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Abstract

We study the diffusive motion of particles among fixed spherical crowders. The diffusers interact 

with the crowders through a combination of a hard-core repulsion and a short-range attraction. The 

long-time effective diffusion coefficient of the diffusers is found to depend non-monotonically on 

the strength of their attraction to the crowders. That is, for a given concentration of crowders, a 

weak attraction to the crowders enhances diffusion. We show that this counterintuitive fact can be 

understood in terms of the mesoscopic excess chemical potential landscape experienced by the 

diffuser. The roughness of this excess chemical potential landscape quantitatively captures the 

nonmonotonic dependence of the diffusion rate on the strength of crowder-diffuser attraction; thus 

it is a purely static predictor of dynamic behavior. The mesoscopic view given here provides a 

unified explanation for enhanced diffusion effects that have been found in various systems of 

technological and biological interest.

The physical crowdedness occurring within living cells is now known to play a key role in 

intracellular biological processes [1]. This understanding has inspired studies of 

macromolecular crowding effects on protein-protein binding [2–4], transcriptional 

regulation [5], chromatin compaction [6], and enzyme-catalyzed reactions [7]. A key aspect 

of these effects is the fact that molecules diffuse more slowly in the crowded interior of a 

living cell than in a dilute solution [8]. This reduction in diffusion rate has been studied 

experimentally in vivo [9] and in vitro [10], as well by computer simulation [11], with an 

increasing emphasis on how the diffusion of molecules might depend on numerous 

properties of the crowding agents, such as their size and mobility [12].

Here we focus on the effects of a diffusing particle's interactions with the crowding 

obstacles. For instance, a transcription factor protein diffusing in the cell nucleus has 

nonspecific interactions with the surrounding chromatin; these interactions are known to 

play an important role in the kinetics of protein-DNA binding [13]. Furthermore, since 

chromatin is a large complex of DNA and proteins, the timescale of its own motion must be 

slower than that of the diffusing protein. If this separation of timescales is extreme, the 

protein diffuses in an effectively fixed environment. Diffusion among fixed obstacles arises 

in many other contexts as well, ranging from gel electrophoresis to the functioning of fuel 

cells; in all of these contexts we must understand the effects of the diffusing particle's 

interactions with its surroundings.

In this letter we study the diffusive motion of a particle among fixed “crowders.” The 

diffuser has an attractive interaction with the crowders as well as excluded volume 

interactions. We use Brownian Dynamics simulations to calculate the long-time effective 
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diffusion coefficient of the diffuser as a function of the strength of its attraction to the 

crowders. Because the crowders impede the motion of the diffuser, one might expect any 

crowder-diffuser attraction to slow down diffusion. Counterintuitively, however, the 

effective diffusion coefficient is larger among slightly attractive crowders than among 

purely repulsive ones; that is, the effective rate of diffusion depends non-monotonically on 

the attraction strength. An enhanced rate of diffusion due to weak attractive interactions has 

been found previously in several different systems [14-16] and explained in terms 

appropriate to each system. Here we argue that the non-monotonic dependence of the 

diffusion coefficient on the attraction strength is a general feature of diffusion in a crowded 

environment, and show that it can be understood quantitatively in terms of the effective 

excess chemical potential landscape experienced by the diffuser. The roughness of this 

landscape is decreased when a small attractive interaction is added, resulting in faster 

diffusion. This mechanism for enhanced diffusion holds even at low densities of crowders, 

where previous explanations of the non-monotonic behavior in terms of “caging” do not 

apply.

We study the motion of a spherical “diffuser” of radius rd = 1 nm in a space containing a 

number Ncrowd of fixed spherical “crowders” of radius rc = 3 nm; see the inset of Fig. 1. The 

diffusing particle interacts with the crowders via the pairwise potential

(1)

where rt = rc + rd is the sum of the hard-core radii of the crowder and diffuser. This function 

is plotted in Fig. 1. The first part of this potential closely approximates a hard-core 

interaction, using a large but finite force approximately equal to Ularge/δ; here we have used 

Ularge = 40kBT and δ = 0.1 nm. The second part of the potential gives rise to an attractive 

interaction of strength ε and characteristic range λ between the diffuser and the crowders. 

We have used a value λ = 0.5 nm throughout this work. The diffuser moves under the 

influence of thermal fluctuations as well as its interactions with crowders; its motion is 

described by the over-damped Langevin equation. The overall time scale of the problem can 

be described in terms of the diffusion coefficient D0 of the diffuser in the absence of any 

crowders. We define the elementary time .

We study the motion of the diffuser among the fixed crowders by performing Brownian 

Dynamics (BD) simulations using the GROMACS package [17], solving the over-damped 

Langevin equation numerically. A time step of dt = 4.5 × 10−4 τ is used, and the attractive 

interaction is ignored for r − rt > 6 λ. In the Supplementary Materials we show that this time 

step is sufficiently small to accurately simulate the system. The fixed positions of the 

crowders are chosen by performing short simulations with only mobile crowders. In several 

cases we have verified that our results to not depend on the specific random choice of 

crowder positions. The simulations used to determine the effective diffusion coefficient of 

the diffuser are performed with different numbers Ncrowd of crowders in a cubic simulation 

box of side L = 70 nm with periodic boundary conditions. This gives rise to different volume 

fractions  of crowders. We note that because of the nonzero size of the 
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diffuser, the crowder volume fraction ϕ is distinct from the fraction of the volume excluded 

to the diffuser. In order to obtain good statistics on diffuser motion, each simulation is 

performed with 500 diffusers moving independently of each other (without diffuser-diffuser 

interactions). This would not be possible in simulations with mobile crowders, since 

crowder-diffuser interactions would give rise to effective diffuser-diffuser interactions.

The mean-squared displacement (MSD) of the diffuser, 〈r2(t)〉, is calculated from 

simulations lasting from 3 × 105 τ to 2 × 106 τ. By averaging the MSD over 500 

independent diffusers, we obtain meaningful statistics even for time intervals comparable to 

the simulation length. Raw MSD data are shown in the Supplementary Materials. The long-

time effective diffusion coefficient Deff of the diffuser is equal to one-sixth of the slope of 

the MSD curve at long times. To calculate Deff we use the average slope of the MSD curve 

between t = 1 × 104 τ and t = 2 × 104 τ. At these times, the MSD is almost linear with time, 

except for high volume fractions near ϕ = 0.5.

With increasing volume fraction of crowders, the resulting obstruction causes the effective 

diffusion coefficient of the diffuser to decrease (Fig. 2). It might be expected that by turning 

on the attractive interaction between the diffuser and the crowders, the effective diffusion 

coefficient would be further decreased, since the diffuser would on average spend more time 

near the crowders. Instead we find that, counterintuitively, a small attractive interaction with 

the crowders leads to a higher effective diffusion coefficient (see Fig. 2). At a fixed 

crowding level ϕ, the effective diffusion coefficient of the diffuser depends non-

monotonically on the strength ε of its attraction to the crowders. The extent of the initial 

increase in Deff becomes larger with increasing density of crowders, and so does the value of 

ε at which the maximum Deff occurs (Fig. 3a). This value, εmax, was estimated by fitting a 

sixth-order polynomial to the estimated diffusion coefficients as a function of ε and then 

maximizing the resulting polynomial.

A particle diffusing in a rugged potential energy landscape must overcome energy barriers, 

and will always diffuse more slowly than in a flat potential landscape [19]. It is tempting to 

reason that in the absence of any crowder-diffuser attractions, the diffuser experiences a flat 

potential energy in between its collisions with crowders, and that any attractive interactions 

will only slow down diffusion. However, we have just seen that this is not the case. Next we 

will see that the enhanced diffusion due to the attractive interactions may be understood 

from a mesoscopic perspective that relates the effective diffusion rate to the roughness or 

flatness of a coarse-grained effective potential.

We partition space into cubic “cells” intermediate in size between the crowders and the 

simulation box. Viewed on this scale, the diffuser moves from cell to cell, feeling an 

effective potential equal to the excess or non-ideal contribution to the diffuser's chemical 

potential:

(2)

where Utot(r⃗) is the total potential energy of a diffuser at position r⃗. Using the same crowder 

positions as in the BD simulations, we calculate the effective potential for each cell 
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numerically by discretizing the integral in Eq. 2. A measure of the roughness of the effective 

potential landscape is the standard deviation of the cell potentials:

(3)

This standard deviation is plotted in Fig. 3b as a function of the attraction strength ε (right 

vertical axis) for the case where the crowder volume fraction is ϕ = 0.24. The three curves 

show this quantity for different cell sizes (5, 7, and 14 nm in length). In all three cases, the 

roughness of the effective potential landscape depends non-monotonically on ε, reaching a 

minimum near the value at which Deff is maximized. This suggests the idea of a random 

walk on the lattice of cells, with maximum diffusion when the landscape of cell excess 

chemical potentials is flattest. This picture is valid when the cells are large enough that the 

effective steps taking the diffuser from one cell to another are statistically uncorrelated. The 

correlation of successive displacements on short time scales is reflected by the changing 

slope of the MSD as a function of time. The time scale of crossover to the asymptotic 

regime corresponds to a length-scale, weakly dependent on ϕ, of about 6 nm (data not 

shown). The variance shown in Fig. 3b for cell size 14 nm (dotted curve) or 7 nm (dashed 

curve) should therefore provide a good measure of the roughness of the effective excess 

chemical potential landscape.

Equation 2 for a cell's effective potential suggests the following way to estimate the value of 

ε at which Deff is maximized. In the limit of dilute crowders, some cells will contain a 

crowder, while others will not. In the absence of any attractive interactions, cells with 

crowders will have a higher effective potential due to the volume excluded to the diffuser. 

These are precisely the cells whose effective potentials will be decreased when ε is increased 

from zero; the statistical spread in cell effective potentials will decrease as a result, leading 

to a flatter potential landscape and faster diffusion. The fastest diffusion should occur when 

the attractive interactions compensate, in the integral of Eq. 2, for the excluded volume of a 

crowder. Thus diffusion will be maximized when ε is chosen such that

(4)

This results in the estimate of εmax ≈ 1.4 kBT, in good agreement with the values of εmax 

from the BD simulations (Fig. 3a). The integral in Eq. 4 above is proportional to the second 

virial coefficient for crowder-diffuser interaction. In the Supplementary Materials we 

analyze Eq. 4 for the simple case of a square-well crowder-diffuser potential.

The accelerated diffusion in the presence of small attractive interactions is reminiscent of the 

phenomenon of facilitated diffusion [13, 20], in which non-specific protein-DNA attractions 

allow a transcription factor to find its binding site on DNA faster than is possible simply by 

diffusion in the three-dimensional bulk. Our results may indeed be relevant to diffusion in 

chromatin; however, existing theories of facilitated diffusion predict an effective three-

dimensional diffusion coefficient that is strictly decreasing as a function of protein-DNA 
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attraction strength [21]. The reduction in search time in facilitated diffusion is not due to any 

increase in overall diffusion rate, but rather to the geometric fact that the target is on the 

quasi-one-dimensional DNA. For similar reasons, the time necessary for a molecule to 

diffuse through a pore [22] or out of a spherical cavity [23] may be a non-monotonic 

function of its attraction to the confining walls.

Several authors have found non-monotonic dependences in effective diffusion coefficients 

with increasing strengths of attraction between molecules. Huang et al. [24] performed 

simulations of polymers diffusing amongst fixed attractive nanoparticles and noted that as 

the attraction is turned on, the effective diffusion coefficient of the polymers initially 

remains constant before decreasing. In one case (see Fig. 1 of ref. [24]) their data show a 

non-monotonic dependence on attraction strength, but they did not appear to consider this 

statistically significant. The small excluded volume of their nanoparticles implies via Eq.4 

that the maximum of the diffusion coefficient should occur at very small values of the 

attraction strength, making it difficult to resolve. In another work, Lee et al. [25] showed 

that polymers diffusing among fixed spherical obstacles could diffuse faster if they were 

slightly attracted to those obstacles. However, they attributed this effect to a mechanism 

involving the decreased configurational entropy as polymers squeeze through constrictions 

between cages formed by the obstacles. Here we have shown not only that the same non-

monotonic dependence occurs with monomers rather than polymers, but also that it occurs 

even when the crowders are dilute and the cage picture does not apply.

Holmes [14] has used an effective medium theory to calculate the effective diffusion 

coefficient of ions moving in a charged polymeric gel, finding it to be a non-monotonic 

function of the charge of the ion, with a maximum near zero charge. Similarly, Yamamoto 

and Schweitzer [15] used mode coupling theory to study the diffusion of nanoparticles in 

polymer melts and found the effective diffusion coefficient to depend non-monotonically on 

the strength of the polymer-nanoparticle attraction. Finally, Pham et al. [16] simulated 

systems of sticky hard spheres at very high densities near the glass transition, revealing a 

pronounced non-monotonic dependence of the diffusion rate on the attractions between 

molecules. Our results show that the same non-monotonic behavior occurs even at low 

crowder densities, where caging does not occur. Instead we have shown that the non-

monotonicity of the effective diffusion coefficient is attributable to changes in roughness of 

the effective excess chemical potential landscape as a function of the attraction strength. 

This explanation makes no reference to the particular details of the system; therefore we 

expect that enhanced diffusion due to weak attraction interactions is a general phenomenon. 

Indeed, in the Supplementary Materials (SM) we show that the non-monotonic dependence 

of the effective diffusion coefficient on the attraction strength is almost completely 

independent of the details of the arrangement of the crowders; these can be arranged in a 

periodic array or in gel-like structures, for example. The non-monotonicity persists as well 

(although weakly) when the diffuser moves among mobile crowders. Finally, we show in the 

SM that the diffusion rate of a small polymer among fixed crowders has a very pronounced 

nonmonotonic dependence on ε The intuitive picture that emerges is that maximal diffusion 

is obtained when the diffusing particle sees a relatively flat effective potential at the long 

length scale relevant for diffusion. This potential is measured, to first order, by the second 
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virial coefficient between the crowders and the diffusing particle and it is a generic feature 

that does not depend on the details of the interaction potential.

In summary, we performed BD simulations of particles diffusing among fixed spherical 

crowders. As the strength of the attractive diffuser-crowder interaction was varied, the long-

time effective diffusion coefficient of the diffusers changed non-monotonically (Fig. 2). The 

enhancement of diffusion due to attractive interactions has been noted previously in several 

system, but was attributed to aspects of these systems such as the polymeric nature of the 

diffuser [25] or the caging effect that occurs at high densities [16]. Here we have given a 

generic analysis of this counterintuitive effect in terms of the coarse-grained excess 

chemical potential landscape in which the diffuser moves. The roughness or flatness of this 

landscape is a purely static quantity that correlates very well with the effective diffusion 

coefficient of the diffuser (Fig. 3b). Our results suggest that quite generally, the diffusion 

rate of molecules moving in crowded environments will depend non-monotonically on the 

strength of attractions between the diffusers and crowding agents, and provides a way of 

predicting the conditions that will maximize the diffusion rate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plot of interaction potential between crowders (radius 3 nm) and diffusers (radius 1 nm) as a 

function of the distance r between particle centers. The potential is given by Eq. 1. Inset: BD 

simulation snapshot showing crowders (blue) and a single diffuser (red). Crowder volume 

fraction ϕ = 0.24. Snapshot made using VMD [18].
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Fig. 2. 
Diffusion coefficient of the diffuser as a function of the strength ε of the crowder-diffuser 

attractive interaction. The diffusion coefficient is normalized by its value in the absence of 

crowding, and is shown for six different values of the crowder volume fraction ϕ. Top to 

bottom: ϕ = 0.01, ϕ = 0.08, ϕ = 0.16, ϕ = 0.24, ϕ = 0.32, and ϕ = 0.40. Error bars are from 

the standard error of the means of five subgroups of diffusers (100 in each group).
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Fig. 3. 
a: The value of the crowder-diffuser attraction strength, ε, at which the maximum in the 

diffusion coefficient occurs (see Fig. 2), as a function of the volume fraction ϕ of crowders. 

Solid line: simulation results. Dashed line: approximate value given by Eq. 4. b: Black 

curve, left y axis: Diffusion coefficient of diffuser as a function of the strength ε of the 

crowder-diffuser attractive interaction. The volume fraction of crowders is fixed at ϕ = 0.24. 

The diffusion coefficient is normalized by its value in the absence of crowding. Red curves, 

right y axis: Standard deviation of cell free energies calculated using Eqs. 2 and 3 over the 

simulation box of size 70 × 70 × 70 nm. Solid red curve: 5 nm cubic cells. Dashed red 

curve: 7 nm cubic cells. Dotted red curve: 14 nm cubic cells. Note that in this figure we 

show data for negative values of ε, corresponding to crowder-diffuser repulsion.
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