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Synopsis

Genes linked to ALS susceptibility are being identified at an increasing rate owing to advances in 

molecular genetic technology. Genetic mechanisms in ALS pathogenesis appear to exert major 

effects in ~10% of patients, but genetic factors at some level may be important components of 

disease risk in most ALS patients. Identification of gene variants associated with ALS has 

informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, 

facilitated research to develop new ALS biomarkers, and supported the establishment of clinical 

diagnostic tests for ALS-linked genes. Translation of this knowledge to ALS therapy development 

is ongoing.

Key terms

Amyotrophic lateral sclerosis; ALS; Familial ALS; Genetics; Phenotypes; Genetic testing

Background

Familial incidence of ALS was described in scattered publications beginning in the mid 

1800s but received limited attention in the literature until the report in 1955 by Kurland and 

Mulder, which suggested that ALS may be familial in nearly 10% of cases (1–2). The 

application of molecular genetic techniques to ALS, marked by the report in 1993 of linkage 

of the superoxide dismutase 1 (SOD1) gene in familial ALS, signaled an increasing focus on 

genetics in ALS as a means to gain insights into the pathogenesis of the disease, identify 

therapeutic targets and facilitate diagnosis (3). In recent years a rapidly expanding list of 

genetic variations linked to ALS and their related clinical and pathological correlates 

continues to provide key insights into the causes of ALS and inform therapy development 

(4).

This review examines genetic correlates of classical ALS demonstrating combined upper 

and lower motor neuron signs, but some of the genes discussed may be associated with pure 

lower motor neuron and pure upper motor neuron phenotypes, and in some cases 
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frontotemporal dementia and parkinsonian features. Technological developments that have 

facilitated recent advances in ALS gene discovery are briefly discussed, and efforts to 

translate growing knowledge of ALS genetics into patient care are noted. In line with 

recommendations of the International Human Genome Society, DNA sequence alterations 

associated with disease are referred to in terms such as “genetic sequence variants” or 

“sequence variants” rather than “mutations,” recognizing that pathogenicity of some ALS-

associated gene variants is less well established than for others (5).

Recent technological developments and ALS gene discovery

Advances in molecular genetic technology and capacity for handling extensive data sets 

generated by large scale DNA sequencing have had significant impact on discovery of new 

gene mutations linked to ALS (4, 6–7). In addition to “first generation” methods such as 

genetic linkage analysis and candidate gene analysis relying on linked DNA markers in ALS 

pedigrees, newer approaches including genome wide association studies (GWAS) and “next-

generation” sequencing techniques such as whole exome sequencing and whole genome 

sequencing have allowed the search for ALS-linked genes to be conducted in large sample 

sets derived mainly from patients with no family history of ALS and in families from which 

relatively few DNA samples may be available (6–8). GWAS optimally requires large case 

control sample sets, generally at least several thousand samples, and is based on the concept 

that variants of a given gene commonly associated with ALS may be present in a sufficient 

number of patients to be detectable if enough patients are studied (6). Next-generation 

technology leverages high-throughput, large scale parallel DNA sequencing of essentially all 

expressed coding sequences (whole-exome sequencing) or the entire genome (whole 

genome sequencing) in conjunction with software and computing capacity able to sort and 

align short segments of overlapping DNA sequence and efficiently analyze of the 

tremendous amount of sequence data produced. Whole exome or whole genome sequencing 

produce essentially complete data on all protein-coding genes or on the entire genetic 

sequence, respectively, allowing identification of wide range of potential DNA variants 

potentially associated with ALS (6–8).

Clinical spectrum of ALS genetics

Increasing evidence from clinical and basic research suggests that ALS has multiple causes 

with an important, although varied, genetic component (4, 9). Genetic factors in ALS range 

from highly penetrant ALS-linked gene variants to sequence variants with seemingly limited 

impact on disease susceptibility (6). Phenotypes associated with these sequence variants 

include classical ALS, primary lateral sclerosis (PLS), and progressive muscular atrophy 

(PMA) (4, 6, 8). An important ‘extramotor’ feature associated with some gene variants 

linked to ALS is frontotemporal dementia (FTD), which may develop with, prior to, or after 

onset of motor signs in ALS, and as FTD alone (10–11). Less common clinical features 

associated with some ALS-linked gene variants include extrapyramidal features and 

inclusion body myopathy (4, 12). While familial ALS is mainly an adult-onset disorder, a 

few genes associated with ALS may have phenotypes characterized by juvenile onset (6, 8). 

Although some clinical patterns may tend to occur in association with specific ALS gene 

variants, in clinical practice significant overlap among phenotypes limits practical 
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application as a means to ascertain patients likely to carry a specific ALS-linked gene 

variant (12).

Genetic susceptibility to ALS

ALS clinical registry data and more recent meta-analysis based on prospective population 

based registries suggest that up to 10% of ALS patients have a family history of ALS in a 

first- or second-degree relative, generally classified as familial ALS (FALS) (8, 13). The 

remaining 90% of patients with no evident family history of ALS are designated as sporadic 

ALS (SALS), a potentially misleading designation for several reasons. First, persons with 

ALS associated with a causative gene variant may lack a family history of ALS as a result of 

reduced penetrance or small family size. In addition, family history may be incomplete or 

inaccurate owing to incomplete family history, incorrect diagnoses in ancestors, or death 

from other causes prior to onset of ALS in relatives genetically at risk (14).

Several studies have investigated the risk of developing ALS in relatives of ALS patients in 

efforts to quantitate genetic contributions to ALS susceptibility. An investigation in Sweden 

of the relative risk of ALS in siblings and children of ALS probands that did not exclude 

FALS probands found a relative risk of 9.7 (95% CI = 7.2–12.8), and two other studies, one 

in UK that considered only SALS patients, and a US study that included FALS and SALS 

patients, reported an approximately 1% risk of ALS among first degree relatives of an ALS 

patient (15–17). Further, estimates of the heritability of ALS, a measure of the extent of 

phenotypic variability that is attributable to genetic variation, provide additional evidence 

that genetic factors play a significant role in sporadic as well as familial ALS. In a study of 

identical twins that included twins with or without a history of ALS in other relatives 

heritability was estimated to be about 76% (95% CI=60–86%) for twins with a family 

history of ALS, and approximately 61% (95% CI=38–78%) for twins with no other family 

history of ALS (18).

Recently it has been suggested that genetic contributions to ALS may represent the 

inheritance of risk variants of multiple genes, acting interdependently to cause ALS (19). 

The hypothesis that ALS may be oligogenic implies that at least two pathogenic ALS gene 

variants are required to initiate disease. Several studies have shown that a subset of FALS 

and SALS patients carry at least one known ALS-linked gene variant in conjunction with a 

second potentially pathogenic variant and offer support for the oligogenic concept of ALS 

genetics, but these data have been questioned on the basis that the second gene variant may 

represent a benign variant, potential cohort selection bias and small sample size, and further 

validation was recommended (6, 8). Regardless of the extent to which an oligogenic 

mechanism is proven in ALS pathogenesis, available data suggest that genetic risk for ALS 

probably represents combined effects of multiple genes that establish a person’s overall 

genetic susceptibility, acting in conjunction with environmental and random effects leading 

to disease onset (8, 12).

Familial inheritance patterns in ALS

Inheritance of most forms of familial ALS is autosomal dominant although autosomal 

recessive and X-linked dominant familial ALS also occur. Different modes of inheritance 
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may be associated with the same gene depending on the specific sequence variant involved, 

as noted below (12). In practice there has been some agreement that ALS is considered 

familial if at least one first- or second-degree relative is reported to have ALS (20). 

However, the presentation of ALS and FTD in first degree relatives in some families, and 

observed co-occurrence of ALS with FTD in some ALS patients, was considered in a 

recently proposed algorithm for the diagnosis of familial ALS (Table 1) (14). Within that 

framework, a seemingly sporadic ALS patient with a family history of FTD in a first-degree 

relative would be considered to have possible familial ALS (14). Validity of this concept is 

supported by the discovery that an abnormal expansion of a hexanucleotide repeat 

(GGGGCC) in chromosome 9 open reading frame 72 (C9ORF72), a gene of unknown 

function further discussed below, is the most common gene variant linked to ALS and is 

also commonly associated with ALS-FTD and pure FTD (21–22). While there remains no 

formally agreed upon definition of familial ALS in the literature, the proposed working 

definition based on a history of ALS in a first degree or second degree relative, or 

potentially in the case of a history of FTD in a first-degree relative seems adequately 

supported (Table 1).

Gene variants linked to ALS pathogenesis

A growing number gene variants associated with Mendelian inheritance of ALS have been 

reported (Table 2). In outbred populations approximately 60–70% of FALS is accounted for 

by known ALS-linked genes (8). However, reports of families in which linkage to known 

loci has been excluded indicate further genetic heterogeneity (23–25). With some 

geographic variation, the C9ORF72 hexanucleotide repeat expansion accounts for 

approximately 40% of FALS in North America and Europe, while SOD1 variants linked to 

disease are found in about 12%, transactive response DNA binding protein 43 (TARDPB) 

and fused in sarcoma (FUS) gene variants account for a few percent each, and other less 

common or rare gene variants are found in the remainder (8). As mentioned, these figures 

may vary depending upon the population being considered; for example, sequence variants 

such as the C9ORF72 hexanucleotide repeat expansion in ALS patients in Finland, and 

TARDBP in ALS patients in Sardinia are significantly more frequent as causes of FALS than 

in the US or other parts of Europe, and SOD1 variants are rare among ALS patients in the 

Netherlands (22, 26–27).

Although associations between the foregoing gene variants and FALS are well established 

each is also found infrequently in SALS patients. The possibility of incomplete information 

regarding the family history may be the basis for some of these observations, but 

documented nonpenetrance is established for the C9ORF72 repeat expansion and for some 

SOD1, TARDBP, and FUS variants (28–33). De novo occurrence of sequence variants 

associated with ALS appears to be uncommon, but has been documented in a single report 

of a SOD1 variant, and in multiple reports on FUS variants (34–36). The main message from 

these observations is that absence of a family history of ALS may not rule out the presence 

of a gene variant associated with FALS, although the likelihood is modest, approximately 

~7% in the case of the C9ORF72 repeat expansion, 1–2% for SOD1 variants and ~1% for 

TARDBP, FUS, and VCP variants (8).
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Four ALS causative genes linked to over 50% of FALS patients are discussed briefly below 

in order based on relative frequency of association with ALS. These genes are also the most 

the most likely to be involved in SALS patients found to carry a recognized ALS-linked 

gene variant.

Chromosome 9 open reading frame 72 (C9ORF72)

A GGGGCC hexanucleotide repeat in the first intron of a gene that encodes a protein of 

unknown function on chromosome 9, C9ORF72, is the most common gene variant 

associated with FALS, found in 40% of FALS and about 6–8% of SALS patients, with 

ethnic variation as noted above (37). “C9FTD/ALS” phenotypes include classical ALS 

(infrequently PMA or PLS), ALS/FTD, and FTD, as well as dopa non-responsive 

parkinsonian and Huntington disease phenotypes (38–41). FTD or less severe 

frontotemporal cognitive impairment in C9FTD/ALS patients with ALS may arise with, 

prior to or after onset of motor signs in up to 50% of patients (42). Inheritance is autosomal 

dominant with incomplete penetrance; median age of onset is 58 years, ranging from the 4th 

through 9th decades (37). Genetic anticipation, the onset of C9FTD/ALSALS at earlier age 

in affected offspring than in affected parents, was suggested by some reports but is not 

confirmed (38, 43–44). Normal repeat length is 2–10 G4C2 units; expansions larger than 20 

units are reported with c9FTD/ALS but minimum repeat length linked to disease is not 

established (21–22, 44). Molecular pathogenesis of C9FTD/ALS may include 

haploinsufficiency of C9ORF72 proteins and neurotoxicity from RNA-based gain of 

function mechanisms, although data increasingly support the latter as the primary 

component (45–46). Support for the diagnosis of C9FTD/ALS can be obtained at autopsy 

owing to the presence in brain of distinctive neuronal inclusions reactive for p62, ubiquitin 

and dipeptide repeat protein species bidirectionally transcribed from the repeat expansion, 

referred to as C9RAN proteins (47–48). These changes occur on a background of ubiqutin- 

and TDP-43-positive inclusions in neurons and glia of affected brain regions, similar to that 

in sporadic ALS (49–51). DNA testing for the repeat expansion is generally based on a 

polymerase chain reaction (PCR) screening test which does not reliably quantitate repeat 

number beyond about 50 repeats (21–22). Southern blot, the ‘gold-standard’ for 

confirmation of the presence of abnormal C9ORF72 repeat expansions, is technically 

demanding and may not allow precise determination of repeat length in patients with 

relatively long repeats but should be performed if PCR screening is ambiguous regarding the 

presence or absence of an abnormal repeat expansion (21, 44). An additional issue is that 

repeat length varies across and within tissues and estimates of repeat length in blood may 

not reflect repeat length in brain (52).

Superoxide dismutase 1 (SOD1)

Sequence variants in the Cu/Zn superoxide dismutase gene (SOD1) on chromosome 

21q12.1, were the first causative gene variants identified in ALS (3). Native SOD1 protein 

catalyzes reduction of superoxide to hydrogen peroxide; molecular pathogenesis of SOD1 

ALS is not established but several lines of evidence point to a toxic gain-of-function 

mechanism (12). Disease-linked variants are mainly point mutations and account for a 

approximately 12% of patients with FALS and 1–2% of SALS, with ethnic variation in 

prevalence (3, 8). Over 160 pathogenic SOD1 variants are known, with significant 
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geographic variation reported for some variants (12). Inheritance with all but one of these is 

autosomal dominant. The SOD1 D91A variant, found mainly in ALS patients in Sweden and 

Finland, is associated with a relatively slowly progressive motor with autosomal recessive 

inheritance (53). Phenotypes of SOD1 ALS include classical ALS and PMA, often with 

asymmetrical lower limb onset; when upper motor neuron signs are found lower motor 

neuron signs tend to predominate (54). Age of onset in most reported patients with SOD1 

ALS is approximately 47 years with greater variability in disease duration than for age of 

onset (54–55). However, age at onset and severity may vary significantly depending upon 

the variant involved, and within families for some variants such as SOD1 I114T, and 

penetrance may be < 100% (30, 55–57). Frontotemporal cognitive impairment is rare in 

SOD1 ALS (12). Pathological hallmarks of SOD1 ALS in post mortem brain and spinal cord 

include intracellular neuronal and astrocytic protein aggregates marked by ubiquinated 

neuronal and astrocytic inclusions reactive for SOD1 in motor and non-motor systems (54). 

DNA testing for SOD1 variants is available through clinical laboratories to establish a 

genetic diagnosis of SOD1 ALS (58).

Transactive response DNA binding protein 43 (TARDBP)

Identification of TARDBP variants in ALS patients followed the discovery in 2006 that 

neuronal cytoplasmic inclusions immunoreactive for ubiquitin, a pathological hallmark in 

the large majority of cases of FALS and SALS, are also immunoreactive for TDP-43 (59). 

Recognition at that time that about half of patients with pathologically proven 

frontotemporal lobar degeneration (FTLD, the pathological basis for the clinical syndrome 

FTD) have similar TDP-43 immunoreactive inclusions established a pathological link 

between ALS and FTD, and led to the concept that ALS, ALS-FTD and FTD represent a 

clinical and pathological spectrum referred to as TDP-43 proteinopathies (60). Gene variants 

in TARDBP, which encodes the 43-kD TAR DNA-binding protein 43 (TDP-43), are found 

in approximately 4% of FALS and 1% of SALS, with some regional variation. (8, 29, 32). 

TDP-43 regulates gene expression and RNA splicing (60). Available evidence suggests that 

dysregulation of gene expression, including RNA splicing, attributed to pathogenic 

TARDPB variants, in conjunction with a toxic gain-of-function of mutant TDP-43 protein, 

contribute to neurodegeneration but the causal mechanism is not established (61). More than 

30 sequence variants have been associated with TARDBP ALS, most in the C-terminal 

glycine-rich domain; inheritance in all is autosomal dominant (60). Clinical phenotypes 

linked to pathogenic TARDPB variants include classical ALS and rarely Parkinson disease 

or FTD (62–66). Upper limb onset is reported to be more common in TARDBP ALS and 

survival somewhat longer than in SALS generally, but in clinical practice these differences 

have limited utility in identifying patients with TARDBP ALS (64). Pathology of TARDPB 

ALS is similar to most cases of SALS pathology, demonstrating neuronal cytoplasmic 

inclusions immunoreactive for TDP-43 throughout the brain, but particularly in motor 

cortex, spinal cord, basal ganglia and thalamus (60). DNA testing for ALS-linked TARDPB 

variants is available through clinical laboratories (58).

Fused in sarcoma (FUS)

Variants in the gene fused in sarcoma (FUS) are linked to autosomal dominant ALS in about 

4% of FALS and 1% of SALS patients (8, 33, 67–68). FUS appears to regulate DNA and 
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RNA metabolism and be involved in RNA transcription, splicing and processing; gene 

sequence variants that alter these functions may contribute to neurodegeneration but the 

molecular pathogenesis of FUS related neurodegeneration is not fully defined (69). 

Pathogenic FUS variants include point mutations and other structural defects, and are 

notable for several reports confirming de novo mutations associated with ALS (35–36, 70–

73). Inheritance is autosomal dominant aside from a single family with apparent autosomal 

recessive inheritance (68). ALS phenotypes include adult-onset ALS, ALS/FTD, and 

juvenile ALS, and rarely as pure FTD (69). A single family with a FUS “ALS-plus” 

syndrome with ocular, autonomic and cerebellar features also has been reported (74). 

Disease progression in juvenile FUS ALS tends to be rapid, without development of FTD 

(75–76). Pathological hallmarks of adult-onset FUS ALS in post mortem brain and spinal 

cord include abnormal protein aggregates immunoreactive for FUS, mainly in the cytoplasm 

but also in nuclei of neurons and glia (33, 77). Juvenile onset FUS ALS demonstrates 

distinctive pathology marked by neuronal basophilic inclusions immunoreactive for FUS 

protein; similar pathology has been reported in adult-onset FUS FTD but rarely for FUS 

ALS (75–76, 78–79). DNA testing to identify FUS variants is available through clinical 

laboratories (58).

Other ALS risk genes and insights from ALS genetics on the pathogenesis of ALS

The list of additional genes with sequence variants associated with ALS and related 

phenotypes continues to grow, aided by technological advances in large scale genetic 

screening in FALS and SALS patients, particularly whole exome analysis in recent studies 

(Table 2) (6–7). Although most of these genes contribute to a relatively small proportion of 

FALS and/or SALS, they and more common FALS genes have offered insights regarding 

ALS pathogenesis. Shared functional characteristics of protein products of these genes and 

related post mortem pathology have directed attention to specific molecular pathways in 

ALS pathogenesis, and in turn has supported development of molecular models of ALS 

pathogenesis and development of new therapeutic strategies (61, 80–81).

Pathogenic TARDPB and FUS variants found in ALS and recognized functional and 

structural similarities between TDP-43 and FUS protein focused attention on potentially 

disordered RNA processing and splicing in ALS generally (33, 62–63, 68). Relevance of 

defective RNA processing to ALS pathogenesis was more recently reinforced by the 

discovery of pathogenic MATR3 and nhRNPA1 variants in ALS patients, as both genes 

appear to have a role in normal RNA processing (82–83). Although the specific function of 

C9ORF72 protein is not established, molecular and pathological evidence in C9FTD/ALS 

offers further support for the concept that disordered RNA processing contributes to ALS 

(45–46, 84–87).

The discovery that mutations in the ubiquilin-2 gene (UBQLN2, which encodes ubiquilin-2) 

are a rare cause X-linked dominant ALS and ALS/FTD in males, with reduced penetrance in 

females, reinforced the concept that disruption of protein degradation pathways may be 

important in ALS (88). Abnormal protein aggregates in affected brain regions in the 

majority of cases of FALS and SALS patients are immunoreactive at post mortem for 

ubiquilin-2, and functional analysis suggests that UBQLN2 mutations resulting in ALS and 
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ALS/FTD are pathogenic owing to disruption of autophagic protein degradation (81, 88). 

Relevance of autophagy in ALS is further supported by associations between sequence 

variants in the genes encoding valosin containing protein (VCP), optineurin (OPTN) and 

TANK-Binding Kinase 1 (TBK1) in ALS (89–92). Protein products of these genes are 

involved in normal protein autophagy (89).

Genes pathogenically associated with ALS and FTD have also been linked to conditions 

involving other organ systems such as bone and muscle, giving rise to the designation 

“multisystem proteinopathy” as a group of genetic disorders demonstrating a wide 

phenotypic spectrum. In addition to VCP and OPTN, sequestosome 1/P62 (SQSTM1/p62), 

heterogeneous ribonucleoprotein A2B1 and A1 (HNRNPA2B1 and HNRNPA1) are genes in 

this category that have been linked to Paget disease of bone, inclusion body myopathy and 

ALS (83, 91, 93). Disease-linked variants in these genes are uncommon in ALS but they 

have implicated toxic conformational changes in RNA-binding proteins with prion-like 

domains, such as TDP-43 and FUS, in neurodegeneration (83, 94).

ALS-susceptibility genes associated with lower risk and potential disease modifying 
genes

Beyond genes noted above, an expanding number of additional genes has been implicated in 

the pathogenesis of ALS, based on varied levels of supporting data, and in some cases 

uncertainty whether reported variants represent modifiers of clinical disease rather than 

direct causative factors (Table 3) (4, 6–7). These variants tend to be uncommon, with limited 

data supporting linkage with ALS; more detailed discussion is beyond the scope of this 

review but further information is available in recent reviews (4, 6–7). Further studies are 

needed to clarify the level of ALS risk associated with these genes and, in some cases 

confirm that the reported variant is associated with ALS rather than being a benign variant 

(6).

Epigenetics of ALS

Epigenetic factors may influence gene expression and disease states through dynamic 

cellular and physiological processes that activate and deactivate parts of the genome. DNA 

methylation is a well studied example shown to be involved in neurodegeneration, and could 

potentially play a role in phenotypic expression of FALS as well as SALS(95). Genomic 

DNA methylation patterns in ALS examined for alterations that could represent disease-

specific epigenetic alterations in ALS have suggested that such changes may influence gene 

expression, but this requires confirmation(96–97). More recent studies focusing on ALS 

associated with the C9ORF72 repeat expansion offer evidence that in this form of FALS 

histone methylation appears reduce expression of the mutant allele, and DNA methylation 

may be associated with less severe clinical phenotype in the form of longer survival and 

reduced mutation-specific pathology in affected brain regions (98–100). More studies are 

needed to confirm these results and investigate the potential role of epigenetic factors in 

other forms of FALS and in SALS. Analysis of epigenetic factors could refine genetic 

testing in ALS if detection and interpretation of epigenetic characteristics becomes a routine 

component of a patient’s genetic risk profile.
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ALS gene testing in clinical practice

Clinical Vignette

A 59-year-old woman with a confirmed diagnosis of ALS has mild bulbar features but is 

mainly disabled by upper limb and less pronounced lower extremity weakness. Symptoms 

began 14 months earlier and upper and lower motor neuron signs are now present. There is 

mild pseudobulbar affect but no features suggestive of neuropsychiatric dysfunction; mild 

depression responded well to antidepressant medication. The patient questions whether her 

children are at risk for ALS.

There is no known family history of ALS. Her father died at 76 of a myocardial infarction 

with no history of neurological disorders. Her mother died of complications of dementia at 

age 63, characterized as “Alzheimer disease” with a clinical course of approximately 4 

years, becoming mute and bedridden toward the end of her disease course with significant 

weight loss. The patient’s only sibling is an older brother who is well. A maternal aunt 

developed dementia and died at approximately age 70 but no details otherwise are available; 

the aunt had a son thought to be alive but the patient has no information otherwise. The 

maternal grandparents are believed to have lived past age 70 without neurological problems.

The family history illustrates issues that can arise in evaluating the possibility that ALS in a 

given patient may be associated with an ALS risk gene. The family history is said to be 

negative with regard to ALS, but the dementia in the patient’s mother had a shorter clinical 

course than is typical for Alzheimer disease, raising the possibility that the patient’s mother 

may actually have had frontotemporal dementia, perhaps even accompanied by undiagnosed 

motor neuron disease. Dementia in the maternal aunt could reflect a familial predisposition 

to dementia, but limited information prevents meaningful conclusions. Family history may 

be clarified by review of family medical records or autopsy reports, but these may be 

unavailable.

If no further family history becomes available a case can be made to discuss with the patient 

the possibility that her disorder could be associated with a C9ORF72 repeat expansion, 

particularly given that frontotemporal dementia is recognized phenotype of the C9ORF72 

repeat expansion. Dementia is also reported in association with other ALS linked genes 

including FUS and TDP-43, although these are less common. Dementia linked to SOD1 

variants, the second most common ALS linked gene after C9ORF72, is rare. Confirmation 

of frontotemporal dementia in the patient’s mother or the aunt would meet criteria for 

possible FALS according to criteria suggested by Byrne et al. (Table 1). A more common 

situation is the question of whether to offer DNA testing if further investigation suggests 

that neither the patient’s mother nor the aunt are likely to have had FTD in the patient 

thought to have SALS.

Considerations in the clinical application of DNA testing in ALS

A challenge for the clinician upon establishing that a patient has ALS is the question of 

whether to offer the patient DNA testing to investigate the possibility that the patient carries 

an ALS-linked gene variant. While confirmation that the patient carries a sequence variant 

associated with ALS offers no proven gene-specific treatment options, research in this area 
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may provide the patient with options for participation in future research trials involving gene 

targeted therapy. Anti-sense oligonucleotide and small molecule therapy has undergone 

early stage testing and similar experimental treatment approaches are anticipated to become 

available in human studies in coming years (86, 101–104).

Clinical features of ALS in general do not provide a reliable basis for separating of FALS 

from SALS in individual patients given the extent of phenotypic overlap(12). Clinical 

characteristics that may offer some insight as to the potential for involvement of one or 

another specific genes in FALS are discussed above. Family history provides critical 

information when available, and criteria noted in Table 1 offer a reasonable basis for clinical 

decision making, recognizing that fully validated criteria are not available(14, 20). In a 

patient lacking a family history of ALS the relevance of a family history of dementia in a 

first- or second-degree relative may be uncertain, as genetic risk applies primarily for FTD 

and it may be difficult to specifically confirm whether or not the cognitive disorder in the 

relative in question was FTD as opposed to dementia on some other basis(14). A further 

confound is that an amnestic syndrome diagnosable as Alzheimer disease is reported 

infrequently in patients with a C9ORF72 repeat expansion(105).

The foregoing discussion regarding DNA testing refers to patients with suspected FALS, but 

in view of data suggesting that approximately 10% of SALS patients may carry a major ALS 

susceptibility gene variant, there are grounds to make people with SALS aware of this 

possibility in order to allow the patient to make an informed decision regarding DNA 

testing(8). Although there may be exceptions depending upon the experience and training of 

the clinician, in most situations ALS patients seeking further information regarding the 

rationale for DNA testing and review of test results should be referred to a genetic counselor 

(106).

An additional issue once the decision to order DNA testing has been made is which test or 

tests to order. Clinical tests for ALS-linked genes are available, including C9ORF72, SOD1, 

FUS and TARDBP, variants of which are found in over 50% of FALS patients (8). Although 

DNA tests can involve screening for several genes ordered as a group, a case can be made to 

consider sequential testing based on published frequency data for individual genes, in which 

case the C9ORF72 repeat expansion is most frequent, followed by SOD1 and then FUS and 

TARDPB variants. Clinical DNA test options are anticipated to increase as new ALS genes 

are identified. Further, as the cost of whole exome and whole genome testing declines it is 

likely that these methods may supplant test panels composed of a limited number of disease-

linked genes. The likelihood that genetic susceptibility to ALS is polygenic and increasing 

knowledge of gene variants that modify clinical phenotype will also motivate the use of 

next-generation screening techniques, in order to support more efficient and cost effective 

evaluation of the genetic risk profile of individual patients.

Conclusions

Although genetic mechanisms in ALS pathogenesis appear to play a major role in the 

development of ALS in a minority of patients, studies suggest that genetic factors at some 

level are important components of disease risk in the majority of ALS patients (8). However, 
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identification of gene variants associated with ALS, regardless of the prevalence or 

magnitude of associated risk, has informed concepts of the pathogenesis of ALS, aided the 

identification of therapeutic targets, facilitated research to develop new ALS biomarkers, 

and supported the establishment of clinical diagnostic tests for ALS-linked genes. It has 

been suggested that a deeper understanding of the genetic landscape of ALS is key to 

recognition of environmental risk factors in ALS given the likelihood that sensitivity to 

environmental risks is influenced by a person’s genetic background (107).

New treatment strategies aimed at blocking expression of ALS gene mutations have 

successfully completed early phase safety testing in the case SOD1 anti-sense 

oligonucleotide therapy, and efforts are underway to introduce small molecule and gene 

therapy targeting expression of the C9ORF72 repeat expansion (86, 102–104). Results of 

studies applying increasingly powerful next generation sequencing methodology to the 

discovery of new ALS risk genes, and work to identify and characterize epigenetic factors 

contributing to ALS pathogenesis are anticipated. These efforts are likely to contribute 

significantly to ALS therapy development and continue to move ALS into the realm of 

individualized medicine.
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Key Points

ALS is genetically heterogeneous with over 50 potential causative or disease 

modifying genes identified, but C9ORF72, SOD1, TARDPB and FUS presently 

account for >50% of ALS-linked gene variants found in ALS patients and variants in 

other genes are relatively uncommon or rare.

Genetic risk for ALS probably represents combined effects of multiple genes that 

establish a person’s overall genetic susceptibility, acting with environmental and 

random effects leading to disease onset.

Clinical features in general do not reliably separate familial from sporadic ALS in 

individual patients owing to phenotypic overlap; family history, including history of 

frontotemporal dementia, aids in recognizing that a patient may have familial ALS.

ALS-linked gene variants can be presently be identified in be identified in ~60–70% 

of patients with familial ALS, a proportion likely to grow, and a pathogenic ALS 

gene variant may be found in an increasing minority of patients with sporadic ALS.
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Table 1

Criteria for the diagnosis of familial amyotrophic lateral sclerosis.

Classification/Level of Certainty Family History

Definite ≥ 2 First- or second-degree relatives with ALS

≥ 1 Relative with ALS and gene-positive cosegregation

Probable 1 First- or second-degree relative with ALS

Possible Distant relative (third degree or beyond) with ALS

Sporadic ALS patient with no family history but positive for a FALS gene

≥ 1 First- or second-degree relative with confirmed frontotemporal dementia

Definitions: First-degree relatives: parents, children and siblings; second-degree relatives: grandparent, aunts/uncles. Adapted from Byrne, et al. 
(14).
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Table 3

Genes associated with potential causative or disease modifying effects in ALS

Gene Protein Function

APOE(135) Apolipoprotein E Lipoprotein metabolism, immune regulation

ARHGEF28 (136–137) Rho guanine nucleotide exchange factor (GEF) 28 Regulates integrin and growth factor signaling pathways

CHGB(138) Chromogranin B Neuroendocrine secretory granule protein

CHRNA3 (139) Neuronal acetylcholine receptor subunit alpha-3 Nicotinic acetylcholine receptor subunit

CHRNA4 (140) Neuronal acetylcholine receptor subunit alpha-4 Nicotinic acetylcholine receptor subunit

CHRNB4 (139) Neuronal acetylcholine receptor subunit beta-4 Nicotinic acetylcholine receptor subunit

CX3CR1(141) CX3C chemokine receptor 1 Chemokine receptor

DPP6 (142–144) Dipeptidyl-peptidase 6 Alters expression/properties of voltage-gated K+ 
channels

DPYSL3(145) Dihydropyrimidinase-Like 3 Class 3 semaphorin signaling, cytoskeletal remodeling

ELP3(146) Elongator acetyltransferase complex subunit 3 Transcript elongation

EPHA3 (147) EPH receptor A3 Neighboring cell signaling, axonal segregation during 
development

EPHA4(147) EPH receptor A4 Neighboring cell signaling, repair after nerve injury, 
angiogenesis

ERBB4; ALS19 (148) V-erb-B2 avian erythroblastic leukemia viral oncogene 
homolog 4

Tyrosine protein kinase involved in cell signaling; 
potential effects on anti-apoptosis and gene expression

ERLIN2 (149) Endoplasmic reticulum lipid raft-associated protein 2 Endoplasmic reticulum-associated degradation of IP3 
receptors

EWSR1 (150) EWS RNA-binding protein 1 Gene expression, cell signaling, RNA processing and 
transport

GRN(151–152) Progranulin Regulation of cell growth

FGGY(143) FGGY carbohydrate kinase domain containing Phosphorylation of carbohydrates

HFE(153–154) Hemochromatosis Iron absorption

ITPR2 (155) Inositol 1,4,5-trisphosphate receptor Mobilization of intracellular Ca2+ stores

KIFAP3 (156) Kinesin-associated protein 3 Small G-protein

MAOB(157) Monoamine oxidase B Mitochondrial metabolism of neuroactive and vasoactive 
amines

MAPT(158) Microtubule-associated protein tau Supports microtubule assembly and stability

NEFH(159–160) Neurofilament heavy polypeptide Intracellular axonal and dendritic transport, axonal 
structure

PON1, 2,3(161) Paraoxonase Hydrolysis of organophosphates

PPARGC1A(162) Peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha

Transcriptional coactivator, regulates genes involved in 
energy metabolism

PRPH (163) Peripherin Cytoskeletal protein

SMN1(164) Survival of motor neuron 1 mRNA processing

SPAST (165–167) Spastin Microtubule function

SS18L1 (168–169) Synovial sarcoma translocation gene on chromosome 
18-like 1

Neuronal chromatin-remodeling, neurite outgrowth

TAF15 (94) TATA box binding protein (TBP)-associated factor RNA polymerase II gene transcription

TMEM106B(170–171) Transmembrane protein 106B Lysosomal trafficking, dendrite morphogenesis and 
maintenance
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Gene Protein Function

TREM2(172) Triggering receptor expressed on myeloid cells 2 Immune system regulation

UNC13A(173–174) Unc-13 homolog A Synaptic neurotransmitter release

VEGF(175) Vascular endothelial growth factor Vasculogenesis and angiogenesis factor

ZNF512B(176–177) Zinc finger protein 512B Regulation of transcription
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