages/pheatmap/index.html

Figure 4. Heatmap of sample-to-sample distances using the Poisson Distance.

In order to plot the sample distance matrix with the rows/columns arranged by the distances in our distance matrix, we
manually provide sampleDists to the clustering_distance argument of the pheatmap function. Otherwise
the pheatmap function would assume that the matrix contains the data values themselves, and would calculate distances
between the rows/columns of the distance matrix, which is not desired. We also manually specify a blue color palette
using the colorRampPalette function from the RColorBrewer package.

sampleDistMatrix <- as.matrix(sampleDists)
rownames(sampleDistMatrix) <- paste(rlddex, rldcell, sep="-")
colnames(sampleDistMatrix) <- NULL
colors <- colorRampPalette(rev(brewer.pal(9, "Blues")))(255)
pheatmap(sampleDistMatrix,
 clustering_distance_rows=sampleDists,
 clustering_distance_cols=sampleDists,
 col=colors)

Note that we have changed the row names of the distance matrix to contain treatment type and patient number instead
of sample ID, so that we have all this information in view when looking at the heatmap.

Another option for calculating sample distances is to use the Poisson Distance18, implemented in the PoiClaClu
package. This measure of dissimilarity between counts also takes the inherent variance structure of counts into consid-
eration when calculating the distances between samples. The PoissonDistance function takes the original count matrix
(not normalized) with samples as rows instead of columns, so we need to transpose the counts in dds.

library("PoiClaClu")
poisd <- PoissonDistance(t(counts(dds)))

We plot the Poisson Distance heatmap in Figure 4.

Page 16 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
http://cran.fhcrc.org/web/packages/PoiClaClu/index.html

samplePoisDistMatrix <- as.matrix(poisd$dd)
rownames(samplePoisDistMatrix) <- paste(rlddex, rldcell, sep="-")
colnames(samplePoisDistMatrix) <- NULL
pheatmap(samplePoisDistMatrix,
 clustering_distance_rows=poisd$dd,
 clustering_distance_cols=poisd$dd,
 col=colors)

PCA plot
Another way to visualize sample-to-sample distances is a principal components analysis (PCA). In this ordination
method, the data points (here, the samples) are projected onto the 2D plane such that they spread out in the two direc-
tions that explain most of the differences (Figure 5). The x-axis is the direction that separates the data points the most.
The values of the samples in this direction are written PC1. The y-axis is a direction (it must be orthogonal to the first
direction) that separates the data the second most. The values of the samples in this direction are written PC2. The
percent of the total variance that is contained in the direction is printed in the axis label. Note that these percentages
do not add to 100%, because there are more dimensions that contain the remaining variance (although each of these
remaining dimensions will explain less than the two that we see).

plotPCA(rld, intgroup = c("dex", "cell"))

Here, we have used the function plotPCA that comes with DESeq2. The two terms specified by intgroup are the
interesting groups for labeling the samples; they tell the function to use them to choose colors. We can also build the
PCA plot from scratch using the ggplot2 package19. This is done by asking the plotPCA function to return the data used
for plotting rather than building the plot. See the ggplot2 documentation for more details on using ggplot.

Figure 5. PCA plot using the rlog-transformed values. Each unique combination of treatment and cell line is given its
own color.

Page 17 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://docs.ggplot2.org/current/

Figure 6. PCA plot using the rlog-transformed values with custom ggplot2 code. Here we specify cell line (plotting
symbol) and dexamethasone treatment (color).

(data <- plotPCA(rld, intgroup = c("dex", "cell"), returnData=TRUE))

PC1 PC2 group dex cell name
SRR1039508 -17.88882 -4.157888 untrt : N61311 untrt N61311 SRR1039508
SRR1039509 8.43675 -1.650879 trt : N61311 trt N61311 SRR1039509
SRR1039512 -10.27798 -5.066577 untrt : N052611 untrt N052611 SRR1039512
SRR1039513 17.64271 -3.910902 trt : N052611 trt N052611 SRR1039513
SRR1039516 -14.74069 15.990031 untrt : N080611 untrt N080611 SRR1039516
SRR1039517 10.95638 20.806181 trt : N080611 trt N080611 SRR1039517
SRR1039520 -12.12010 -11.962545 untrt : N061011 untrt N061011 SRR1039520
SRR1039521 17.99175 -10.047421 trt : N061011 trt N061011 SRR1039521

percentVar <- round(100 * attr(data, "percentVar"))

We can then use this data to build up a second plot in Figure 6, specifying that the color of the points should reflect
dexamethasone treatment and the shape should reflect the cell line.

library("ggplot2")

ggplot(data, aes(PC1, PC2, color=dex, shape=cell)) + geom_point(size=3) +
 xlab(paste0("PC1: ",percentVar[1],"% variance")) +
 ylab(paste0("PC2: ",percentVar[2],"% variance"))

From the PCA plot, we see that the differences between cells (the different plotting shapes) are considerable, though
not stronger than the differences due to treatment with dexamethasone (red vs blue color). This shows why it will be
important to account for this in differential testing by using a paired design (“paired”, because each dex treated sample
is paired with one untreated sample from the same cell line). We are already set up for this design by assigning the
formula ~ cell + dex earlier.

Page 18 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

MDS plot
Another plot, very similar to the PCA plot, can be made using the multidimensional scaling (MDS) function in base R.
This is useful when we don’t have a matrix of data, but only a matrix of distances. Here we compute the MDS for the
distances calculated from the rlog transformed counts and plot these (Figure 7):

mdsData <- data.frame(cmdscale(sampleDistMatrix))
mds <- cbind(mdsData, as.data.frame(colData(rld)))
ggplot(mds, aes(X1,X2,color=dex,shape=cell)) + geom_point(size=3)

Creating the same plot for the PoissonDistance (also Figure 7):

mdsPoisData <- data.frame(cmdscale(samplePoisDistMatrix))
mdsPois <- cbind(mdsPoisData, as.data.frame(colData(dds)))
ggplot(mdsPois, aes(X1,X2,color=dex,shape=cell)) + geom_point(size=3)

Differential expression analysis
Running the differential expression pipeline
As we have already specified an experimental design when we created the DESeqDataSet, we can run the differential
expression pipeline on the raw counts with a single call to the function DESeq:

dds <- DESeq(dds)

This function will print out a message for the various steps it performs. These are described in more detail in the manual
page for DESeq, which can be accessed by typing ?DESeq. Briefly these are: the estimation of size factors (controlling
for differences in the sequencing depth of the samples), the estimation of dispersion values for each gene, and fitting
a generalized linear model.

A DESeqDataSet is returned that contains all the fitted parameters within it, and the following section describes how
to extract out results tables of interest from this object.

Building the results table
Calling results without any arguments will extract the estimated log2 fold changes and p values for the last variable in
the design formula. If there are more than 2 levels for this variable, results will extract the results table for a comparison
of the last level over the first level. This comparison is printed at the top of the output: dex trt vs untrt.

Figure 7. MDS plots. Shown are the plots based on the rlog-transformed values (left) and the Poisson Distance (right).

Page 19 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

(res <- results(dds))

log2 fold change (MAP): dex trt vs untrt

Wald test p-value: dex trt vs untrt

DataFrame with 29391 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 708.6021697 -0.37423028 0.09872592 -3.7905980 0.000150285 0.001224146

ENSG00000000419 520.2979006 0.20214241 0.10929202 1.8495625 0.064376631 0.189223539

ENSG00000000457 237.1630368 0.03624420 0.13682871 0.2648874 0.791096181 0.907794192

ENSG00000000460 57.9326331 -0.08520813 0.24645454 -0.3457357 0.729541350 0.875201476

ENSG00000000938 0.3180984 -0.11522629 0.14589383 -0.7897955 0.429647219 NA

...

ENSG00000273485 1.2864477 0.03490688 0.2986168 0.1168952 0.9069431 NA

ENSG00000273486 15.4525365 -0.09662406 0.3385222 -0.2854290 0.7753155 0.8990371

ENSG00000273487 8.1632350 0.56255493 0.3731295 1.5076666 0.1316399 0.3177048

ENSG00000273488 8.5844790 0.10794134 0.3680474 0.2932811 0.7693073 0.8960855

ENSG00000273489 0.2758994 0.11249632 0.1420250 0.7920882 0.4283092 NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res, use.names=TRUE)

DataFrame with 6 rows and 2 columns
type description
##		 <character> <character>
baseMean intermediate mean of normalized counts for all samples
log2FoldChange results log2 fold change (MAP): dex trt vs untrt
## lfcSE		 results standard error: dex trt vs untrt
stat results Wald statistic: dex trt vs untrt
pvalue results Wald test p-value: dex trt vs untrt
padj results BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, dividing by size factors, taken over
all samples in the DESeqDataSet. The remaining four columns refer to a specific contrast, namely the comparison of
the trt level over the untrt level for the factor variable dex. We will find out below how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression seems to
have changed due to treatment with dexamethasone in comparison to untreated samples. This value is reported on a
logarithmic scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression is increased by a
multiplicative factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE, the standard
error estimate for the log2 fold change estimate. We can also express the uncertainty of a particular effect size estimate
as the result of a statistical test. The purpose of a test for differential expression is to test whether the data provides suf-
ficient evidence to conclude that this value is really different from zero. DESeq2 performs for each gene a hypothesis
test to see whether evidence is sufficient to decide against the null hypothesis that there is zero effect of the treatment
on the gene and that the observed difference between treatment and control was merely caused by experimental vari-
ability (i.e., the type of variability that you can expect between different samples in the same treatment group). As usual
in statistics, the result of this test is reported as a p value, and it is found in the column pvalue. Remember that a
p value indicates the probability that a fold change as strong as the observed one, or even stronger, would be seen under
the situation described by the null hypothesis.

We can also summarize the results with the following line of code, which reports some additional information, that will
be covered in later sections.

Page 20 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

summary(res)

##
out of 29391 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 2647, 9%
LFC < 0 (down) : 2250, 7.7%
outliers [1] : 0, 0%
low counts [2] : 11756, 40%
(mean count < 5.2)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

Note that there are many genes with differential expression due to dexamethasone treatment at the FDR level of 10%.
This makes sense, as the smooth muscle cells of the airway are known to react to glucocorticoid steroids. However,
there are two ways to be more strict about which set of genes are considered significant:

•	 lower the false discovery rate threshold (the threshold on padj in the results table)

•	 raise the log2 fold change threshold from 0 using the lfcThreshold argument of results

If we lower the false discovery rate threshold, we should also tell this value to results(), so that the function will
use an alternative threshold for the optimal independent filtering step:

res.05 <- results(dds, alpha=.05)
table(res.05$padj < .05)

##
FALSE TRUE
12095 4070

If we want to raise the log2 fold change threshold, so that we test for genes that show more substantial changes due to
treatment, we simply supply a value on the log2 scale. For example, by specifying lfcThreshold=1, we test for
genes that show significant effects of treatment on gene counts more than doubling or less than halving, because 21 = 2.

resLFC1 <- results(dds, lfcThreshold=1)
table(resLFC1$padj < 0.1)

##
FALSE TRUE
14492 204

Sometimes a subset of the p values in res will be NA (“not available”). This is DESeq’s way of reporting that all
counts for this gene were zero, and hence no test was applied. In addition, p values can be assigned NA if the gene was
excluded from analysis because it contained an extreme count outlier. For more information, see the outlier detection
section of the DESeq2 vignette.

If you use the results from an R analysis package in published research, you can find the proper citation for the software
by typing citation("pkgName"), where you would substitute the name of the package for pkgName. Citing
methods papers helps to support and reward the individuals who put time into open source software for genomic data
analysis.

Other comparisons
In general, the results for a comparison of any two levels of a variable can be extracted using the contrast argument
to results. The user should specify three values: the name of the variable, the name of the level for the numerator, and

Page 21 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

the name of the level for the denominator. Here we extract results for the log2 of the fold change of one cell line over
another:

results(dds, contrast=c("cell", "N061011", "N61311"))

log2 fold change (MAP): cell N061011 vs N61311

Wald test p-value: cell N061011 vs N61311

DataFrame with 29391 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 708.6021697 0.29054171 0.13600021 2.13633281 0.0326523 0.1981039

ENSG00000000419 520.2979006 -0.05069310 0.14916364 -0.33984894 0.7339703 0.9238903

ENSG00000000457 237.1630368 0.01474318 0.18161982 0.08117606 0.9353019 0.9862379

ENSG00000000460 57.9326331 0.20241839 0.28064506 0.72126120 0.4707488 0.8108444

ENSG00000000938 0.3180984 0.00000000 0.07169692 0.00000000 1.0000000 NA

...

ENSG00000273485 1.2864477 -0.180248108 0.16456445 -1.095304052 0.2733835 NA

ENSG00000273486 15.4525365 -0.029979349 0.30827915 -0.097247409 0.9225299 NA

ENSG00000273487 8.1632350 -0.001914497 0.28117903 -0.006808819 0.9945674 NA

ENSG00000273488 8.5844790 0.380608540 0.29209485 1.303030638 0.1925643 NA

ENSG00000273489 0.2758994 0.000000000 0.06955643 0.000000000 1.0000000 NA

If results for an interaction term are desired, the name argument of results should be used. Please see the help for the
results function for more details.

Multiple testing
In high-throughput biology, we are careful to not use the p values directly as evidence against the null, but to correct
for multiple testing. What would happen if we were to simply threshold the p values at a low value, say 0.05? There are
5722 genes with a p value below 0.05 among the 29391 genes, for which the test succeeded in reporting a p value:

sum(res$pvalue < 0.05, na.rm=TRUE)

[1] 5722

sum(!is.na(res$pvalue))

[1] 29391

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the treatment with
dexamethasone. Then, by the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05.
This amounts to 1470 genes. If we just considered the list of genes with a p value below 0.05 as differentially expressed,
this list should therefore be expected to contain up to 1470/5722 = 26% false positives.

DESeq2 uses the Benjamini-Hochberg (BH) adjustment20 as implemented in the base R p.adjust function; in brief, this
method calculates for each gene an adjusted p value that answers the following question: if one called significant all
genes with an adjusted p value less than or equal to this gene’s adjusted p value threshold, what would be the fraction
of false positives (the false discovery rate, FDR) among them, in the sense of the calculation outlined above? These
values, called the BH-adjusted p values, are given in the column padj of the res object.

The FDR is a useful statistic for many high-throughput experiments, as we are often interested in reporting or focusing
on a set of interesting genes, and we would like to put an upper bound on the percent of false positives in this set.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted p value
below 10% = 0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

[1] 4897

Page 22 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

We subset the results table to these genes and then sort it by the log2 fold change estimate to get the significant genes
with the strongest down-regulation:

resSig <- subset(res, padj < 0.1)
head(resSig[order(resSig$log2FoldChange),])

log2 fold change (MAP): dex trt vs untrt

Wald test p-value: dex trt vs untrt

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000162692 508.17023 -3.452454 0.1763751 -19.574503 2.551125e-85 3.460700e-82

ENSG00000146006 46.80760 -2.856273 0.3366877 -8.483451 2.186122e-17 1.073879e-15

ENSG00000105989 333.21469 -2.850960 0.1754638 -16.248133 2.302720e-59 1.194366e-56

ENSG00000214814 243.27698 -2.759539 0.2224907 -12.402938 2.519140e-35 4.113429e-33

ENSG00000267339 26.23357 -2.743928 0.3511985 -7.813041 5.582443e-15 2.182846e-13

ENSG00000013293 244.49733 -2.646116 0.1981216 -13.356020 1.092517e-40 2.240295e-38

... and with the strongest up-regulation:

head(resSig[order(resSig$log2FoldChange, decreasing=TRUE),])

log2 fold change (MAP): dex trt vs untrt

Wald test p-value: dex trt vs untrt

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000179593 67.24305 4.880507 0.3308119 14.75312 2.937594e-49 9.418996e-47

ENSG00000109906 385.07103 4.860877 0.3321627 14.63403 1.704000e-48 5.181040e-46

ENSG00000152583 997.43977 4.315374 0.1723805 25.03400 2.608143e-138 4.599460e-134

ENSG00000250978 56.31819 4.090157 0.3288246 12.43872 1.610666e-35 2.679631e-33

ENSG00000163884 561.10717 4.078073 0.2103212 19.38974 9.421379e-84 1.038413e-80

ENSG00000168309 159.52692 3.991146 0.2547755 15.66534 2.610147e-55 1.180255e-52

Plotting results
A quick way to visualize the counts for a particular gene is to use the plotCounts function that takes as arguments the
DESeqDataSet, a gene name, and the group over which to plot the counts (Figure 8).

topGene <- rownames(res)[which.min(res$padj)]
plotCounts(dds, gene=topGene, intgroup=c("dex"))

We can also make custom plots using the ggplot function from the ggplot2 package (Figure 9).

data <- plotCounts(dds, gene=topGene, intgroup=c("dex","cell"), returnData=TRUE)
ggplot(data, aes(x=dex, y=count, color=cell)) +
 scale_y_log10() +
 geom_point(position=position_jitter(width=.1,height=0), size=3)

ggplot(data, aes(x=dex, y=count, fill=dex)) +
 scale_y_log10() +
 geom_dotplot(binaxis="y", stackdir="center")

ggplot(data, aes(x=dex, y=count, color=cell, group=cell)) +
 scale_y_log10() + geom_point(size=3) + geom_line()

An MA-plot21 provides a useful overview for an experiment with a two-group comparison (Figure 10).

Page 23 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://cran.fhcrc.org/web/packages/ggplot2/index.html

Figure 8. Normalized counts for a single gene over treatment group.

Figure 9. Normalized counts over treatment using different ggplot2 styles. The plots are customized using ggplot2
options for jitter (left), dots (middle), or with lines connecting cell line (right). Note that the DESeq2 test that was used
takes into account the cell line effect, so the rightmost figure more closely depicts the difference being tested.

Figure 10. An MA-plot of changes induced by treatment. The log2 fold change for a particular comparison is plotted
on the y-axis and the average of the counts normalized by size factor is shown on the x-axis (“M” for minus, because a
log ratio is equal to log minus log, and “A” for average). Each gene is represented with a dot. Genes with an adjusted p
value below a threshold (here 0.1, the default) are shown in red.

Page 24 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

plotMA(res, ylim=c(-5,5))

The DESeq2 package uses statistical techniques to moderate log2 fold changes from genes with very low counts and
highly variable counts, as can be seen by the narrowing of the vertical spread of points on the left side of the MA-plot.
For a detailed explanation of the rationale of moderated fold changes, please see the DESeq2 paper2. This plot demon-
strates that only genes with a large average normalized count contain sufficient information to yield a significant call.

We can also make an MA-plot for the results table in which we raised the log2 fold change threshold (Figure 11).
We can label individual points on the MA-plot as well. Here we use the with R function to plot a circle and text for a
selected row of the results object. Within the with function, only the baseMean and log2FoldChange values for
the selected rows of res are used.

plotMA(resLFC1, ylim=c(-5,5))
topGene <- rownames(resLFC1)[which.min(resLFC1$padj)]
with(resLFC1[topGene,], {
 points(baseMean, log2FoldChange, col="dodgerblue", cex=2, lwd=2)
 text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue")
})

Another useful diagnostic plot is the histogram of the p values (Figure 12). This plot is best formed by excluding genes
with very small counts, which otherwise generate spikes in the histogram.

hist(res$pvalue[res$baseMean > 1], breaks=0:20/20, col="grey50", border="white")

Gene clustering
In the sample distance heatmap made previously, the dendrogram at the side shows us a hierarchical clustering of the
samples. Such a clustering can also be performed for the genes. Since the clustering is only relevant for genes that actu-
ally carry a signal, one usually would only cluster a subset of the most highly variable genes. Here, for demonstration,
let us select the 20 genes with the highest variance across samples. We will work with the rlog transformed counts:

library("genefilter")
topVarGenes <- head(order(rowVars(assay(rld)),decreasing=TRUE),20)

Figure 11. An MA-plot of a test for large log2 fold changes. The red points indicate genes for which the log2 fold
change was significantly higher than 1 or less than -1 (treatment resulting in more than doubling or less than halving of
the normalized counts) with adjusted p value less than 0.1. The point circled in blue indicates the gene with the lowest
adjusted p value.

Page 25 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

Figure 12. Histogram of p values for genes with mean normalized count larger than 1.

Figure 13. Heatmap of relative rlog-transformed values across samples. Treatment status and cell line information
are shown with colored bars at the top of the heatmap. Note that a set of genes at the top of the heatmap are separating
the N061011 cell line from the others. In the center of the heatmap, we see a set of genes for which the dexamethasone
treated samples have higher gene expression.

The heatmap becomes more interesting if we do not look at absolute expression strength but rather at the amount by
which each gene deviates in a specific sample from the gene’s average across all samples. Hence, we center each genes’
values across samples, and plot a heatmap (Figure 13). We provide a data.frame that instructs the pheatmap function
how to label the columns.

Page 26 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

mat <- assay(rld)[topVarGenes,]
mat <- mat - rowMeans(mat)
df <- as.data.frame(colData(rld)[,c("cell","dex")])
pheatmap(mat, annotation_col=df)

Independent filtering
The MA plot highlights an important property of RNA-seq data. For weakly expressed genes, we have no chance of
seeing differential expression, because the low read counts suffer from such high Poisson noise that any biological
effect is drowned in the uncertainties from the sampling at a low rate. We can also show this by examining the ratio of
small p values (say, less than, 0.05) for genes binned by mean normalized count. We will use the results table subjected
to the threshold to show what this looks like in a case when there are few tests with small p value.

In the following code chunk, we create bins using the quantile function, bin the genes by base mean using cut, rename
the levels of the bins using the middle point, calculate the ratio of p values less than 0.05 for each bin, and finally plot
these ratios (Figure 14).

qs <- c(0, quantile(resLFC1$baseMean[resLFC1$baseMean > 0], 0:6/6))
bins <- cut(resLFC1$baseMean, qs)
levels(bins) <- paste0("~",round(signif(.5*qs[-1] + .5*qs[-length(qs)],2)))
ratios <- tapply(resLFC1$pvalue, bins, function(p) mean(p < .05, na.rm=TRUE))
barplot(ratios, xlab="mean normalized count", ylab="ratio of small p values")

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test found them to be non-
significant anyway. However, these genes have an influence on the multiple testing adjustment, whose performance
improves if such genes are removed. By removing the low count genes from the input to the FDR procedure, we can
find more genes to be significant among those that we keep, and so improved the power of our test. This approach is
known as independent filtering.

Figure 14. The ratio of small p values for genes binned by mean normalized count. Here the p values are for a
test of log2 fold change greater than 1 or less than -1. This plot demonstrates that genes with low mean count are
underpowered, and best excluded before multiple test correction.

Page 27 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

The DESeq2 software automatically performs independent filtering that maximizes the number of genes with adjusted
p value less than a critical value (by default, alpha is set to 0.1). This automatic independent filtering is performed by,
and can be controlled by, the results function.

The term independent highlights an important caveat. Such filtering is permissible only if the statistic that we filter on
(here the mean of normalized counts across all samples) is independent of the actual test statistic (the p value) under
the null hypothesis. Otherwise, the filtering would invalidate the test and consequently the assumptions of the BH
procedure. The independent filtering software used inside DESeq2 comes from the genefilter package, that contains a
reference to a paper describing the statistical foundation for independent filtering22.

Annotating and exporting results
Our result table so far only contains information about Ensembl gene IDs, but alternative gene names may be more
informative for collaborators. Bioconductor’s annotation packages help with mapping various ID schemes to each
other. We load the AnnotationDbi package and the annotation package org.Hs.eg.db:

library("AnnotationDbi")
library("org.Hs.eg.db")

This is the organism annotation package (“org”) for Homo sapiens (“Hs”), organized as an AnnotationDbi database
package (“db”), using Entrez Gene IDs (“eg”) as primary key. To get a list of all available key types, use:

columns(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM" "ALIAS"
[7] "CHR" "CHRLOC" "CHRLOCEND" "ENZYME" "MAP" "PATH"
[13] "PMID" "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"
[19] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY"
[25] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

We can use the mapIds function to add individual columns to our results table. We provide the row names of our results
table as a key, and specify that keytype=ENSEMBL. The column argument tells the mapIds function which infor-
mation we want, and the multiVals argument tells the function what to do if there are multiple possible values for
a single input value. Here we ask to just give us back the first one that occurs in the database. To add the gene symbol
and Entrez ID, we call mapIds twice.

res$symbol <- mapIds(org.Hs.eg.db,
 keys=row.names(res),
 column="SYMBOL",
 keytype="ENSEMBL",
 multiVals="first")
res$entrez <- mapIds(org.Hs.eg.db,
 keys=row.names(res),
 column="ENTREZID",
 keytype="ENSEMBL",
 multiVals="first")

Page 28 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/genefilter.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html

Now the results have the desired external gene IDs:

resOrdered <- res[order(res$padj),]

head(resOrdered)

log2 fold change (MAP): dex trt vs untrt

Wald test p-value: dex trt vs untrt

DataFrame with 6 rows and 8 columns

baseMean log2FoldChange lfcSE stat pvalue padj

##		 <numeric>	 <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000152583 997.4398	 4.315374 0.1723805 25.03400 2.608143e-138 4.599460e-134

## ENSG00000165995 495.0929	 3.188413 0.1277306 24.96201 1.581556e-137 1.394537e-133

## ENSG00000101347 12703.3871	 3.617791 0.1499256 24.13057 1.194421e-128 6.472441e-125

## ENSG00000120129 3409.0294	 2.871106 0.1190242 24.12204 1.468090e-128 6.472441e-125

## ENSG00000189221 2341.7673	 3.230290 0.1373499 23.51869 2.626434e-122 9.263434e-119

## ENSG00000211445 12285.6151	 3.552498 0.1589749 22.34628 1.312430e-110 3.857449e-107

##		 symbol entrez

##	 <character> <character>

ENSG00000152583 SPARCL1 8404

ENSG00000165995 CACNB2 783

ENSG00000101347 SAMHD1 25939

ENSG00000120129 DUSP1 1843

ENSG00000189221 MAOA 4128

ENSG00000211445 GPX3 2878

Exporting results
You can easily save the results table in a CSV file, that you can then share or load with a spreadsheet program such as
Excel. The call to as.data.frame is necessary to convert the DataFrame object (IRanges package) to a data.frame object
that can be processed by write.csv. Here, we take just the top 100 genes for demonstration.

resOrderedDF <- as.data.frame(resOrdered)[1:100,]
write.csv(resOrderedDF, file="results.csv")

Another more sophisticated package for exporting results from various Bioconductor analysis packages is the Report-
ingTools package23. ReportingTools will automatically generate dynamic HTML documents, including links to external
databases using gene identifiers and boxplots summarizing the normalized counts across groups. See the Reporting-
Tools vignettes for full details. The simplest version of creating a dynamic ReportingTools report is performed with
the following code:

library("ReportingTools")
htmlRep <- HTMLReport(shortName="report", title="My report",
 reportDirectory="./report")
publish(resOrderedDF, htmlRep)
url <- finish(htmlRep)
browseURL(url)

Plotting fold changes in genomic space
If we have used the summarizeOverlaps function to count the reads, then our DESeqDataSet object is built on top of
ready-to-use Bioconductor objects specifying the genomic ranges of the genes. We can therefore easily plot our dif-
ferential expression results in genomic space. While the results function by default returns a DataFrame, using the
format argument, we can ask for GRanges or GRangesList output.

Page 29 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html

(resGR <- results(dds, lfcThreshold=1, format="GRanges"))

GRanges object with 29391 ranges and 6 metadata columns:

seqnames ranges strand | baseMean log2FoldChange

<Rle> <IRanges> <Rle> | <numeric> <numeric>

ENSG00000000003 X [99883667, 99894988] - | 708.602169691234 -0.374230275713608

ENSG00000000419 20 [49551404, 49575092] - | 520.297900552084 0.202142414893829

ENSG00000000457 1 [169818772, 169863408] - | 237.163036796015 0.0362442044069634

ENSG00000000460 1 [169631245, 169823221] + | 57.9326331250967 -0.0852081341501509

ENSG00000000938 1 [27938575, 27961788] - | 0.318098378392895 -0.115226286496983

...

ENSG00000273485 10 [105209953, 105210609] + | 1.28644765243289 0.0349068755370733

ENSG00000273486 3 [136556180, 136557863] - | 15.4525365439045 -0.0966240584195589

ENSG00000273487 1 [92654794, 92656264] + | 8.1632349843654 0.562554926745931

ENSG00000273488 3 [100080031, 100080481] + | 8.58447903624707 0.107941339873098

ENSG00000273489 7 [131178723, 131182453] - | 0.275899382507797 0.112496317318932

lfcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric>

ENSG00000000003 0.098725921418789 0 1 1

ENSG00000000419 0.109292016112333 0 1 1

ENSG00000000457 0.136828705643854 0 1 1

ENSG00000000460 0.246454541134745 0 1 1

ENSG00000000938 0.145893828687766 0 1 <NA>

...

ENSG00000273485 0.298616754374375 0 1 <NA>

ENSG00000273486 0.338522172238827 0 1 <NA>

ENSG00000273487 0.373129529007307 0 1 <NA>

ENSG00000273488 0.368047431494871 0 1 <NA>

ENSG00000273489 0.142024983011115 0 1 <NA>

seqinfo: 722 sequences (1 circular) from an unspecified genome

We need to add the symbol again for labeling the genes on the plot:

resGR$symbol <- mapIds(org.Hs.eg.db, names(resGR), "SYMBOL", "ENSEMBL")

We will use the Gviz package for plotting the GRanges and associated metadata: the log fold changes due to dexam-
ethasone treatment.

library("Gviz")

The following code chunk specifies a window of 1 million base pairs upstream and downstream from the gene with the
smallest p value. We create a subset of our full results, for genes within the window We add the gene symbol as a name,
if the symbol exists or is not duplicated in our subset.

window <- resGR[topGene] + 1e6
strand(window) <- "*"
resGRsub <- resGR[resGR %over% window]
naOrDup <- is.na(resGRsub$symbol) | duplicated(resGRsub$symbol)
resGRsub$group <- ifelse(naOrDup, names(resGRsub), resGRsub$symbol)

We create a vector specifying if the genes in this subset had a low false discovery rate.

sig <- factor(ifelse(resGRsub$padj < .1 & !is.na(resGRsub$padj),"sig","notsig"))

Page 30 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/Gviz.html

We can then plot the results using Gviz functions (Figure 15). We create an axis track specifying our location in the
genome, a track that will show the genes and their names, colored by significance, and a data track that will draw verti-
cal bars showing the moderated log fold change produced by DESeq2, which we know are only large when the effect
is well supported by the information in the counts.

options(ucscChromosomeNames=FALSE)
g <- GenomeAxisTrack()
a <- AnnotationTrack(resGRsub, name="gene ranges", feature=sig)
d <- DataTrack(resGRsub, data="log2FoldChange", baseline=0,
 type="h", name="log2 fold change", strand="+")
plotTracks(list(g,d,a), groupAnnotation="group", notsig="grey", sig="hotpink")

Removing hidden batch effects
Suppose we did not know that there were different cell lines involved in the experiment, only that there was treatment
with dexamethasone. The cell line effect on the counts then would represent some hidden and unwanted variation that
might be affecting many or all of the genes in the dataset. We can use statistical methods designed for RNA-seq from
the sva package24 to detect such groupings of the samples, and then we can add these to the DESeqDataSet design,
in order to account for them. The SVA package uses the term surrogate variables for the estimated variables that we
want to account for in our analysis. Another package for detecting hidden batches is the RUVSeq package25, with the
acronym “Remove Unwanted Variation”.

library("sva")

Figure 15. Plotting log2 fold changes in a genomic region surrounding the gene with smallest adjusted p value.
Genes highlighted in pink have adjusted p value less than 0.1.

Page 31 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/RUVSeq.html

Figure 16. Surrogate variables 1 and 2 plotted over cell line. Here, we know the hidden source of variation (cell line),
and therefore can see how the SVA procedure is able to identify sources of variation which are correlated with cell line.

Below we obtain a matrix of normalized counts for which the average count across samples is larger than 1. As we
described above, we are trying to recover any hidden batch effects, supposing that we do not know the cell line informa-
tion. So we use a full model matrix with the dex variable, and a reduced, or null, model matrix with only an intercept
term. Finally we specify that we want to estimate 2 surrogate variables. For more information read the manual page for
the svaseq function by typing ?svaseq.

dat <- counts(dds, normalized=TRUE)
idx <- rowMeans(dat) > 1
dat <- dat[idx,]
mod <- model.matrix(~ dex, colData(dds))
mod0 <- model.matrix(~ 1, colData(dds))
svseq <- svaseq(dat, mod, mod0, n.sv=2)

Number of significant surrogate variables is: 2
Iteration (out of 5):1 2 3 4 5

svseq$sv

[,1] [,2]
[1,] 0.2481108 -0.52600157
[2,] 0.2629867 -0.58115433
[3,] 0.1502704 0.27428267
[4,] 0.2023800 0.38419545
[5,] -0.6086586 -0.07854931
[6,] -0.6101210 -0.02923693
[7,] 0.1788509 0.25708985
[8,] 0.1761807 0.29937417

Because we actually do know the cell lines, we can see how well the SVA method did at recovering these variables
(Figure 16).

Page 32 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

par(mfrow=c(2,1),mar=c(3,5,3,1))
stripchart(svseq$sv[,1] ~ dds$cell,vertical=TRUE,main="SV1")
abline(h=0)
stripchart(svseq$sv[,2] ~ dds$cell,vertical=TRUE,main="SV2")
abline(h=0)

Finally, in order to use SVA to remove any effect on the counts from our surrogate variables, we simply add these two
surrogate variables as columns to the DESeqDataSet and then add them to the design:

ddssva <- dds
ddssva$SV1 <- svseq$sv[,1]
ddssva$SV2 <- svseq$sv[,2]
design(ddssva) <- ~ SV1 + SV2 + dex

We could then produce results controlling for surrogate variables by running DESeq with the new design:

ddssva <- DESeq(ddssva)

Time course experiments
DESeq2 can be used to analyze time course experiments, for example to find those genes that react in a condition-
specific manner over time, compared to a set of baseline samples. Here we demonstrate a basic time course analysis
with the fission data package, that contains gene counts for an RNA-seq time course of fission yeast26. The yeast were
exposed to oxidative stress, and half of the samples contain a deletion of the gene atf21. We use a design formula
that models the strain difference at time 0, the difference over time, and any strain-specific differences over time (the
interaction term strain:minute).

library("fission")
data("fission")
ddsTC <- DESeqDataSet(fission, ~ strain + minute + strain:minute)

The following chunk of code performs a likelihood ratio test, where we remove the strain-specific differences over
time. Genes with small p values from this test are those which at one or more time points after time 0 showed a strain-
specific effect. Note therefore that this will not give small p values to genes that moved up or down over time in the
same way in both strains.

ddsTC <- DESeq(ddsTC, test="LRT", reduced = ~ strain + minute)
resTC <- results(ddsTC)
resTC$symbol <- mcols(ddsTC)$symbol
head(resTC[order(resTC$padj),],4)

log2 fold change (MLE): strainmut.minute180

LRT p-value: '~ strain + minute + strain:minute' vs '~ strain + minute'

DataFrame with 4 rows and 7 columns

baseMean log2FoldChange lfcSE stat pvalue padj symbol

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <character>

SPBC2F12.09c 174.6712 -2.65763737 0.7498270 99.23199 7.671942e-20 5.186233e-16 atf21

SPAC1002.18 444.5050 -0.05118463 0.2030554 57.72116 3.590886e-11 1.213719e-07 urg3

SPAC1002.19 336.3732 -0.39267927 0.5749887 43.26296 3.268243e-08 7.364441e-05 urg1

SPAC1002.17c 261.7731 -1.13882844 0.6072772 39.13718 2.228530e-07 3.766216e-04 urg2

This is just one of the tests that can be applied to time series data. Another option would be to model the counts as a
smooth function of time, and to include an interaction term of the condition with the smooth function. It is possible to
build such a model using spline basis functions within R.

We can plot the counts for the groups over time using ggplot2, for the gene with the smallest adjusted p value, testing
for condition-dependent time profile and accounting for differences at time 0 (Figure 17). Keep in mind that the interac-
tion terms are the difference between the two groups at a given time after accounting for the difference at time 0.

Page 33 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://bioconductor.org/packages/release/data/experiment/html/fission.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html

Figure 17. Normalized counts for a gene with condition-specific changes over time.

data <- plotCounts(ddsTC, which.min(resTC$padj),

 intgroup=c("minute","strain"), returnData=TRUE)
ggplot(data, aes(x=minute, y=count, color=strain, group=strain)) +

 geom_point() + stat_smooth(se=FALSE,method="loess") + scale_y_log10()

Wald tests for the log2 fold changes at individual time points can be investigated using the test argument to results:

resultsNames(ddsTC)

[1] "Intercept" "strain_mut_vs_wt" "minute_15_vs_0" "minute_30_vs_0"

[5] "minute_60_vs_0" "minute_120_vs_0" "minute_180_vs_0" "strainmut.minute15"

[9] "strainmut.minute30" "strainmut.minute60" "strainmut.minute120" "strainmut.minute180"

res30 <- results(ddsTC, name="strainmut.minute30", test="Wald")
res30[which.min(resTC$padj),]

log2 fold change (MLE): strainmut.minute30

Wald test p-value: strainmut.minute30

DataFrame with 1 row and 6 columns

##		 baseMean log2FoldChange lfcSE stat pvalue padj

##		 <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

SPBC2F12.09c 174.6712 -2.601034 0.6314737 -4.11899 3.805364e-05 0.2572426

We can furthermore cluster significant genes by their profiles. We extract a matrix of the shrunken log2 fold changes
using the coef function:

betas <- coef(ddsTC)

colnames(betas)

[1] "Intercept" "strain_mut_vs_wt" "minute_15_vs_0" "minute_30_vs_0"

[5] "minute_60_vs_0" "minute_120_vs_0" "minute_180_vs_0" "strainmut.minute15"

[9] "strainmut.minute30" "strainmut.minute60" "strainmut.minute120" "strainmut.minute180"

Page 34 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

We can now plot the log2 fold changes in a heatmap (Figure 18).

library("pheatmap")
topGenes <- head(order(resTC$padj),20)
mat <- betas[topGenes, -c(1,2)]
thr <- 3
mat[mat < -thr] <- -thr
mat[mat > thr] <- thr
pheatmap(mat, breaks=seq(from=-thr, to=thr, length=101),
 cluster_col=FALSE)

Session information
As the last part of this document, we call the function sessionInfo, which reports the version numbers of R and all the
packages used in this session. It is good practice to always keep such a record of this as it will help to track down what
has happened in case an R script ceases to work or gives different results because the functions have been changed
in a newer version of one of your packages. By including it at the bottom of a script, your reports will become more
reproducible.

The session information should also always be included in any emails to the Bioconductor support site along with all
code used in the analysis.

Figure 18. Heatmap of log2 fold changes for genes with smallest adjusted p value. The bottom set of genes show
strong induction of expression for the baseline samples in minutes 15–60 (red boxes in the bottom left corner), but then
have slight differences for the mutant strain (shown in the boxes in the bottom right corner).

Page 35 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

https://support.bioconductor.org/

sessionInfo()

R version 3.2.1 (2015-06-18)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.10.3 (Yosemite)
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] grid stats4 parallel stats graphics grDevices datasets utils methods
[10] base
##
other attached packages:
[1] fission_0.102.0 sva_3.14.0 mgcv_1.8-7
[4] nlme_3.1-122 Gviz_1.12.1 org.Hs.eg.db_3.1.2
[7] RSQLite_1.0.0 DBI_0.3.1 genefilter_1.50.0
[10] ggplot2_1.0.1 PoiClaClu_1.0.2 RColorBrewer_1.1-2
[13] pheatmap_1.0.7 DESeq2_1.8.1 RcppArmadillo_0.5.400.2.0
[16] Rcpp_0.12.0 BiocParallel_1.2.20 GenomicAlignments_1.4.1
[19] GenomicFeatures_1.20.3 AnnotationDbi_1.30.1 Biobase_2.28.0
[22] Rsamtools_1.20.4 Biostrings_2.36.4 XVector_0.8.0
[25] airway_0.102.0 GenomicRanges_1.20.6 GenomeInfoDb_1.4.2
[28] IRanges_2.2.7 S4Vectors_0.6.4 BiocGenerics_0.14.0
[31] knitr_1.11 BiocStyle_1.6.0 rmarkdown_0.8
##
loaded via a namespace (and not attached):
[1] splines_3.2.1 Formula_1.2-1 latticeExtra_0.6-26
[4] BSgenome_1.36.3 yaml_2.1.13 lattice_0.20-33
[7] biovizBase_1.16.0 digest_0.6.8 colorspace_1.2-6
[10] htmltools_0.2.6 Matrix_1.2-2 plyr_1.8.3
[13] XML_3.98-1.3 biomaRt_2.24.0 zlibbioc_1.14.0
[16] xtable_1.7-4 scales_0.3.0 annotate_1.46.1
[19] nnet_7.3-10 proto_0.3-10 survival_2.38-3
[22] magrittr_1.5 evaluate_0.7.2 MASS_7.3-43
[25] foreign_0.8-66 tools_3.2.1 formatR_1.2
[28] matrixStats_0.14.2 stringr_1.0.0 munsell_0.4.2
[31] locfit_1.5-9.1 cluster_2.0.3 lambda.r_1.1.7
[34] futile.logger_1.4.1 RCurl_1.95-4.7 dichromat_2.0-0
[37] VariantAnnotation_1.14.13 bitops_1.0-6 labeling_0.3
[40] gtable_0.1.2 reshape2_1.4.1 gridExtra_2.0.0
[43] rtracklayer_1.28.9 Hmisc_3.16-0 futile.options_1.0.0
[46] stringi_0.5-5 geneplotter_1.46.0 rpart_4.1-10
[49] acepack_1.3-3.3

Author contributions
MIL, SA and WH wrote the workflow. VK assisted in reproducible delivery of the workflow materials.

Competing interests
The authors declare that they have no competing interests.

Grant information
MIL is supported by NIH grant 5T32CA009337-35. WH and SA acknowledge funding from the European Union’s 7th
Framework Programme (Health) via Project Radiant.

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Acknowledgments
The authors thank all users of DESeq and DESeq2 who provided valuable feedback.

Page 36 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

References

1.	 Himes BE, Jiang X, Wagner P, et al.: RNA-Seq transcriptome
profiling identifies CRISPLD2 as a glucocorticoid responsive
gene that modulates cytokine function in airway smooth muscle
cells. PLoS One. 2014; 9(6): e99625.
PubMed Abstract | Publisher Full Text | Free Full Text

2.	 Love MI, Huber W, Anders S: Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol.
2014; 15(12): 550.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor
package for differential expression analysis of digital gene
expression data. Bioinformatics. 2010; 26(1): 139–140.
PubMed Abstract | Publisher Full Text | Free Full Text

4.	 Law CW, Chen Y, Shi W, et al.: voom: Precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome
Biol. 2014; 15(2): R29.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Wu H, Wang C, Wu Z: A new shrinkage estimator for dispersion
improves differential expression detection in RNA-seq data.
Biostatistics. 2013; 14(2): 232–243.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Leng N, Dawson JA, Thomson JA, et al.: EBSeq: an empirical
Bayes hierarchical model for inference in RNA-seq experiments.
Bioinformatics. 2013; 29(8): 1035–1043.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Hardcastle TJ, Kelly KA: baySeq: empirical Bayesian methods for
identifying differential expression in sequence count data. BMC
Bioinformatics. 2010; 11(1): 422.
PubMed Abstract | Publisher Full Text | Free Full Text

8.	 Flicek P, Amode MR, Barrell D, et al.: Ensembl 2014. Nucleic Acids
Res. 2014; 42(Database issue): D749–D755.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Dobin A, Davis CA, Schlesinger F, et al.: STAR: ultrafast universal
RNA-seq aligner. Bioinformatics. 2013; 29(1): 15–21.
PubMed Abstract | Publisher Full Text | Free Full Text

10.	 Li H, Handsaker B, Wysoker A, et al.: The Sequence Alignment/
Map format and SAMtools. Bioinformatics. 2009; 25(16):
2078–2079.
PubMed Abstract | Publisher Full Text | Free Full Text

11.	 Lawrence M, Huber W, Pagès H, et al.: Software for computing
and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8):
e1003118.
PubMed Abstract | Publisher Full Text | Free Full Text

12.	 Liao Y, Smyth GK, Shi W: featureCounts: an efficient general
purpose program for assigning sequence reads to genomic
features. Bioinformatics. 2014; 30(7): 923–930.
PubMed Abstract | Publisher Full Text

13.	 Anders S, Pyl PT, Huber W: HTSeq--a Python framework to work
with high-throughput sequencing data. Bioinformatics. 2015; 31(2):

166–169.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 Kent WJ, Sugnet CW, Furey TS, et al.: The human genome browser
at UCSC. Genome Res. 2002; 12(6): 996–1006.
PubMed Abstract | Publisher Full Text | Free Full Text

15.	 Durinck S, Spellman PT, Birney E, et al.: Mapping identifiers for
the integration of genomic datasets with the R/Bioconductor
package biomaRt. Nat Protoc. 2009; 4(8): 1184–1191.
PubMed Abstract | Publisher Full Text | Free Full Text

16.	 Huber W, Carey VJ, Gentleman R, et al.: Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods.
2015; 12(2): 115–121.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Anders S, Huber W: Differential expression analysis for sequence
count data. Genome Biol. 2010; 11(10): R106.
PubMed Abstract | Publisher Full Text | Free Full Text

18.	 Witten DM: Classification and clustering of sequencing data
using a Poisson model. Ann Appl Stat. 2011; 5(4): 2493–2518.
Publisher Full Text

19.	 Wickham H: ggplot2. Springer, New York, NY, 2009.
Publisher Full Text

20.	 Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J Roy Stat
Soc B Met. 1995; 57(1): 289–300.
Reference Source

21.	 Dudoit S, Yang YH, Callow MJ, et al.: Statistical methods for
identifying differentially expressed genes in replicated cDNA
microarray experiments. In Statistica Sinica. 2002; 12: 111–139.
Reference Source

22.	 Bourgon R, Gentleman R, Huber W: Independent filtering increases
detection power for high-throughput experiments. Proc Natl Acad
Sci U S A. 2010; 107(21): 9546–9551.
PubMed Abstract | Publisher Full Text | Free Full Text

23.	 Huntley MA, Larson JL, Chaivorapol C, et al.: ReportingTools:
an automated result processing and presentation toolkit for
high-throughput genomic analyses. Bioinformatics. 2013; 29(24):
3220–3221.
PubMed Abstract | Publisher Full Text

24.	 Leek JT: svaseq: removing batch effects and other unwanted
noise from sequencing data. Nucleic Acids Res. 2014; 42(21): e161.
PubMed Abstract | Publisher Full Text | Free Full Text

25.	 Risso D, Ngai J, Speed TP, et al.: Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat Biotechnol.
2014; 32(9): 896–902.
PubMed Abstract | Publisher Full Text | Free Full Text

26.	 Leong HS, Dawson K, Wirth C, et al.: A global non-coding RNA
system modulates fission yeast protein levels in response to
stress. Nat Commun. 2014; 5: 3947.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 37 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://dx.doi.org/10.1371/journal.pone.0099625
http://www.ncbi.nlm.nih.gov/pmc/articles/4057123
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://dx.doi.org/10.1101/002832
http://www.ncbi.nlm.nih.gov/pmc/articles/4302049
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pmc/articles/2796818
http://www.ncbi.nlm.nih.gov/pubmed/24485249
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://www.ncbi.nlm.nih.gov/pmc/articles/4053721
http://www.ncbi.nlm.nih.gov/pubmed/23001152
http://dx.doi.org/10.1093/biostatistics/kxs033
http://www.ncbi.nlm.nih.gov/pmc/articles/3590927
http://www.ncbi.nlm.nih.gov/pubmed/23428641
http://dx.doi.org/10.1093/bioinformatics/btt087
http://www.ncbi.nlm.nih.gov/pmc/articles/3624807
http://www.ncbi.nlm.nih.gov/pubmed/20698981
http://dx.doi.org/10.1186/1471-2105-11-422
http://www.ncbi.nlm.nih.gov/pmc/articles/2928208
http://www.ncbi.nlm.nih.gov/pubmed/24316576
http://dx.doi.org/10.1093/nar/gkt1196
http://www.ncbi.nlm.nih.gov/pmc/articles/3964975
http://www.ncbi.nlm.nih.gov/pubmed/23104886
http://dx.doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pmc/articles/3530905
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pmc/articles/2723002
http://www.ncbi.nlm.nih.gov/pubmed/23950696
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://www.ncbi.nlm.nih.gov/pmc/articles/3738458
http://www.ncbi.nlm.nih.gov/pubmed/24227677
http://dx.doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/25260700
http://dx.doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pmc/articles/4287950
http://www.ncbi.nlm.nih.gov/pubmed/12045153
http://dx.doi.org/10.1101/gr.229102
http://www.ncbi.nlm.nih.gov/pmc/articles/186604
http://www.ncbi.nlm.nih.gov/pubmed/19617889
http://dx.doi.org/10.1038/nprot.2009.97
http://www.ncbi.nlm.nih.gov/pmc/articles/3159387
http://www.ncbi.nlm.nih.gov/pubmed/25633503
http://dx.doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pmc/articles/4509590
http://www.ncbi.nlm.nih.gov/pubmed/20979621
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pmc/articles/3218662
http://dx.doi.org/10.1214/11-AOAS493
http://dx.doi.org/10.1007/978-0-387-98141-3
http://engr.case.edu/ray_soumya/mlrg/controlling_fdr_benjamini95.pdf
http://wwwf.imperial.ac.uk/~das01/BioinformaticsMSc/Papers/sinica.final.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20460310
http://dx.doi.org/10.1073/pnas.0914005107
http://www.ncbi.nlm.nih.gov/pmc/articles/2906865
http://www.ncbi.nlm.nih.gov/pubmed/24078713
http://dx.doi.org/10.1093/bioinformatics/btt551
http://www.ncbi.nlm.nih.gov/pubmed/25294822
http://dx.doi.org/10.1093/nar/gku864
http://www.ncbi.nlm.nih.gov/pmc/articles/4245966
http://www.ncbi.nlm.nih.gov/pubmed/25150836
http://dx.doi.org/10.1038/nbt.2931
http://www.ncbi.nlm.nih.gov/pmc/articles/4404308
http://www.ncbi.nlm.nih.gov/pubmed/24853205
http://dx.doi.org/10.1038/ncomms4947
http://www.ncbi.nlm.nih.gov/pmc/articles/4050258

F1000Research

1.

2.

3.

4.

5.

Open Peer Review

 Current Referee Status:

Version 1

 01 December 2015Referee Report

doi:10.5256/f1000research.7573.r10806

 Zhijin Wu
Department of Biostatistics, Brown University, Providence, RI, USA

I find the workflow a very useful document, especially in teaching someone with limited R/Bioconductor
experience, starting from the count table. In addition to DE analysis, the workflow included exploratory
analysis and some diagnostics -- again, very handy as teaching material.

A few comments:
I like the example using a subset of reads in "locating alignment files" so alignment can be done
instantly in a toy example. It would be more apparent, that in addition to having very small BAM
files, if it is explicitly explained that a small GTF file is created for this example. The subsection
before, on "Aligning reads to a reference genome", is harder to reproduce. Unlike the examples
below, there is no toy fastq file here. It would be nice to either have some toy examples here as
well, or to provide the links to some actual fastq files. The link to the GEO entry is provided, which
does not directly point to fastq files.

To make the workflow even easier to follow and reproduce, maybe a list of required packages can
be provided at the very beginning.

I agree with Dr. Risso that at least the main steps in the DE analysis should be mentioned, so that
the user understands the major components that affect the analysis. The main workflow cannot
include too many examples, but possible alternatives in normalization (for example, different
choices in adjusting for sequencing depth and one may consider adjusting for more than just
depth) and in dispersion estimation can be simply mentioned here so that users can check these
out by themselves.

In the airway example, there is one important detail that is worth having a checkpoint. Here,

"Because we used a column of to produce the vector, we know the columnssampleTable bamfiles
of are in the same order as the rows of sampleTable. " The authors emphasized this later withse
the recommendation of keeping the column (sample) information in a separate file, and "making
sure that the rows correspond to the columns of the SummarizedExperiment".

I would recommend a checkpoint here (for example, by comparing) andrownames(colData(se)
so that the users will always confirm the correct order. If this is messedrownames(sampleTable)),

up, all following analysis is a waste.

Regrading DE and multiple testing: It is worth mentioning that the "p-value" returned is a nominal

Page 38 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://dx.doi.org/10.5256/f1000research.7573.r10806

F1000Research

4.

5.

6.

1.

2.

Regrading DE and multiple testing: It is worth mentioning that the "p-value" returned is a nominal

. The Wald test p-values are not necessarily valid p-values in all experiments. Though "byp-value
the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05", this
only applies to valid p-values. And if FDR is computed by adjusting nominal p-values, the nominal

 may not be actual FDR either.FDR

In diagnostics, Fig 14 is a useful tool. We find that the joint distribution the p-values and baseMean
provides similar information -- there is no power for genes with very low base Mean. However, one
would not want to guide filtering after the analysis has already been done. Thought the authors
explicitly wrote that the filtering should be independent, placing the example here may leave a
reader with the impression that filtering can be done post hoc. The fact that genes with low counts
have low power can be established without analyzing the actual data, and we recommend making
the filtering decision truly independently, for example, using simulation in the design stage .

Minor issues:
I wonder what the "avgLength" is in the sampleTable. SRR1039513 has avgLength 87 but if I read
in the sam file I see that every read has length 63 just like the others.

The format of the R code is not consistent, such that some of these can be copied correctly, and
some not (mostly involving quotation marks). For example in the second lines of R code,

, the quotation around "airway".dir <- system.file("extdata", package=“airway", mustWork=TRUE)

References
1. Wu H, Wang C, Wu Z: PROPER: comprehensive power evaluation for differential expression using
RNA-seq. . 2015; (2): 233-41 | Bioinformatics 31 PubMed Abstract Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 27 October 2015Referee Report

doi:10.5256/f1000research.7573.r10805

 Davide Risso
Division of Biostatistics, School of Public Health, Li Ka Shing Center, University of California, Berkeley,
Berkeley, CA, USA

Love and colleagues describe a typical RNA-seq gene-level differential expression workflow, using their
popular DESeq2 Bioconductor package, as well as other core and contributed Bioconductor packages.
The paper is a valuable resource for researchers that are new to RNA-seq differential expression (DE)
statistical analysis and/or want to learn how to carry out such analysis within R/Bioconductor.

1

Page 39 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://www.ncbi.nlm.nih.gov/pubmed/25273110
http://dx.doi.org/10.1093/bioinformatics/btu640
http://dx.doi.org/10.5256/f1000research.7573.r10805

F1000Research

1.

2.

3.

4.

The paper is a valuable resource for researchers that are new to RNA-seq differential expression (DE)
statistical analysis and/or want to learn how to carry out such analysis within R/Bioconductor.

The advantage of the presented workflow over pipelines is that (almost) the whole analysis (fromad-hoc
aligned reads to DE results) is carried out within the open source Bioconductor project, facilitating
transparency and reproducibility. I was pleased to be able to completely reproduce all the results and
figures of the paper on my machine (although I was able to download the .Rmd file only from the
Bioconductor and not from the F1000Research article page -- see next paragraph).

I have only a few points that the authors should address.
Most of the critical statistical steps of the DE analysis are "hidden" inside a single call to the
"DESeq" wrapper function. I can see why the authors created and make use of this function in the
workflow, as a typical practitioner will not need to worry about the internal computations. However,
the authors should consider adding a section illustrating the steps carried out by the DESeq
function (normalization, dispersion estimation, model fitting), as this will have a great educational
value.

Right below Figure 6 (mid page 18 in the pdf) the authors state that the model should account for
"differences between cells [...] by using a paired design. [...] We are already set up for this design
by assigning the formula ~ cell + dex earlier." The term "paired design" usually refers to a design
where the same units are tested before and after a treatment, and the effect of the treatment is
usually tested by modeling the differences between the measurements before and after. The
specified formula describes a factorial design, where the effects of treatment and cell line are
included as main effects in the model. Please make sure that the right terminology is used.

I found the section on independent filtering a bit confusing. Reading the fourth paragraph of the
section (first paragraph of page 28 in the pdf), I understand that DESeq2 will decide how many
genes to filter out by maximizing the number of genes with a low adjusted p-value. However, the
next paragraph states that this type of filtering is permissible only if independent of the test
statistics. How can the filtering be independent if the threshold is chosen by maximizing the
number of significant genes?

It would be a nice addition to the manuscript to have a concluding paragraph describing how to
download and reproduce the workflow.

Minor issues:
The first time the authors mention Figure 1 they are referring to Figure 1 of a different paper, hence
this should not link to the authors' Figure 1.

Fourth paragraph of "The DESeqDataSet, sample information, and the design formula": the
authors write colData(dds) although dds is not yet defined.

The third paragraph of page 12 (of the pdf) is a bit confusing. Perhaps, it could be rephrased in
terms of unsupervised problems. It's not clear why somebody with a supervised problem would
want to omit the design at the EDA stage.

Figure 4: the authors say that one should use unnormalized counts to compute the Poisson
distances. Wouldn't this affect the heatmap if there are large sequencing depth differences
between the samples? Or is the function internally adjusting for sequencing depth?

The first paragraph of the "PCA plot" section should be re-written more clearly.

Page 40 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

F1000Research

The first paragraph of the "PCA plot" section should be re-written more clearly.

The "reduced" argument of the DESeq function, used in the "Time course experiments" section,
deserves a brief explanation for those readers that are not familiar with Likelihood Ratio Tests.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Discuss this Article
Version 1

Referee Response 26 Oct 2015
, University of California, Berkeley, USADavide Risso

I would like to suggest to the authors and/or editors to make it easier / clearer for the reader to relate the
F1000Research version of the workflow to the Bioconductor version. Unless I missed it, I did not see any
link or mention of the Bioconductor workflow page (

) here. Will the F1000Research channel replacehttp://www.bioconductor.org/help/workflows/rnaseqGene/
the Bioconductor page as the only repository for the workflows in the future? Or will the two co-exist? If the
latter, perhaps the two pages should link each other, as they complement each other: e.g., the
Bioconductor page has a downloadable package while the F1000Research page has comments and
discussions.

 No competing interests were disclosed.Competing Interests:

Page 41 of 41

F1000Research 2015, 4:1070 Last updated: 01 DEC 2015

http://www.bioconductor.org/help/workflows/rnaseqGene/

