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Abstract

Background—Age-related macular degeneration (AMD), left untreated, is the leading cause of 

vision loss in people older than 55. Severe central vision loss occurs in the advanced stage of the 

disease, characterized by either the in growth of choroidal neovascularization (CNV), termed the 

“wet” form, or by geographic atrophy (GA) of the retinal pigment epithelium (RPE) involving the 

center of the macula, termed the “dry” form. Tracking the change in GA area over time is 

important since it allows for the characterization of the effectiveness of GA treatments. Tracking 

GA evolution can be achieved by physicians performing manual delineation of GA area on retinal 

fundus images. However, manual GA delineation is time-consuming and subject to inter-and intra-

observer variability.

Methods—We have developed a fully automated GA segmentation algorithm in color fundus 

images that uses a supervised machine learning approach employing a random forest classifier. 

This algorithm is developed and tested using a dataset of images from the NIH-sponsored Age 

Related Eye Disease Study (AREDS). GA segmentation output was compared against a manual 

delineation by a retina specialist.

Results—Using 143 color fundus images from 55 different patient eyes, our algorithm achieved 

PPV of 0.82±0.19, and NPV of 0:95±0.07.

Discussion—This is the first study, to our knowledge, applying machine learning methods to 

GA segmentation on color fundus images and using AREDS imagery for testing. These 
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preliminary results show promising evidence that machine learning methods may have utility in 

automated characterization of GA from color fundus images.
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1. Introduction

1.1. Age-related macular degeneration and geographic atrophy

Age-related macular degeneration (AMD), left untreated, is a leading cause of irreversible 

vision loss in older Americans, in which the intermediate stage affects over 8 million 

persons of at least 55 years of age in the United States [2]. AMD is caused by retinal 

degeneration, with the intermediate stage characterized by the accumulation of drusen, i.e., 

long-spacing collagen and phospholipid vesicles between the basement membrane of the 

retinal pigment epithelium and the basement membrane of the choriocapillaris (Bruch’s 

membrane). It is estimated that there are at least 1.75 million cases of advanced stage AMD 

in the US [9].

The advanced stage of AMD can be associated with vision loss. The advanced stage is 

characterized by damage to the macula through either the “wet” form or “dry” form of 

AMD. Wet AMD is characterized by the ingrowth of choroidal neovascularization (CNV) 

due to the production of vascular endothelial growth factor (VEGF) in eyes with drusen. 

Advanced dry AMD is characterized by geographic atrophy (GA) of the retinal pigment 

epithelium (RPE) involving the center of the macula. Either the neovascular or geographic 

atrophic forms of advanced AMD can result in rapid or gradual loss of visual acuity due to a 

loss of photoreceptors that can be replaced by scar tissue with CNV or degenerate with GA. 

GA is characterized by any sharply delineated roughly round or oval region of 

hypopigmentation, depigmentation, or apparent absence of the retinal pigment epithelium in 

which choroidal vessels are more visible than in surrounding regions. In many classification 

schemes, the diameter of this region must be at least 175 μm in order to be classified as GA 

[6]. Geographic atrophy (GA) is present in nearly 20% of legal blindness cases of AMD in 

North America [22].

Although there is no definite cure for AMD, worsening of vision due to CNV can be slowed 

substantially through intraocular injections of anti-VEGF agents. This reduces the chance of 

vision loss compared with no treatment [10], photodynamic therapy with verteporfin [7], or 

laser photocoagulation [1]. No comparable treatment is currently available for GA. As a 

result, numerous studies are being conducted [31,42] with the goal of slowing GA growth 

rate. As noted in a recent review article, the reduction in the worsening of atrophy is an 

important biomarker for assessing the effectiveness of a given GA treatment [42]. Thus, it is 

of value to reliably monitor GA evolution and measure the growth of GA area to study the 

effectiveness of treatment therapies. It is also important to understand GA worsening that 

occurs as a part of standard care. GA area can be tracked in retinal fundus images, but this 

requires accurate segmentation.
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1.2. Retinal imaging modalities

The most widely available and simplest modality for GA assessment by ophthalmologists is 

color fundus imagery [3]. In color fundus images, GA is characterized by an often strongly 

demarcated area, apparent RPE absence, and choroidal vessel visibility. Examples of fundus 

images are shown in Fig. 1.

While fundus imaging is widely available and deemed a reliable means to measure GA 

growth [41], some fundus images can be challenging to interpret with regard to actual GA 

extent and may lead to ambiguous GA delineation. Alternative retinal imaging modalities 

include fundus autofluorescence (FAF) and optical coherence tomography (OCT). While 

FAF often is not as available as color fundus imaging, these imaging modalities can result in 

clearer and more informative GA depiction [13,20,35].

FAF creates an image using the fluorescent emission from lipofuscin, or the accumulation of 

granules marking cellular aging and oxidative damage in the RPE [14]. Therefore, due to 

RPE loss, GA regions in FAF can be represented distinctly by very low image intensity, 

with clear contrast to the background. While cases of GA may appear more prominently in 

FAF, the foveal area also presents with low image intensity and may be confused with GA 

[14,37].

In spectral-domain optical coherence tomography (SD-OCT), a 3-D cross-sectional image of 

the eye is obtained, providing 3-D structural information of the retina [17,25]. It is also 

possible to visualize GA in a planar manner, similar to what is done with fundus images, by 

creating a 2-D projection image from a 3-D OCT volume [12,23]. Accurate GA information 

can be obtained by using solely the signal reflected from beneath the RPE [45]. However, 

GA segmentation on SD-OCT may be complicated by the difficulty in differentiating the 

RPE from Bruch’s membrane or the photoreceptor layer in areas of atrophy. A recent 

development in OCT, polarization-sensitive OCT (PS-OCT), enables the reliable 

segmentation of the RPE in atrophied areas [34]. PS-OCT images GA lesions using tissue-

specific polarizing properties from the RPE [5,34,39].

For all imaging modalities, manual delineation of geographic atrophy is a time-consuming 

process [40], which motivates the need for automated segmentation methods.

1.3. Prior automated segmentation work

Although there is a substantial body of work in the area of automated retinal image analysis 

(ARIA) [43], most studies deal with the automated characterization of diabetic retinopathy 

[3]. Fewer ARIA investigations have been devoted to the automated detection and 

classification of images of age-related macular degeneration [3,11,18,28,32], and there is a 

relative paucity of image analysis studies dedicated specifically to automated GA 

characterization.

Of those studies looking at automated image analysis of GA, nearly all are applied to FAF or 

OCT. Automated segmentation methods applied to these modalities have produced useful 

results, and GA segmentation using FAF and OCT has been found to agree in the resulting 

delineated tissues [39,45].
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For GA segmentation from FAF, methods include both automated and interactive 

approaches including supervised classification [16,24], level sets [23], watershed [30], fuzzy 

c-means clustering [35], and region growing [15]. Semi-automated GA segmentation of FAF 

images has also been pursued by using commercial packages such as RegionFinder software 

(Heidelberg Engineering, Heidelberg, Germany) [33,36].

For GA segmentation from OCT, several studies convert 3-D volumetric image information 

to 2-D image slices [12,23]. Segmentation methods in the projected 2D images then use 

techniques similar to those used in FAF, such as geometric active contours [12] or level sets 

[23]. Commercial segmentation software is also becoming available for OCT modalities. 

The Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA) platform uses advanced RPE 

analysis to segment GA areas [45]. Interactive automated segmentation on PS-OCT images 

have also shown promising results for GA segmentation [39].

To the best of our knowledge, there is only one prior study focusing on the automated 

segmentation of GA using color fundus images. This color fundus segmentation was 

compared to segmentation on FAF [35]. This study uses a fuzzy c-means method on a 

cohort of 10 patients. The study found that their automated segmentation method worked 

very well for fundus autofluorescence (94% sensitivity and 98% specificity) but less well on 

color fundus images (a sensitivity of 47% and a specificity of 98%). This speaks to the 

challenges of GA segmentation on color fundus images.

The relevance of automated GA segmentation in color fundus images is predicated on the 

fact that fundus imagery is the most widely available and simplest retinal imaging modality 

and has been regarded as the standard for assessing dry AMD [3,27]. This work constitutes 

one of the first and few studies that considers this problem. It is also unique among ARIA 

studies for its use of AREDS images taken from an NIH-sponsored clinical study looking at 

the effect of supplements for mitigating the evolution of AMD. As such, this study 

establishes an initial benchmark for the performance of fully automated GA segmentation in 

a moderately sized dataset of color fundus images. Our study also demonstrates a promising 

– while still preliminary – proof of concept pointing to the potential utility of automated 

segmentation methods for clinical GA characterization in color fundus images.

2. Methods

In this section, we describe our image processing and supervised machine learning algorithm 

for fully automated segmentation of GA. The salient steps of this pixel based algorithm are 

summarized in a diagram in Fig. 2 and discussed in more detail below.

2.1. Image preprocessing

All processes described below are fully automated and implemented in MATLAB 

(MathWorks, Natick, MA). As shown in Fig. 1, raw color fundus images typically appear as 

colored circular objects over a black background. We first crop the image to the largest 

inscribed square in the color region. To reduce processing time, this square region of interest 

is resized to a canonical size of 256 × 256 pixels. This resolution still allows for clear GA 

visualization with reasonable processing time. For our fundus images, this 256 × 256 pixel 
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region corresponds to a physical area of approximately 9.85 mm × 9.85 mm. An example of 

the cropped image is shown in Fig. 3.

2.2. Features selection and computation

The algorithm computes a set of 52 features for each image pixel. We use standard image 

processing features that characterize basic aspects of an image such as color, texture, and 

intensities. For this purpose, the first step of the algorithm converts the fundus image from 

RGB to Lab color space. For completeness, we note here that Lab color space has several 

technical advantages over RGB space. Specifically, metrics for measuring distance between 

colors are essentially Euclidian. In addition, intensity (L for lightness) and colors (the a 

channel is green or magenta hue and the b channel is blue or yellow hue) are held separately; 

thus, one can vary one without varying the others [26].

After converting from RGB to Lab, we compute a histogram-equalized version of each 

dimension in the Lab color space to improve contrast. Next, we mitigate the effect of 

artifactual horizontal intensity gradients that are often present in retinal fundus images. To 

do this, we find the difference between the average intensity of each column of the image 

and the average intensity of the entire image. This difference is added (column by column) 

to the original Lab image. This procedure is carried out for each dimension of the Lab image 

as well as the histogram-equalized Lab images. Next, the Lab images are normalized. The 

intensities of each pixel in L, a, and b are divided by the mean image intensity of their 

representative dimension. These normalized Lab intensities constitute features 1–3.

The histogram-equalized Lab intensities make up features 4–6. We note here that histogram 

equalization ensures that all images span the same intensity range. This creates a more 

standardized intensity metric across all the images in the study. It also helps mitigate adverse 

effects of normalization in features 1–3 that may occur in images with large GA regions 

versus images with very small GA regions.

Next, we incorporate features that quantify information about the pixels’ neighborhood. 

First, the Lab intensity features 1–3 are each divided by the respective median intensity 

values in the surrounding 35 × 35 pixel (approximately 1.35 by 1.35 mm) neighborhood. 

This window size was designed to capture information from smaller-sized GA and its local 

contrasting surroundings. We selected a window small enough to capture information from 

relatively small GA, while not being so small as to be the same size as drusen. This helps to 

prevent isolated drusen or outlier pixels from being misclassified as GA. These relative 

intensity features constitute features 7–9.

Features 10–12 consist of each Lab pixel’s local energy [16]

where I(x, y) is the image intensity at row y and column x, and  is the average 

intensity in the pixel’s 35 × 35 neighborhood.
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Texture is an important characteristic to describe and categorize images, and it is important 

in discerning GA regions from the rest of the fundus image. Consequently, texture is 

quantified for each pixel, in each dimension of YCbCr color space. Similar to Lab color 

space, YCbCr consists of lightness and opponent color dimensions. YCbCr consists of 

luminance (Y) and blue-difference (Cb) and red-difference (Cr) color components [26]. 

Thirteen texture features are computed in each plane, as described by Haralick [21]. These 

make up features 13–51.

The last entry in the feature vector consists of the distance from the pixel to the image 

center, taken as a proxy of the center of the macula, as GA typically presents near the center 

of the macula.

In summary, the 52 features computed for each pixel are as follows: 1–3: L, a, and b 

intensities divided by image mean L, a, and b intensities, respectively 4–6: Histogram 

equalized L, a, and b intensities 7–9: L, a, and b intensities divided by the 35 × 35 

neighborhood median L, a, and b intensities, respectively 10–12: L, a, and b local energies 

13–51: 13 Haralick texture features in each Y, Cb, and Cr color planes, resulting in a total of 

39 texture features 52: distance from the image center.

2.3. Machine learning

We use a supervised machine learning approach [29] to segment the images into GA 

regions, and not-GA regions (i.e. we solve a two class classification problem). The general 

principle of supervised machine learning is to build a model that uses a set of specified 

features to predict labels (GA or not-GA, in our case). First, broadly summarizing, a training 

set is used to “teach” the machine. Next, a machine learning method is used to build a model 

based on this training set. Finally, given a new image, the model will then predict a label for 

each pixel in the image.

In our case, the training set consists of a sample set of color fundus images in which each 

pixel is assigned a value for each of the 52 features and then labeled either GA or not-GA. 

Thus, we did not use healthy control images. However, since the algorithm is pixel-based 

and uses binary classification, every GA image has an abundance of not-GA pixels which 

were used as “control” pixels.

In our study, we use an ensemble learning method called a random forest classifier [8]. The 

random forest method creates a single strong learner resistant to data overfitting and 

relatively robust to noise [8]. In particular, a random forest is an ensemble approach to 

classification that employs a group of weak learners (decision trees) with a random selection 

of features at each node split. Each weak learner will use this random selection of features to 

decide how a piece of data should be classified. At the end, each of the outputs of the weak 

decision tree is used in a majority voting scheme to decide the individual pixel label. In our 

algorithm, for every piece of data, each weak learner “votes” whether a pixel is labeled as 

GA or not-GA. The threshold for classification is 50%. If a piece of data receives over 50% 

of the votes from the weak learners, it is classified as GA. Otherwise, it is classified as not-

GA, outputting a binary classification map. In this study we use a random forest classifier 

with 50 decision trees.
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3. Validation experiments

3.1. The AREDS data used for validation

Color fundus images from the Age-Related Eye Disease Study (AREDS) database were 

used for characterizing the performance of our automated GA delineation algorithm. The 

AREDS was a longitudinal study in which a large number of patients were followed for up 

to 12 years (median enrollment time 6.5 years) including control patients, neovascular AMD 

cases, and geographic atrophy cases [4]. As part of the study, the patients were examined by 

an ophthalmologist on a regular basis, at which time fundus photographs were taken of the 

left and right eyes and subsequently graded by experts at grading centers for AMD severity. 

Specifically, each image was assigned a category from 1 to 4 with category 1 corresponding 

to no evidence of AMD, category 2 corresponding to early stage AMD, category 3 

corresponding to intermediate stage AMD, and category 4 corresponding to one of the 

advanced forms of AMD. During the study, some patients (who were initially diagnosed in 

category 1, 2, or 3) progressed to one of the advanced forms of AMD including GA.

NIH made available for research purposes a set of anonymized ancillary information on 

these patients, including fundus photographs and health data. Only a subset of all 

participants agreed to allow their AMD severity categories available for research purposes. 

This dataset is known as the AREDS dbGAP and a set of these AREDS dbGAP fundus 

photographs were digitized and made available by NIH. Although the images are graded, 

when AMD or GA were present, explicit delineation information was not constructed by the 

grading centers. Thus, for the purpose of our study, GA delineation had to be performed by a 

retina specialist. In our study, we used a subset of 143 color fundus images from 55 unique 

eyes in the AREDS dbGAP (herein shortened to AREDS) database representing varying 

levels of segmentation challenge.

Our team used Inkscape, an open source graphics editor, to manually delineate regions of 

GA. Manual delineations were performed and then carefully vetted and corrected by 

ophthalmologists at the Wilmer Eye Institute of Johns Hopkins University School of 

Medicine who previously had completed their retina subspecialty training. We then 

converted the delineations to binary masks that separate the pixels showing GA lesions from 

the rest of the fundus image so as to compute segmentation metrics.

3.2. Validation method and results

The 143 AREDS images used in this study represented a clear GA diagnostic but a broad 

spectrum of difficulty and ambiguity with regard to exact delineation of the GA lesion 

region. In some images, GA lesions were easy to discern and delineate with high contrast to 

background. GA in other images was very dull, or only faintly distinct as compared to the 

background. In many ambiguous images, the exact extent of the region where choroidal 

vessels were visible was not clear, making exact delineation difficult even to a trained 

grader. Furthermore, many images presented with brighter surrounding drusen.

Of these 143 images, we categorized images as either ambiguous or unambiguous to provide 

an approximate indication of the extent of the challenge and ambiguity of segmentation for a 

qualified clinician. 120 images were deemed by our retina specialist to be relatively 
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unambiguous, meaning the GA area was quickly and confidently discerned. For these 

images, the expected inter-observer variability in GA delineation would be negligible, with 

no room for argument. The remaining 23 images were categorized as exhibiting some 

degree of delineation ambiguity. Our retina specialist was confident that GA was present, 

but its exact extent and borders could be debated.

During the training process, the aggregation of training data was downsampled by a factor of 

8. This dramatically reduced training time, with no significant reduction of classification 

performance.

We used a leave-one-out validation approach to test our machine learning algorithm [38,44]. 

Given a set of n images, training was performed on n − 1 images, and then the nth image 

was used for testing. This process was repeated on all n images, therefore all images were 

tested, with training performed on a non-repetitive data set. Thus, when each image was 

tested, it was an entirely new image that had never been seen during training.

We used five metrics to assess how well the machine predictions compared to the ground 

truth segmentations. The Dice coefficient measures the agreement between the segmentation 

gold standard and the result of the machine-predicted segmentation. The Dice coefficient is 

quantified as 2(A ∩ B)/(A + B), where A is the area of GA in the ground truth, and B is the 

area of GA in the machine prediction. Thus, A ∩ B represents the total GA area belonging to 

both the ground truth and the machine prediction. In the machine-predicted segmentation, 

every pixel will either be a true positive (TP), false positive (FP), true negative (TN), or 

false negative (FN). Sensitivity is quantified as TP/(TP + FN), and measures the capability 

to detect areas of GA. Specificity is defined as TN/(TN + FP), and measures the capability to 

detect the background. Positive predictive value (PPV) is measured as TP/(TP + FP), and 

measures the correctly identified proportion the machine labeled as GA. Negative predictive 

value (NPV) is measured as TN/(TN + FN), and quantifies the correctly identified proportion 

of pixels that the machine classified as background. Note that all of the above metrics range 

from 0 to 1, with 1 corresponding to most accurate.

Validation metrics results are presented in Table 1. As expected, performance was markedly 

better on images of low ambiguity as compared to images of higher ambiguity. Specificity 

and NPV values were high, indicating stronger correct prediction of background pixels. This 

is due to the larger quantity of background pixels than GA pixels in the majority of images. 

Lastly, Dice coefficient, sensitivity, and PPV values have large standard deviations, 

indicating variability in classification performance.

3.3. Feature importance

To gain a sense of feature importance, we performed an out-of-bag prediction error analysis. 

During the random forest learning process, the algorithm will “bag” a set of data points to 

use for learning. The remaining data points are considered “out of bag”. These out of bag 

data points can be used to test the quality of the predictive power that the random forest 

learned from the bagged data points [8,19].
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To estimate the importance of each feature, the increase in prediction error was calculated 

when the values of each feature were scrambled across the out-of-bag observations. If the 

specified feature were important for correct classification, scrambling its values across the 

out-of-bag observations would degrade the predictive quality of the random forest model 

developed from the bagged data points. Likewise, if a specified feature were relatively 

irrelevant for correct classification, scrambling its values across the out-of-bag observations 

would have little impact on the classification error.

For each variable in this analysis, the increase in prediction error was computed for every 

tree and then averaged over the entire ensemble of trees. Finally, this error was divided by 

the standard deviation of the error increase over all trees, leaving a metric quantifying 

relative importance of features.

A detailed bar graph depicting feature importance is shown in Fig. 8. The most important 

features tended to be both absolute and local intensity-based features of the a and b color 

channels. Haralick information correlation textures were the most influential texture 

features, while most others were less important. The seven most important features were, in 

ascending order of importance, b and a intensities (divided by mean), a and L intensities 

divided by local median, b local energy, distance from image center, and b intensity divided 

by local median.

4. Discussion

4.1. Data set and interpretation of results

Our study proposes a fully automated segmentation method using random forests and 

applied to a set of 143 AREDS color fundus images. This is a typical test size for GA 

segmentation studies and ARIA problems in general, in which many studies use of the order 

of 100 or fewer images [43]. Our segmentation results are promising. When compared to the 

only other study known to us addressing this specific challenge (GA segmentation on color 

fundus images) [35], our method produced results that were comparable when we applied 

our algorithm to only ambiguous GA cases, but improved metrics when we computed our 

performance on our overall set of images (including ambiguous or unambiguous GA cases). 

We also performed experiments on a much larger dataset. Overall, this points to a somewhat 

favorable outcome. However, given the difference in data sets and the remarkable variation 

of GA presentation, care should be taken not to draw definitive conclusions and 

interpretations.

4.2. Comparison of segmentation results with prior studies using FAF and OCT

It is important to discuss our results in comparison to the results achieved on FAF and OCT 

modalities. FAF and OCT segmentation methods undoubtedly result in the high quality 

segmentation. Segmentation methods on FAF and OCT have achieved high accuracy, 

reproducibility, and agreement, commonly displaying segmentation accuracy above 0.9 

[12,15,23,24,30,33,35,36,39,45]. However, this disparity in segmentation performance 

between color fundus and FAF and OCT is largely due to differences in imaging modalities 

rather than faults in segmentation method [35]. Indeed, FAF and OCT have GA presentation 

with much clearer contrast, making intensity-based segmentation much more 
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straightforward on FAF and OCT images. For the reasons discussed in the subsequent 

section, the successful segmentation methods applied to FAF and OCT images are difficult 

to directly translate to the color fundus GA segmentation.

Nevertheless, we believe our method does present some inherent advantages. First, it is a 

fully automated algorithm. This means the operator does not affect the output of the 

algorithm, making inter-operator variability a non-factor. Meanwhile, most segmentation 

methods on FAF and OCT require user initiation. It is likely that by modifying our 

algorithm to accept human assistance, performance could be substantially improved. Our 

segmentation method is also pixel-based, meaning at every pixel of the image, the algorithm 

makes a decision on whether or not to classify the pixel as GA or not-GA. Therefore, it does 

not matter what shape or configuration the GA assumes, including cases with single lesions, 

multifocal lesions, or foveal sparing.

4.3. Challenges of color fundus GA segmentation

GA segmentation in color fundus images is a challenging and unsolved problem. As 

previously recognized [13,40], GA delineation in color fundus images can also be difficult 

due to poor contrast, variability in choroidal vessel color presentation, or different types of 

appearances within the same area of atrophy. From our AREDS image set, it is clear that 

GA presentation is indeed remarkably variable, especially from a machine learning 

perspective. This is evident from Figs. 1 and 4–7. GA can present as yellow compared to the 

rest of the fundus. At other times it is red compared to the rest of the fundus. Similarly, it 

can exhibit rich texture or very little texture. The presence of drusen also complicates the 

problem. Drusen are labeled as “not-GA” during machine learning, but drusen often have a 

similar appearance to GA (brighter yellow with respect to the background). Our algorithm 

recognizes the difference between GA and drusen in some cases. However, as shown in Fig. 

6, our algorithm struggled to distinguish drusen from GA in a consistent and reliable 

manner. A mechanism to reliably separate drusen from GA in an automated approach would 

improve the capability of automated GA segmentation in color fundus images. Attempting 

to distinguish GA from not-GA with an automated approach is further complicated by 

variations in photography lighting conditions.

A variety of GA examples and their machine-predicted segmentation are shown in Figs. 4–7. 

Only Fig. 7 was labeled as “ambiguous,” Figs. 4–6 were labeled as “unambiguous.” 

However, despite their lack of ambiguity to a retina expert, the challenges they present for 

automated segmentation are evident. Furthermore, it is important to note a shortcoming of 

the supervised machine learning approach. A predictive machine learning approach is 

developed using training data. So if the training data does not encompass the entire variety 

of GA appearances, it is likely that performance will be poor on a GA image that presents 

quite differently from all images in the training set.

4.4. GA feature selection and feature analysis

Because GA presentation on color fundus images is so variable, we selected generic image 

features in our segmentation algorithm. These features were focused on color intensities and 

textures, also with respect to local neighborhoods. The local neighborhood features 
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incorporated basic size information of GA versus drusen. Our work relied on the premise 

that the random forest classifier will – by design – learn a combination of colors or textures 

that had a strong probability of identifying as GA, and be somewhat immune to 

incorporating features that may be uninformative as long as informative features are also 

used. Our results suggest that this is true to a large extent.

In this study we also set out to discover which are the features most important to 

segmentation performance. Feature analysis showed that color-based intensity features (a 

and b) were generally more important than texture features. Brightness, L, was also 

important, but to a lesser extent. This suggests that GA presentation on color fundus images 

is represented more by color change than brightness or texture change. However, texture is 

still an important cue, with Haralick “information correlation” textures shown to be the most 

influential. However, there does not appear to be a single unique texture that defines GA. 

Instead, certain presentations may have one type of texture, while others may have another. 

The fact that the distance from the center feature scored high as a feature was not a surprise 

however, given that GA presents at the peripheral area of the retina much less often than 

towards the center.

4.5. Future directions and applications

Our results suggest that a fully automated pixel-based machine learning algorithm used to 

classify all GA color fundus images at a clinically useful level of accuracy is still 

challenging. However, as a whole, our machine learning approach demonstrates a promising 

preliminary capability in detecting a large portion of the GA in these color fundus images. In 

images with very clear GA presentation (Fig. 4), our algorithm obtains very good agreement 

with the ground truth. This provides numerous pathways for future investigation and 

potential utility. One is to extend our dataset to more images to train our algorithm to 

incorporate a greater variety of GA presentation. Furthermore, we could investigate 

refinement of feature selection and the possibility of segmentation post-processing. The 

main premise of our method, machine-learning pixel-based classification of GA, could also 

be applied to GA segmentation of FAF images or OCT projection images.

We believe this allows for possibilities for investigation with potential clinical relevance. 

First, one could explore coordination of automated GA segmentation on color fundus images 

with automated GA segmentation on FAF images. It is true that many studies have obtained 

high-accuracy segmentation results in FAF images. However, in the case of parafoveal GA, 

it is difficult to differentiate GA from background in FAF images because the center of the 

macula normally has a decreased AF signal [14,37]. In challenging FAF cases such as this, 

the automated color segmentation algorithm proposed here could be used for joint 

segmentation from both FAF and color fundus imagery for a higher confidence 

segmentation. Most GA segmentation work has not been done using joint FAF and color 

fundus images, despite the fact that many clinicians use the two types of images in 

conjunction during examination.

Second, although our current approach is fully automated, one path for future investigation 

might entail exploring an interactive or semi-automated approach extending from our 

approach. This could be done by tailoring the machine learning towards each individual 
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patient, while having the classifier still provide predictive information from other images 

with different GA presentation, drusen presence, and lighting conditions. This approach 

could be used by incorporating the first visit’s image into training, and then automatically 

segmenting images from follow-up visits. Or, the clinician could select an initial 

approximate region containing GA, as well as a region of background [18]. The machine 

could then incorporate this image-specific information into the training, and then 

automatically provide a more precise and accurate segmentation of the GA. If approaches to 

GA segmentation on color fundus images were made to evolve towards reliable 

segmentation via the aforementioned possibilities, the algorithm could be studied for clinical 

application of analyzing GA growth rates of patients throughout follow-up visits in 

longitudinal studies.

In sum, our approach shows a promising step for computer-assisted and automated 

segmentation of geographic atrophy in color fundus images. This has potential to provide a 

more robust segmentation, especially in coordination with other retinal imaging modalities 

such as FAF and OCT. It offers a baseline for further developments in automated 

segmentation of color fundus images, an area that has been sparsely investigated.

5. Conclusions

We developed a fully automated method using random forest classification for GA 

segmentation using exclusively color fundus images, an image modality that is widely 

available. As shown in this study (Table 1), when comparing the results to ground truth 

obtained from a physician-defined gold standard, we found substantial agreement suggesting 

that this automated method may offer a good baseline for the future study of such automated 

methods applied to color fundus images.
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Fig. 1. 
Row A shows a color fundus image of a healthy eye, with an absence of AMD and 

geographic atrophy. Row B shows two examples of GA that were labeled as unambiguous 

by our retina specialist. Row C shows two examples of GA that were labeled as ambiguous 

by our retina specialist. (For interpretation of the references to color in this figure caption, 

the reader is referred to the web version of this paper.)
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Fig. 2. 
An overview of the segmentation algorithm.
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Fig. 3. 
A color fundus image of GA. The black line indicates the expert-assigned segmentation of 

GA. The red square indicates the region of interest selected by the algorithm for 

segmentation. (For interpretation of the references to color in this figure caption, the reader 

is referred to the web version of this paper.)
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Fig. 4. 
An example of segmentation results of an unambiguous presentation of GA. Note the high 

classification accuracy in this unambiguous image. The top image is the color fundus image 

of the eye with GA. The “Ground Truth” image indicates the expert-assigned segmentation, 

with white pixels corresponding to GA and black pixels corresponding to an absence of GA. 

The “Prediction” image is the GA prediction from our segmentation algorithm. The “Dice” 

image provides the Dice coefficient, as well as a comparison image between the ground 

truth and the segmentation. Pixels that are either white or black were classified the same by 
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both the human expert and the segmentation algorithm. Pink pixels were incorrectly 

identified as GA by the segmentation algorithm. Green pixels were classified as GA in the 

ground truth but missed by the segmentation algorithm. The “Classification Probability” 

image shows the probability that the algorithm would classify a pixel as GA, with red 

corresponding to probability 1 and blue corresponding to probability 0. 0.5 was used as the 

classification threshold. (For interpretation of the references to color in this figure caption, 

the reader is referred to the web version of this paper.)
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Fig. 5. 
An example of segmentation results of GA with inhomogeneous presentation. The GA was 

labeled as unambiguous. Dark choroidal vessels appear within the GA, causing the 

segmentation algorithm to miss some areas of GA. Refer to Fig. 4 caption for an explanation 

of images. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.)
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Fig. 6. 
An example of segmentation results of GA with surrounding drusen. The GA was labeled as 

unambiguous. This GA is reddish in appearance, with surrounding yellow drusen that were 

misclassified as GA. Note the yellow appearance of the GA in Fig. 4 is similar to the 

appearance of drusen in this image. Refer to Fig. 4 caption for an explanation of images. 

(For interpretation of the references to color in this figure caption, the reader is referred to 

the web version of this paper.)
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Fig. 7. 
An example of segmentation results of GA without clear borders. The GA was labeled as 

ambiguous. The algorithm correctly identifies a majority of the GA around its center of 

mass, but fails to identify the GA to the full extent of its soft borders. Refer to Fig. 4 caption 

for an explanation of images. (For interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper.)
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Fig. 8. 
A bar graph of estimated feature importance. Features are labeled on the vertical axis by 

order of importance.
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Table 1

Results of the segmentation experiment. Results are separated into three categories: all GA images (143 

images), GA images with low ambiguity (120 images), and GA images with ambiguity (23 images). 

Performance is quantified by dice coefficient, sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV).

Performance metric All images
(n = 143)

Low ambiguity images
(n = 120)

Ambiguous images
(n = 23)

Dice coefficient 0.68±0.25 0.70±0.21 0.55±0.25

Sensitivity 0.65±0.26 0.68±0.24 0.49±0.27

Specificity 0.99±0.02 0.99±0.01 0.98±0.05

PPV 0.82±0.19 0.82±0.19 0.82±0.20

NPV 0.95±0.07 0.96±0.06 0.91±0.11
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