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Abstract

High performance computing is experiencing a major paradigm shift with the introduction of 

accelerators, such as graphics processing units (GPUs) and Intel Xeon Phi (MIC). These 

processors have made available a tremendous computing power at low cost, and are transforming 

machines into hybrid systems equipped with CPUs and accelerators. Although these systems can 

deliver a very high peak performance, making full use of its resources in real-world applications is 

a complex problem. Most current applications deployed to these machines are still being executed 

in a single processor, leaving other devices underutilized. In this paper we explore a scenario in 

which applications are composed of hierarchical data flow tasks which are allocated to nodes of a 

distributed memory machine in coarse-grain, but each of them may be composed of several finer-

grain tasks which can be allocated to different devices within the node. We propose and 

implement novel performance aware scheduling techniques that can be used to allocate tasks to 

devices. We evaluate our techniques using a pathology image analysis application used to 

investigate brain cancer morphology, and our experimental evaluation shows that the proposed 

scheduling strategies significantly outperforms other efficient scheduling techniques, such as 

Heterogeneous Earliest Finish Time - HEFT, in cooperative executions using CPUs, GPUs, and 

MICs. We also experimentally show that our strategies are less sensitive to inaccuracy in the 

scheduling input data and that the performance gains are maintained as the application scales.
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I. Introduction

A novel application scenario that has been arising in the past few years, termed Data 

Science, consists of extracting meaningful knowledge from large datasets collected and 

stored in many different areas of science and engineering. In this scenario, applications 

consist of several stages of data extraction and transformation, by a large variety of complex 

algorithms, which, associated to the large volumes of the raw data, impose a high demand 

for computing power.

Image analysis is one of the applications in this context, for instance in microscopy imaging 

studies like pathology image analysis used to investigate brain cancer morphology. In this 

case, datasets of images with 120K×120K pixels are processed in many steps, such as 

normalization, segmentation, feature computation and classification, in order to derive some 

insight from the raw data. In a study, several executions of the processing are necessary, 

with different parameters and algorithms, in order to explore a variety of aspects of the data 

and the process. However, in order to achieve reasonable execution time for the study to be 

feasible, significant computing power need to harvested.

Concomitantly, a novel trend in computer systems’ architecture is the utilization of large 

clusters of nodes with high-end processors associated with compute-intensive, massively 

parallel co-processors (www.top500.org). Two of the most popular co-processors are the 

GPUs and Intel Xeon Phi. These co-processors have emerged as alternative architectures as 

the golden standard of frequency scaling broke down in the first decade of the century. It 

consists of massively parallel architectures privileging ALU operations over I/O and control 

flow operations. The end result is that the co-processors can yield very high compute density 

if certain criteria is matched by the application and its data.

The hiatus between the complexity of the data science algorithms and that of the current 

high performance platforms has given a new boost to computer system research and several 

novel frameworks [1], [2], [3], [4], [5], [6], [7], [8] have been proposed to bridge the gap, 

providing high level programming abstractions for algorithm design while allowing efficient 

execution on current hardware. One such system is Extreme DataCutter [9]. In this 

framework applications are represented by hierarchical data flows and each stage of the 

application may be replicated and assigned for computation in several nodes of a hybrid 

distributed memory machine.

The focus of this paper is to explore the cooperative execution of a pathology image analysis 

application used to investigate brain cancer morphology on hybrid systems equipped with 

CPUs, GPUs, and MICs. More specifically we propose, implement and evaluate 

performance aware scheduling techniques, which take into account that a given device is 

more efficient for specific tasks, to maximize the utilization of hybrid systems. 

Consequently, we make the pathology image analysis application computational feasible.

We evaluate the performance of our proposed schedulers against traditional scheduling 

strategies and show that they significantly outperforms the traditional ones, such as 

Heterogeneous Earliest Finish Time (HEFT), in cooperative executions using CPUs, GPUs, 

and MICs. We also experimentally show that our strategies are less sensitive to inaccuracy 
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in the scheduling input data and that the performance gains are maintained as the application 

scales.

II. Motivating Application

This work is primarily motivated by our in silico studies of brain cancer [10], which intends 

to find better tumor classifications using complementary datasets of high resolution whole 

tissue slide images (WSIs), gene expression data, clinical data, and radiology images. WSIs 

may have several layers of 120K×120K pixels. The basic work flow in our application has 

the following stages: 1) preprocessing as color normalization,2) segmentation of cells and 

nuclei (objects), 3) extraction of a set of shape and texture features per object, and 4) 

classification based on object features. The most time consuming phases of the application 

are segmentation and features computation and, as such, they have been our focus for 

execution in large-scale hybrid machines.

The segmentation stage detects cells and nuclei and delineates their boundaries. It consists 

of several operations, forming a data flow graph (see Figure 1). The operations in the 

segmentation include morphological reconstruction to identify candidate objects, watershed 

segmentation to separate overlapping objects, and filtering to eliminate candidates that are 

unlikely to be nuclei. The feature computation stage derives quantitative attributes in the 

form of a feature vector for individual segmented objects. The feature types include pixel 

statistics, gradient statistics, edge detection, and morphometry. Most of the features can be 

computed independently.

In a previous work [11], [12], we have implemented and evaluated the performance of these 

operations on CPUs, GPUs, and on the Intel Xeon Phi (MIC). The operations were 

implemented on all devices using the same parallelization strategy and level of 

optimizations. CPU code was implemented in C++, which was annotated with OpenMP for 

execution on MIC. The GPU versions were implemented in CUDA. The speedups attained 

by the operations on accelerators, using a single CPU core execution as baseline, are 

presented in Figure 2.

We have classified these operations in three groups with similar computation and data 

access patterns: (1) Regular data access: RGB2Gray, Morphological Open, Color De-

convolution, Pixel Stats, Gradient Stats, and Sobel Edge; (2) Irregular data access: 

Morphological Reconstruction, FillHoles, and Distance Transform; (3) Operations that rely 

on atomic instruction: Area Threshold and Connected Component Labeling (CCL). These 

characteristics along with computation intensity of operations were correlated with 

processor specifications and our own benchmarks to explain their performance. More 

detailed analysis can be found in our earlier work [11].

In this work, we are interested in providing efficient strategies for cooperative execution on 

hybrid systems, equipped with multiple accelerators. The ideas and strategies proposed in 

this paper are based on the following observations from Figure 2: (i) there exists a high 

variability on the speedups achieved by the same processor as different operations are 

considered; (ii) the relative performance among processors (CPU, GPU, and MIC) varies 

according to the operation executed. These facts suggest that different processors are more 
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efficient for particular types of operations (or data access and computation patterns). 

Further, an efficient scheduling for cooperative execution on hybrid systems should take into 

account these performance variabilities to maximized the aggregate computing power of a 

heterogeneous machine.

III. Extreme DataCutter

The Extreme DataCutter (EDC) [9] is a runtime system for heterogeneous environment, 

which supports the execution of data flow applications. Such as in DataCutter [13], each 

stage of the application may be replicated and assigned to different nodes of a distributed 

memory machine. In EDC, applications may be expressed as a hierarchical data flow in 

which an application stage may be implemented as another data flow of finer-grain 

operations. EDC executes applications using a bag-of-tasks style for assignment of coarse-

grain stage instances to nodes of the machine, which is combined with a task dependency 

resolution scheme to assert that stages are only assigned for execution after dependencies are 

resolved.

An Manager-Worker model is employed by the system to schedule and execute the 

application coarse-grain data flow, as presented in Figure 3. The user is responsible for 

developing a part of the Manager code that instantiates the coarse-grain stages and sets 

dependencies among them. Each node of the compute environment executes a single 

instance of the Worker process, and stage instances are assigned for computation to Workers 

in a demand-driven way until all application stage instances are executed. The Manager-

Worker communication implemented in Message Passing Interface (MPI).

A Worker is able to use all the resources within a compute node (i.e., CPU cores, GPUs and 

MICs). Multiple stage instances may be assigned to the same Worker concurrently in order 

to fully utilize the devices, the maximum number of which is a parameter called Worker 

Request Window Size. As shown in Figure 4, a Worker is built from several components. 

The Worker Communication Controller (WCC) is responsible for communication with the 

Manager. The management of computing devices is executed with a Worker Resource 

Manager (WRM). Once a stage instance is received for execution, it may instantiate a data 

flow of finer-grain operations to carry out the stage computation. These operations/tasks are 

dispatched for computation by the WRM, which will assign tasks for execution to the 

available devices. The WRM creates a thread for each CPU core, GPU or MIC available. 

The device manager threads notify the WRM once they become available, and the WRM 

scheduler selects one of the tasks with dependencies resolved for execution. After all 

operations dispatched by a stage instance have finished their execution, WCC notifies the 

Manager which releases the dependencies of the completed stage instance.

IV. Cooperative Execution on Hybrid Systems

This section describes the deployment of our application on EDC and describes our 

proposed scheduling strategies.
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A. Application Deployment on EDC

In order to create a high performance version of the application, we implemented multiple 

versions of the fine-grain operations within the segmentation and feature computation stages 

(Figure 1): C++ for CPUs, CUDA for GPUs an C++ with OpenMP annotations for the Intel 

Phi, as described in our earlier work [11]. The application was then deployed using EDC for 

parallel execution on a distributed memory machine. We used segmentation and feature 

computation as the first level, coarse-grain stages, each of which were implemented using 

finer-grain data flow tasks. The finer-grain tasks are then scheduled to the different devices 

within a compute node as per our proposed scheduling algorithms.

Our application also partitions the input images into multiple tiles that are independently 

analyzed by the coarse-grain stages, allowing separate instances of them to be created per 

image tile. Moreover, the entire application graph is only known at execution time as 

features are computed based upon the image segmentation. EDC’s dynamic computation 

graph composition capability comes in handy in this scenario, allocating compute resources 

as needed. The application was profiled beforehand to measure execution times of the 

individual operations, which were used to emulate the skeleton of the application and 

evaluate the proposed schedulers.

B. Performance Aware Scheduling

We now propose our scheduling strategies for efficient execution on heterogeneous systems 

with accelerators. As mentioned earlier, operations may achieve different benefits according 

to the platform used. Therefore, we propose performance-aware task scheduling techniques, 

which take into account performance variabilities to better utilize hybrid systems. The 

proposed strategies, described below, are implemented in Extreme DataCutter’s WRM 

module, and are used to schedule fine-grain tasks created within each stage of the 

application to CPUs, GPUs, and/or MICs.

Performance-Aware Dequeue Adapted Scheduler (PADAS): is the first strategy we propose. 

It is implemented using a single queue that stores tasks sorted according to their expected 

speedup on the accelerators. If the expected speedup on a MIC is higher than that on a GPU, 

the task is inserted in a sorted order starting at head of the queue, and it is placed just before 

a task with smaller expected speedup on a MIC is found. A similar approach is used when 

speedup on a GPU is higher than on a MIC. In that case, the insertion starts in the other end 

of the queue (tail), and the task is placed just before a task with smaller speedup on a GPU. 

This strategy intends to use a single queue in which tasks more appropriate for a MIC, for 

instance, would be in one end of the queue, whereas tasks with highest speedups for GPUs 

would be in the other end. Similarly to other scheduling strategies implemented in this work, 

the assignment of tasks to devices is carried out on a demand-driven basis as the thread 

managing a computing device becomes available. If the available device is a MIC, the task 

first task in the head of the queue is selected, and the task in the tail is chosen in the case of a 

GPU. When the available processor is a CPU core, the a task in the middle of the queue is 

selected for execution. The actual point in the middle of queue refers to the limit between 

tasks inserted by MIC and GPU (see Figure 5). This approach aims to assign tasks 

inefficiently computed by accelerators to CPU cores.
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Performance-Aware Multiqueue Scheduler (PAMS): is a variation of the first strategy in 

which sorted queue is created per type of computing device used. For example, if CPU, 

GPU, and MIC are used cooperatively in an execution, three queues are instantiated. 

Further, every task is inserted in all queues, which are sorted in a decreasing order according 

to the expected speedup for that device. The CPU queue is sorted according to the maximum 

speedup value of the tasks in other devices, i.e., max(GPU Speedup; MIC Speedup). The 

goal is to use CPU cores to execute tasks that have low performance in all other devices. 

Finally, when a tasks is requested, the head of the queue relative to that device (highest 

speedup) is retrieved, and the task selected is removed from other queues. To quickly access 

and remove the task from other queues, we maintain a pointer to its location in the neighbor 

queue (see Figure 5).

The performance-aware scheduling policies we proposed use speedup estimates to maintain 

the order of tasks in the queues. Thus, if speedup estimates are accurate enough to not 

modify the order of tasks in the queues, the performance of scheduler will not be affected. 

As we present in the experimental evaluation, the time-based scheduling policies (e.g., 

Heterogeneous Earliest Finish Time (HEFT) tend to be more sensitive to these estimates, 

requiring more accurate estimates. It is also important to notice that if all tasks ready for 

execution are more efficiently executed by a single device, other processors will still be used 

to compute those tasks whenever they become idle. However, our policies will select the 

task that benefits the most from the available device.

V. Experimental Evaluation

The experimental evaluation was carried out using a distributed memory cluster machine 

called Stampede. Each node on this Linux cluster is equipped with a dual socket Intel Xeon 

E5-2680 CPU, 32GB of main memory, and at least one an Intel Xeon Phi SE10P 

accelerator. It also includes 128 nodes with the an Intel Phi and a NVIDIA K20 GPU, which 

are primarily used for visualization. The nodes are connected using Mellanox FDR 

Infiniband network. The codes used in our evaluation were compiled using Intel Compiler 

13.1 and “-O3” optimization flag, and Intel Phi based codes run on offload mode. The set of 

images used as input are those collected in our brain tumor studies [10], which are sliced 

into 4K×4K tiles for parallel computation.

For sake of evaluation, we have also developed other scheduling policies to compare with 

our proposed performance-aware scheduling: First Come, First Served (FCFS) and 

Heterogeneous Earliest Finish Time (HEFT). FCFS keeps a single queue of tasks, which are 

dispatched for execution in a demand-driven basis in the order they are created. HEFT uses 

a queue for each processing unit employed (CPU core, GPU, or MIC). The task distribution 

across queues is computed according to the processing capacity of each unit, based on 

expected execution time of previous tasks. It maintains a history of execution times and, 

thereby, assigns a task to the processing unit that minimizes the finish time of that task. 

HEFT is also implemented in other systems, such as StarPU [14].
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A. Evaluating Schedulers Performance

Our first set of experiments evaluates the cooperative execution on a CPU-GPU-MIC 

environment with regards to the scheduler used. The application is executed using 1 GPU, 1 

MIC, and 14 CPU cores for computation: the remaining 2 CPU cores are used to manage the 

accelerators. The application workload consists of about 800 image tiles, which generates 

10,800 fine-grained tasks for execution. Additionally, we varied the number of coarse-

grained pipeline stages concurrently active with a Worker (Worker Request Window Size) 

to evaluate the impact of the decision space to the performance of the schedulers. The 

window size is increased from 16 (number of processors used for computation: CPU cores + 

accelerators) until it has negligible impact to the performance. Speedups and execution times 

used as input to the schedulers were collected in previous runs on a subset of the data.

The performances of the application for FCFS, HEFT, PADAS, and PAMS are presented in 

Figure 6. As shown, FCFS and PADAS attained similar execution times, with a slightly 

better performance of the latter. Additionally, the variation of the window size had little 

impact on FCFS and PADAS. Further, HEFT has achieved poor performance with small 

window sizes, but was able to outperform FCFS and PADAS with window sizes higher than 

45. A large decision space (window size) is important for HEFT, because it allows for the 

scheduler to better balance work among processors within a node and to reduce miss-

assignment of tasks.

Finally, the PAMS scheduler proposed in this work reached shorter execution times than 

other polices for all window sizes. For instance, in the configuration with window of 80, 

PAMS is about 1.16× faster than HEFT. It is also noticeable that PAMS is less sensitive to 

window sizes. It is desirable for a scheduling policy to attain high performance with small 

window sizes, since this metric directly affects the amount of load imbalance observed 

among Workers assigned for execution with different nodes of a distributed memory 

machine. In the next section, we present a detailed study of the scheduling policies.

B. Understanding the Behavior of Schedulers

In order to better understand the performance of each scheduler, we have profiled the task 

assignment decisions of each policy to correlate it with the performance of tasks on each 

device. The relative performance and weight of operations to the overall application 

execution time are presented in Figure 2. It is important to recall that: (i) a high performance 

variability exists among operations, because of their different computation intensity and data 

access patterns, making operations more suitable for different processors, and (ii) operations 

have a different weight to the execution and, as such, miss-assignment of operations will 

have different impact to the performance.

The profile of the tasks/operations assigned for each of the available processing units (CPU, 

GPU and MIC) according to the scheduling policy used: FCFS, PADAS, HEFT, and PAMS, 

for a fixed window size of 80 is presented in Figure 7. First, it is shown that the FCFS 

assignment to computing devices is nearly the same for all operations. As such, FCFS is not 

able to take advantage of performance variability among operations. The PADAS scheduler 

computed a scheduling in which devices were used for different tasks, but it lead to little 
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performance improvement as compared FCFS. The analysis of scheduling of operations 

with higher execution times (PreWatershed, RBC and ReconNuclei) shows that PADAS 

correctly used the GPU for PreWatershed, but a significant amount of PreWatershed tasks 

were also computed using CPU that is inefficient for this operation. Further, PADAS 

computed most of RBC tasks using CPU, whereas it is more appropriate for execution with 

the accelerators. The evaluation of the Sobel operation also shows that PADAS was not able 

to perform a good distribution of tasks, since it mostly used GPU but ReconNuclei is better 

suited for MIC.

The task assignment profile of HEFT is presented in Figure 7(c). First, we may notice that 

HEFT has executed most of tasks with short execution times using CPU cores, 

independently of their performance/speedup on available devices. In addition, HEFT has 

assigned the PreWatershed tasks exclusively to accelerators, but GPU is twice faster than 

MIC for this operation and, as a consequence, PreWatershed should be executed with higher 

percentages using GPU. Since this task represents about 40% of the application execution 

time, its correct assignment is of major importance to attain good performance. Finally, the 

profile of PAMS shows that it (i) has correctly assigned most of PreWatershed to GPU; (ii) 

used MIC to compute tasks for which this device is efficient, such as ColorDevonv, 

FillHoles, Gradient, PixelIntensity, and Sobel; and, (iii) CPU was used in operations not as 

efficiently executed by accelerators, including AreaThreshold and BWLabel.

C. Varying the Processors Configuration

This section evaluates the schedulers with different processors configurations: CPU-GPU 

(15 CPU cores and 1 GPU), CPU-MIC (15 CPU cores and 1 MIC) and CPU-GPU-MIC (14 

CPU cores, 1 GPU, and 1 MIC). The workload used is the same employed in previous 

sections.

The execution times of the schedulers are presented in Figure 8. As shown, FCFS attains the 

worst performance among for all configurations. In cooperative executions using two types 

of processors, CPU-MIC or CPU-GPU, PADAS and PAMS achieved similar execution 

times. In this configuration, both schedulers basically perform the same scheduling using 

different data structures: a single queue ordered by speedup vs. two queue sorted by 

speedups. Additionally, PADAS and PAMS have better performance than HEFT in the same 

settings. Further, in the configuration with CPU-GPU-MIC, PAMS outperform all other 

scheduling strategies as discussed in previous sections. It is also important to highlight that 

the use of GPU always lead to good performance, e.g., best CPU-GPU execution time is 

about 1.27× faster than best CPU-MIC execution time.

D. Sensibility to Inaccurate Estimations

This section evaluates schedulers with regards to impact of accuracy in input metrics 

(execution time and speedup) to schedulers performance. For sake of this evaluation, we 

have conducted an experiment in which errors were inserted in a controlled manner to 

expected execution times of operations. For schedulers using speedup, this value was 

derived from execution times with errors. Additionally, we varied the error inserted in 0%, 
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10%, 25%, 50%, 75%, and 100% of the expected execution times, with equal chance of the 

error inserted be an increasing or a decreasing of the execution time.

The performance of the schedulers is presented in Figure 9. As shown, the performance of 

speedup based schedulers, PADAS and PAMS, are little impacted as error rates are 

increased. In contrast, the HEFT time based scheduler dramatically suffers with error rate 

increases. HEFT is even slower than FCFS for error rates higher than 50%. These results are 

important to show that the performance scheduling strategies based on speedup are very 

insensitive to error estimates, and still working well even with very high error rates. The 

PAMS with 0% error rate is only 1.07× faster than PAMS with 100% error rate.

E. Scalability Results

This section evaluates the application using a distributed memory cluster machine. The 

example application, described in Section II, is a hierarchical pipeline with first level having 

segmentation and feature computation stages, with each of the stages being implemented as 

another pipeline of fine-grain operations. We evaluate the CPU-only version of the 

application, which uses all 16 CPU cores in each node, and cooperative versions using 

CPUs, GPUs, and MICs with differ scheduling strategies.

The strong scaling evaluation is presented in Figure 10. The experiments used 6,379 4K×4K 

image tiles as input. All versions of the application scaled well, and the best cooperative 

executions using PAMS are about 2.2× faster than the CPU-only executions for all number 

of nodes. Additionally, as presented, PAMS is nearly 1.2× faster than HEFT, and the 

improvements are maintained as the number of nodes is increased.

VI. Related Work

The efficient execution on hybrid systems equipped with CPUs and accelerators is a 

challenging problem, which requires, for instance, optimized implementation of application 

operations for multiple processors and scheduling of work among heterogeneous devices. 

Recently, a number of runtime systems [2], [3], [4], [5], [6], [15], [16], [8], [17], [18], 

compiler techniques [17], and domain-specific libraries [19] have been proposed to reduce 

the programming effort and complexity involved in porting applications to these systems.

Execution on distributed CPU-GPU platforms has been the target of a number of projects 

[5], [6], [15], [16], [8], [17], [18], [20]. Ravi et al. [17] developed compiler based translation 

of generalized reductions to CPU-GPU systems. DaGuE [6] and StarPU [5] express 

computations as a Directed Acyclic Graph (DAG) and were evaluated for linear algebra 

applications. OmpSs [8] also executes data flow applications, which are parallelized via 

compiler from user annotated code. XKaapi [7] also supports cooperative execution on 

CPU-GPU machines using a multiversioning scheme in which operations may have multiple 

implementations targeting different computing devices.

The study of applications performance on the Intel’s Xeon Phi co-processor is another 

increasingly important topic of research [21], [22], [23], [24]. Linear algebra algorithms 

have been implemented for the MIC [22], [24], as well as the Lattice Quantum 
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Chromodynamics (LQCD) method [21]. In [25], the authors evaluate the sharing of 

coprocessors among multiple machines by adding support for offloading computation to an 

Intel Phi on a remote node. A detailed evaluation of the overheads and benefits of using 

OpenMP to parallelize operation to Intel Phi was also recently carried out [23].

In our work, we target the cooperative execution of a scientific data analysis pipeline on 

distributed hybrid systems equipped with CPUs, GPUs, and MICs. The motivating 

application is developed as a hierarchical pipeline, which allows for fine-grain operations in 

coarse-grain stages to be exported for scheduling on devices in a node. Most of the previous 

works deal with task mapping for applications in which operations attain similar speedups 

when executed on a GPU vs a CPU. In contrast to previous research, we argue that 

performance variability of internal tasks of an application is crucial to attain high 

performance. Our proposed performance-aware scheduling policies have shown to be 

significantly more efficient than other competitive scheduling techniques, such as HEFT, for 

hybrid systems equipped with CPUs and accelerators. Additionally, we expect that our 

evaluation on cooperative execution using CPUs and multiple accelerators may provide 

clues on the potential benefits of cooperative execution on state-of-the-art accelerators. To 

the best of our knowledge, this is the first work to investigate the cooperative use of CPUs, 

GPUs, and MICs.

VII. Conclusions and Future Directions

In this work, we evaluated the execution of a pathology image analysis application on hybrid 

systems equipped with CPUs, GPUs, and MICs. We proposed two performance-aware 

scheduling techniques, which take into account performance variabilities across different 

tasks to better utilize hybrid systems. Our proposed strategies were implemented in the 

Extreme DataCutter runtime system, and were used to schedule fine-grain tasks created with 

each stage of the application across heterogeneous devices.

We experimentally evaluated our proposed approach with 800 image tiles, which generates 

10,800 fine-grained tasks for execution. We compared our proposed schedulers with two 

well known scheduling policies: FCFS and HEFT. Our results showed that the PAMS 

scheduler achieved shorter execution times than the other polices, being 1.16× faster than 

HEFT, which presents the second shortest execution time. We also showed that our 

proposed performance-aware strategies, PADAS and PAMS, are less sensitive to inaccuracy 

in performance estimation data, in contrast to the HEFT time based scheduler, which suffers 

dramatically as the error increases. Finally, our experiments showed that the application 

scales well with EDC and the best cooperative executions, using PAMS, are about 2.2× 

faster than the CPU-only executions for any number of nodes.

As future work, we intend to improve our proposed performance-aware PAMS and PADAS 

taking advantage of the insights gained from the contributions of this work, to further 

enhance the efficiency of pathology image analysis application. And also evaluate PAMS 

and PADAS in others data flow applications.
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Fig. 1. 
Pathology image analysis application data flow. The Segmentation and Feature Computation 

(coarse-grain) stages of the application are decomposed into another graph of finer-grain 

operations, which are assigned for execution with heterogeneous devices.
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Fig. 2. 
Speedups of the application fine-grain operations when executed with accelerators, using the 

single CPU core as a reference. The percentage of the operations execution time (weight) 

with regards to the whole application execution time is also presented.
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Fig. 3. 
Extreme DataCutter Architecture Overview.
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Fig. 4. 
Worker Process Environment.
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Fig. 5. 
Proposed Performance-Aware Scheduling Strategies
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Fig. 6. 
Performance of schedulers as the number of pipeline tasks concurrently assigned to a 

Worker (Worker Request Window Size) varies.
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Fig. 7. 
Profile of task assignment to devices for each of the tasks/operations executed in our 

application, fixed window size of 80, and different scheduling policies.
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Fig. 8. 
Performance of schedulers in cooperative executions using different types of processors.
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Fig. 9. 
Performance of scheduling policies as different error levels are inserted in estimated 

execution times of operations.
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Fig. 10. 
Multi-node strong-scaling evaluation.
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