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Abstract

Asthma is a clinically heterogeneous disorder, whose onset and progression results from a complex interplay
between genetic susceptibility, allergens, and viral triggers. Sphingolipids and altered sphingolipid metabolism have
emerged as potential key contributors to the pathogenesis of asthma. Orosomucoid-like 3 gene (ORMDL3) and the
asthma susceptibility locus 17q21 have been strongly and reproducibly linked to childhood asthma, but how this
gene is functionally linked to asthma is incompletely understood. ORMDL proteins play an integral role in
sphingolipid homeostasis and synthesis, and asthma-associated ORMDL3 polymorphisms have been associated with
early viral respiratory infections and increased risk of asthma. ORMDL proteins act as inhibitors of serine palmitoyl-
CoA transferase (SPT), the rate-limiting enzyme for de novo sphingolipid synthesis, and decreased sphingolipid
synthesis through SPT increases airway hyperreactivity, which is independent of allergy or inflammation. In allergic
models of asthma, the sphingolipid mediators sphingosine-1-phosphate (S1P) and ceramide have been shown to
be important signaling molecules for airway hyperreactivity, mast cell activation, and inflammation. This review will
highlight how sphingolipids and altered sphingolipid metabolism may contribute towards the underlying
mechanisms of childhood asthma.
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Introduction
Asthma is a chronic airway disease characterized by re-
versible airway obstruction, chronic inflammation, mu-
cous production, and airway hyperreactivity. Asthma is a
common and clinically heterogeneous disorder and
poses huge costs to society [1]. The risk for asthma is
determined in infancy and childhood, it is highly herit-
able, and the phenotypes are conferred by both genetic
susceptibility and environmental exposures [2, 3].
Asthma exacerbations are triggered by environmental
stimuli, most often respiratory viruses and allergens. Al-
lergic sensitization commonly occurs in children with
asthma, although up to half of those with mild to mod-
erate disease will be non-allergic [4] and will respond
poorly to current therapies which focus primarily on the

inflammatory and allergic components of the disorder
[5]. The variation in phenotypes suggests distinct under-
lying pathophysiology, and asthma is increasingly being
viewed as a syndrome rather than a single disease [3].
For most asthma types, a genetic predisposition is

present and essential for the “asthmatic reaction” to en-
vironmental stimuli. Over 100 genes have been identified
in association with asthma [2]; among them, the
orosomucoid-like 3 gene (ORMDL3) and the associated
17q21 locus have emerged through genome-wide associ-
ation studies as likely contributors to the genetic suscep-
tibility and underlying pathogenesis of asthma. While
the functions of ORMDL3 are incompletely understood,
it is known to be involved in sphingolipid metabolism
and de novo sphingolipid synthesis [6], suggesting al-
tered sphingolipid metabolism as a contributing factor
in asthma. Ceramides and sphingosine-1-phosphate
(S1P) have been the most extensively studied sphingo-
lipids and are important bioactive signaling molecules
[6, 7]. In addition to their role in asthma,
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sphingolipids have been associated with other pul-
monary disorders including chronic obstructive pul-
monary disease (COPD)/emphysema, cystic fibrosis,
vascular permeability, and acute lung injury [8].

Review
Sphingolipids and asthma
Sphingolipids are a diverse and complex category of lipids
due to their numerous variations in their sphingoid bases,
fatty acids, and head groups [6, 7, 9]. They are key struc-
tural elements in cellular membranes and are essential sig-
naling molecules for a wide range of cellular functions
including growth and differentiation, signal transduction,
immune response, cell proliferation, and apoptosis [7].
Acylation of the sphingoid backbone by specific ceramide
synthases yields different ceramides, which vary by acyl
chain length. Ceramide serves as a substrate for the pro-
duction of complex sphingolipids, including sphingomyelin
and glycosphingolipids. Ceramide can be generated via de
novo sphingolipid synthesis or can be regenerated from
hydrolysis of complex sphingolipids through the recycling
pathways [7, 9, 10] (Fig. 1).
Most studies of sphingolipids and asthma have focused

on inflammatory and allergic mechanisms related to the
sphingolipid mediator S1P [11–19]. S1P is derived from
sphingosine through phosphorylation by two sphingo-
sine kinases (SphK1 and SphK2) which are widely
expressed, including in bronchial epithelium and airway
smooth muscle cells [20]. Through the activation of dif-
ferent signaling pathways, S1P mediates a diverse set of
biological processes, acting as both an intracellular

second messenger and as an extracellular ligand for spe-
cific cell surface G protein-coupled receptors, S1P1–
S1P5 [21]. S1P and SphK have been implicated in airway
smooth muscle cell hyperresponsiveness, lung inflam-
mation, and mast cell activation, all key features in the
pathogenesis of asthma. S1P and the SphK pathways
have therefore been targeted for the development of
sphingolipid-based therapeutic agents, though the role
of S1P and its receptors remains incompletely under-
stood. For example, the immunomodulating agent
FTY720 (Fingolimod), approved for the treatment of
multiple sclerosis, attenuates allergen-induced inflam-
mation, as well as airway hyperreactivity in mouse
models of asthma [12, 22]. This effect was also shown
with N,N-dimethylsphingosine (DMS), an SphK inhibi-
tor [15, 20]. Neither of these has been tested for clinical
use in asthma yet.
In the mouse, exogenous systemic administration of

S1P resulted in increased contraction of the bronchi, in-
creased airway resistance, as well as mast cell and eo-
sinophil recruitment to the lung [18], and enhanced
methacholine-induced contractions in guinea pig tra-
cheal smooth muscle [23]. S1P has also been shown to
be important in immunoglobulin E (IgE)-mediated mast
cell migration and degranulation [24], allergic asthma,
and secretion of pro-inflammatory cytokines [25]. Mast
cells play a central role in the development of asthma,
and cross-linking of FCεR1, the high-affinity IgE recep-
tor, induces SphK activation and S1P secretion [24, 26].
In humans, S1P levels are significantly increased in

bronchioalveolar lavage (BAL) fluid from subjects with
asthma following segmental allergen challenge compared
to control subjects [11]. Decreased protein levels for
S1P1 receptor have been demonstrated in adults with
asthma, and polymorphisms in S1P1 have been associ-
ated with an increased risk for asthma [19]. In addition,
ceramide (C16) levels were noted to be increased in the
exhaled breath collection of seriously ill subjects with
asthma, compared to healthy controls [22].
Ceramides have also recently been implicated in the

pathogenesis of COPD and emphysema. Although not
relevant for the pediatric population, Asthma-COPD
Overlap Syndrome (ACOS), a poorly identified but in-
creasingly recognized entity, could provide some further
clues for the role of sphingolipids in airway diseases. In a
joint statement, ACOS has recently been recognized by
the Global Initiative for Asthma (GINA www.ginasth-
ma.org) and the Global Initiative for Chronic Obstructive
Lung Disease (GOLD www.goldcopd.org) as a distinct
clinical entity, encompassing individuals who have clinical
symptoms that are characteristic of both asthma and
COPD [27]. Like asthma, COPD is characterized by ob-
struction due to smooth muscle contraction, increased
mucus production, and chronic inflammation [27, 28].

Fig. 1 Sphingolipid synthesis. Highlighted are de novo and recycling
pathways of sphingolipid metabolism and the alleged inhibitory
effect of ORMDL3 on SPT
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Also like asthma, COPD is a heterogeneous disorder with
variable clinical phenotypes which is impacted by environ-
mental factors [27, 28]. Cigarette smoke exposure is a
major risk factor in developing this disease; however, most
smokers do not develop COPD [28] suggestive of an
underlying susceptibility to this environmental insult in
those patients. Altered sphingolipids and sphingolipid me-
tabolism has been suggested as a possible mechanism in
this susceptibility [29].
Lung ceramide levels where shown to be higher in hu-

man subjects with emphysema (a specific phenotype of
COPD) compared to those without [30], and the expres-
sion of multiple species of ceramides, dihydroceramides,
glycosphingolipids, and sphingomyelins were shown to
be significantly higher in smokers with COPD than those
in non-smokers [29]. In another recent study looking at
the association between sphingolipid species and differ-
ent COPD phenotypes, plasma sphingolipids were
shown to be inversely related to emphysema severity
and positively associated with severe COPD exacerba-
tions [31].

ORMDL3 and asthma
ORMDL3 on chromosome 17 (17q21) has been strongly
and consistently linked to asthma in multiple ethnic
groups [32–41]. Single nucleotide polymorphisms
(SNPs) within the 17q21 asthma susceptibility locus
achieved genome-wide level significance with childhood-
onset asthma [42] and have been since widely replicated.
Moffat et al. showed that in Epstein-Barr virus-
transformed lymphoblastoid cell lines, transcript levels
of ORMDL3 were positively associated with rs7216389,
the SNP with the strongest association with childhood
asthma [38]. This suggested that variants at this asthma
susceptibility locus may regulate ORMDL3 expression,
having also been confirmed in rhinovirus-infected blood
cells [43].
Polymorphisms at the ORMDL3 locus have been asso-

ciated with increased risk for asthma [34, 44–46], severe
asthma [32, 47], and early viral respiratory infections in
asthma [40]. Infection with respiratory viruses is a well-
known risk factor for persistent wheezing and a risk fac-
tor for asthma later in life [40, 43]. Variants at the 17q21
locus are shown to enhance the association between
early respiratory infections and childhood asthma [37,
40, 43]. In particular, infections with human rhinovirus
(HRV), the most common trigger of asthma exacerba-
tions [48, 49], are associated with a more than 10-fold
increased odds ratio for childhood asthma in children
who carry the asthma-associated ORMDL3 genotype
[43]. Interestingly, this effect was not seen in association
with respiratory syncytial virus (RSV), a commonly asso-
ciated virus with early-onset wheezing and bronchiolitis
in infants and children [43]. Although infection with

HRV is associated with increased risk for the develop-
ment of asthma [40, 43, 50], only a portion of children
exposed go on to develop the disease suggesting that the
host genotype likely plays a role [43]. In another study,
Smit et al. showed that the association between early
viral infection and asthma had a greater than twofold
difference in odds ratio in individuals who were
homozygous for the risk-related alleles at the
ORMDL3-associated SNPs [40]. This association was
further enhanced when children with risk-related variants
were exposed to tobacco smoke in early life [34, 40].
In mouse lungs, ORMDL3 expression can be increased

by a variety of stimuli, such as allergens, tobacco smoke,
and lipopolysaccharides [51]. Although the 17q21 poly-
morphisms which control ORMDL3 expression have not
been associated with atopy [42, 45, 52], some seem re-
lated to T helper cell type 2 (Th2) cytokine responses
[53] and asthmatic responses to allergens [54]. Overex-
pression of human ORMDL3 in transgenic mice showed
an associated increase in airway remodeling (smooth
muscle, fibrosis, mucous production) and an enhanced
IgE response compared to wild-type mice following al-
lergen challenge [55].
Though the underlying mechanisms functionally link-

ing ORMDL3 to asthma remain largely unknown, a
growing body of evidence supports ORMDL3 as contrib-
uting to the etiology of asthma, where it likely partici-
pates in multiple pathways important to its underlying
pathogenesis. In mice, ORMDL3 was shown to be an al-
lergen and Th2 cytokine-inducible gene which regulates
the expression of chemokines, metalloproteinases, and
oligoadenylate synthetases through activation of the un-
folded protein response (UPR). This led to epithelial cell
remodeling through its effect on the sarco/endoplasmic
reticulum Ca-ATPase (SERCA) [51, 55]. In contrast, a
study in human airway epithelial cells did not find in-
flammation or UPR activation to be associated with
ORMDL3 expression [56]. ORMDL3 has also been im-
plicated in endoplasmic reticulum-mediated calcium sig-
naling and stress responses in immune cells [57], as well
as in eosinophil trafficking, recruitment, and degranula-
tion in murine models of allergic asthma [58].

ORMDL3, asthma, and sphingolipid metabolism
Another potential mechanism linking ORMDL3 to
asthma is through alterations in sphingolipid homeosta-
sis and de novo sphingolipid synthesis. The de novo
pathway of sphingolipid synthesis which originates in
the endoplasmic reticulum (ER) is a key mechanism for
regulating cellular levels of ceramide and other sphingo-
lipids [7]. ORMDL proteins act as inhibitors of serine
palmitoyl-CoA transferase (SPT), the rate-limiting en-
zyme for de novo sphingolipid synthesis [59–61], and
regulate cellular ceramide levels [22, 61, 62]. ORMDL3
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is localized to the ER and is highly expressed in airway
epithelial cells [51]. The first step in de novo sphingo-
lipid synthesis begins with the condensation of serine
and palmitoyl-CoA by SPT. The reaction product, 3-
ketosphinganine, is unstable and is rapidly converted to
sphinganine. Sphinganine is further metabolized by dis-
tinct ceramide synthases to dihydroceramides which can
then generate ceramides via dihydroceramide desaturase
[10]. ORMDLs have been shown to mediate the regula-
tion of sphingolipid homeostasis in response to overall
cellular sphingolipid levels and maintain physiologic
sphingolipid concentrations in the face of external per-
turbations [6, 59, 61–63].
Alteration in de novo sphingolipid synthesis has

emerged as a contributing factor in airway hyperreactiv-
ity, a cardinal feature of all asthma types. Given that the
asthma-associated ORMDL3 polymorphisms lead to in-
creased expression of ORMDL3 [38], it has been sug-
gested that asthma-associated SNPs negatively regulate
SPT resulting in inhibited de novo sphingolipid synthesis
[64]. How ORMDL3 regulates SPT activity remains
largely unknown; however, ORMDL has been shown to
form stable complexes with SPT [59, 61], and ORMDL3
expression is dependent on and responsive to the overall
SPT activity of the cell [62, 65].
The regulation of sphingolipid metabolism is complex,

incompletely understood, and involves a network of
multiple interconnected mechanisms [6, 61]. Knock-
down of ORMDL1, 2, and 3 in mammalian cells has
been shown to increase ceramides [22, 59, 61]; however,
the overexpression of ORMDL3 appears to have a differ-
ential response. In airway epithelial cell lines, a modest
overexpression of ORMDL3 decreases ceramide levels
likely due to inhibition of SPT-dependent de novo syn-
thesis. However, robust overexpression of ORMDL3 re-
sulted in overall increased ceramide levels [22, 62]
suggesting a possible contribution of the recycling/sal-
vage sphingolipid synthesis pathways [22] and indicating
that relative cellular concentrations of SPT and ORMDL
are important in the regulation of de novo sphingolipid
synthesis by ORMDL expression [62].
In mouse models, airway hyperreactivity has been as-

sociated with alterations in de novo sphingolipid synthe-
sis through effects on ORMDL and SPT. In a transgenic
mouse model, overexpression of human ORMDL3
showed increased airway responsiveness to methacholine
challenge compared to wild-type mice [55]. Decreased
de novo sphingolipid synthesis either by direct pharma-
cologic inhibition with myriocin or genetic haploinsuffi-
ciency of SPT increases airway reactivity in the absence
of allergic sensitization or inflammation [64]. Increased
hyperreactivity was also noted in isolated human bron-
chial rings which underwent SPT inhibition by myriocin
[64]. In an allergic mouse model, inhibition of SPT with

myriocin was also associated with the exacerbation of
airway hyperreactivity, in recent work by Edukulla and
Lindsley [66]. Although the regulation of sphingolipid
metabolism is clearly complex, these findings suggest al-
tered sphingolipid homeostasis as an important con-
tributor for asthma pathogenesis [67] and remains an
active area of ongoing research.

Conclusions
Sphingolipids, long known as important structural com-
ponents of the cell, have emerged as important cell sig-
naling molecules regulating a wide range of cellular
functions, including cell proliferation and apoptosis, vas-
cular and epithelial integrity, cell contact and adhesion,
innate and acquired immunity, and inflammation [6, 7,
68, 69]. The role of sphingolipids and their effects on
airway function and disease are highly integrated and
complex; though in its early stages, our understanding of
these roles is rapidly expanding. The sphingolipid me-
tabolites S1P and ceramides have been implicated in the
pathogenesis of pulmonary diseases, including asthma.
In addition, alterations in de novo sphingolipid metabol-
ism have been shown to lead to airway hyperreactivity,
the cardinal feature of asthma, without allergic
sensitization or inflammation. Sphingolipid synthesis
thus represents a novel metabolic pathway influencing
airway smooth muscle contractility, and strategies to
affect sphingolipid homeostasis and metabolism hold
promise as novel and more personalized approaches to
treat childhood asthma in the future.
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