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Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical

applications. Biosensing using the rotational freedom of particles has been used to detect

biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle

imaging is a promising new imaging modality that can spatially resolve the concentration of

nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate,

a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge

is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we

demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic

nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the

existing relevant theory and quantify which mechanism should occur in various parameter ranges.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936930]

Nanotechnology’s relevance to medicine is only increas-

ing as we learn to manipulate the human body with objects of

size equivalent to cells and molecules. State of the art techni-

ques from materials science allow the creation of nanoscopic

magnetic particles with moments substantial enough for

remote control and detection. Exposure to lower (audio) fre-

quency magnetic fields is not harmful to the human body and

thus magnetic particles can in principle be controlled and

monitored by magnetic fields in vivo. Biosensing for cancer

biomarkers,1 hyperthermia therapy for cancer cell destruc-

tion,2 and magnetic particle imaging (MPI) for local quantifi-

cation of particle concentrations in vivo3 are exciting

applications of nanotechnology in medicine.

It has long been understood that for a magnetic particle

suspended in liquid, two mechanisms exist to rotate the direc-

tion of the particle’s magnetic moment. The solid state mecha-

nism first described by N�eel involves the restructuring of

electronic states allowing the magnetic moment to rotate inter-

nally.4 The so-called “N�eel rotation” is influenced by mag-

netic anisotropy arising from the crystal structure or the shape

of the particle.5 Simultaneously, the entire particle can rotate

in the fluid, undergoing “Brownian rotation.”6 The direction

of the magnetic moment of the nanoparticle is written m and

the direction of a uniaxial anisotropy or “easy axis” is n.

A common property for imaging, sensing, and therapy

applications is the use of oscillating magnetic fields to acti-

vate rotations in the particles. However, these technologies

can differ in the necessary rotation mechanism and ensuring

a specific rotation mechanism in diverse magnetic field con-

ditions can be paramount for successful application. For

example, biosensing requires Brownian rotation to couple

the nanoparticle rotations to environmental variables (like

viscosity).1,7 Alternatively, MPI requires N�eel rotation, and

any Brownian relaxation necessitates signal corrections to

estimate the nanoparticle concentration quantitatively.3,8

Hyperthermia treatment has been proposed using both mech-

anisms, and great effort has been put into deciphering which

mechanism is occurring, and how to optimize heating

accordingly.9,10 Moreover, because both MPI and hyperther-

mia have some competing requirements (e.g., particle size or

anisotropy), preemptive theoretical advice for the optimal

size or anisotropy is valuable.

It has become typical to use the theory of Rosensweig to

decouple the mechanisms based on their relaxation times.11

However, in each application, experimental work has dem-

onstrated that both effects are present.9,12,13 Though we are

not the first to say, it,14 we are explicit in our statement:

using Rosensweig’s expression for the dominant relaxation

time using the zero-field relaxation times can result in seri-

ously flawed analyses in cases of strong applied magnetic

fields. It is necessary to study the simultaneous stochastic

rotation equations to accurately predict the dynamics in

diverse fields for different applications.

A review of the combined differential equation approach

is found in the excellent work of Coffey, Cregg, and

Kalmykov.6 While the theory has existed, first use of the

coupled formalism in the applied literature is more recent.

The equations can be formulated from first principles with a

generalized torque15 or in a slightly more transparent approx-

imate form.16,17 The complete, coupled equations of motion

track both the direction of the easy axis of the particle n and

the direction of the magnetization m simultaneously. The dy-

namics depends on the relevant viscosity of the fluid g in

[Ns/m2] and hydrodynamic volume of the particle Vh in

[m3]. As typically done, accelerations can be neglected

because nanoparticle motions are dominated by viscous

forces, i.e., they have vanishingly small Reynolds numbers.

The internal magnetization direction m rotates within the

nanoparticle’s magnetic core following the Landau-Lifshitz-

Gilbert (LLG) equation in terms of the generalized total field

H in [T/l0], the electron gyromagnetic ratio c (typically

176 GHz/T), and the LLG damping parameter a¼ 1.a)dbr@Dartmouth.edu
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The combined differential equations are

dn

dt
¼ h

6gVh

� n

dm

dt
¼ c

1þ a2
Hþ am�Hð Þ �m (1)

with generalized torque h15 and total field H that arise from

partial derivatives of the Helmholtz free energy F ¼ U � TS.

We are not considering the clustering of particles, and so, the

entropic contribution is ignored. We express the internal

energy of the particle in the typical Stoner-Wolhfarth pre-

scription18 and thus

U ¼ �lm �Ha � KVcðm � nÞ2 (2)

in terms of an applied field Ha and the magnetic moment

l ¼ MsVc in [J/T] as related to the saturation magnetization

Ms in [J/Tm3] and the magnetic core volume of the particle

Vc in [m3]. This leads to the generalized torque and field

h ¼ @U

@n
� n ¼ 2KVc m � nð Þ m� nð Þ þ hth; (3)

H ¼ � 1

l
@U

@m
¼ Ha þ

2KVc

l
m � nð ÞnþHth; (4)

where we include thermally generated fields Hth and torques

hth that are normal- or Gaussian-distributed and arise from

many microscopic random fields or torques. The frequency

distribution of the noise terms are assumed to be approxi-

mately flat (in the fashion of white noise) with mean magni-

tude zero and with no correlations in time or space. The

magnitudes of the fluctuations include nanoparticle and fluid

parameters as well as the Boltzmann constant kB in [J/K] and

the temperature T in [K]. Thus, the mean is zero hhi
thðtÞi ¼ 0,

and the correlation function is Dirac-delta correlated in time

and Kronecker-delta correlated in space (with i, j representing

Cartesian direction) hhi
thðtÞh

j
thðt0Þi ¼ 12kBTgVhdijdðt� t0Þ.

The thermal fields are similarly defined as having zero mean

value hHi
thðtÞi ¼ 0 with correlations hHi

thðtÞH
j
thðt0Þi ¼ 2kBT

cl
1þa2

a dijdðt� t0Þ.
The unitless anisotropy r, Brownian relaxation time sB,

and the N�eel event time s0 are defined

r ¼ KVc

kBT
sB ¼

3gVh

kBT
s0 ¼

l
2kBTc

1þ a2

a
: (5)

Note that as in Chantrell’s work,19 a is found in the numera-

tor and the denominator of s0, because in the limit of small

and large damping constant, the relaxation time should

approach infinity. There is sometimes confusion over the

expressions listed for the formulation of sN. The most gen-

eral zero-field relaxation times are20

sN ¼
s0 1� 2

5
rþ 48

875
r2

� ��1

if r < 1

s0

2

ffiffiffiffiffi
p
r3

r
exp rð Þ if r � 1:

8>>><
>>>:

(6)

The combined rotation can be simulated numerically

using typical prescriptions.21 Physics commonly uses the

Stratonovich interpretation because white noise is a limit

approximation of colored noise with a correlation time much

faster than the timescales of the nanoparticle dynamics.22 To

achieve convergent solutions, the magnitude of each numeri-

cal step must be below unity (e.g., Dn;Dm < 1). Following

Refs. 22 and 23, for example, we used an integration time-

step 1/100th of the smallest timescale for each simulation.

We also found that using a normalization step as suggested

in Ref. 24 enhanced the convergence, though numerical arti-

facts were still common when the time-step was too large.

In Fig. 1, we have used Eq. (1) to simulate a possible

measurement of the perpendicular relaxation time by polariz-

ing the magnetizations and then allowing them to decay to

equilibrium. For Brownian particles, the easy axis directions

decay exponentially as expð�t=sBÞ. However, this experi-

ment is not well posed to measure the N�eel relaxation time

sN. Imagine that the magnetizations begin polarized in the

positive z-direction while each nanoparticle easy axis points

in a random direction; perhaps, a static field has been applied

to particles in a highly viscous liquid. When the magnetic

field is released, the nanoparticle magnetizations will snap to

align either with or against their nearest easy axis (in this

case uniaxial anisotropy implies one nearest direction in the

upper half plane), resulting in a short-lived asymmetric and

non-zero net magnetization. Only then does the magnetiza-

tion decay to a randomized equilibrium state.

This gedanken experiment presents multiple stages of

relaxation of the magnetization direction. The first is a driven

process dependent on the magnitude of the anisotropy. The

next is a free relaxation to randomized equilibrium where the

magnetization directions are randomized by Brownian and

N�eel relaxation. The timescale of this two stage process can-

not be precisely described by an exponential decay using

FIG. 1. Visualization of a relaxation decay experiment of 100 nanoparticles.

With each easy axis in a random direction (ni yellow dots), the initially polar-

ized magnetization directions (mi purple circles) spread to align with their re-

spective easy axes. Comparing this simulation with exponential decay will not

in general determine the perpendicular sN for larger anisotropy.

223106-2 D. B. Reeves and J. B. Weaver Appl. Phys. Lett. 107, 223106 (2015)



Eq. (6). We can however derive the evolution equation for

the magnetization in the frame of reference of the easy axis.

We examine the early N�eel dynamics of the fast snapping

process (when dn
dt ¼ 0) assuming as in Usov and Liubimov’s

work15 that the stochastic field Hth is ignorable. Rewriting

the second of Eq. (1) in a dimensionless form results in

2s0

dm

dt
¼ n

a
þm� n

� �
�m: (7)

Then, external magnetic field is zero so that the total unitless

field strength is only given by the internal field

n ¼ lH

kBT ¼ 2rðm � nÞn, where n is fixed in time and random-

ized on the unit sphere for each particle. Now because we

have assumed very high viscosity, dn
dt ¼ 0 and we can study

the dynamics projected into the direction of the easy axis.

Letting a ¼ m � n and taking the dot product of both sides of

Eq. (7) with n leaves

2s0

da

dt
¼ 2ra 1� a2½ �; (8)

where we have used jmj2 ¼ jn2j ¼ 1 and ðn�mÞ � n ¼ 0.

Separating variables and integrating, the evolution of the

magnitude of the dot product, a surrogate for the angle

between the vectors, is

a tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

t

sa

1þ exp
t

sa

vuuuut ; (9)

where we identify the alignment timescale as sa ¼ s0=2r.

By the time the argument t=sa ! 10, the alignment is com-

plete. The alignment occurs extremely quickly, on the order

of the N�eel event time, and the alignment rate only increases

with increasing anisotropy.

Inconsistencies with the exponential decay for different

anisotropies are visualized in Fig. 2. Even here, we have

extended the previous decay experiment now allowing the

easy axes to rotate. The evolution of the average magnetiza-

tion direction (written Mz) is plotted in comparison to the

expected exponential decays of form Mz ¼ expð�t=sNÞ in

each panel of Fig. 2. On the left panel, the anisotropy is

small r ¼ 0:1, and the relaxation process occurs freely,

matching the exponential decay formula with equilibrium

perpendicular N�eel relaxation time. On the middle panel,

r¼ 1 and the anisotropy is large enough to distort the expo-

nential decay with the typical perpendicular relaxation time.

On the rightmost panel, r¼ 10 and the N�eel time constant is

larger than the Brownian relaxation time (sB ¼ 50 ls). The

fast relaxation process dominates such that the relaxation

cannot even be fit with an exponential decay and the second

relaxation stage is then Brownian thermalization.

We also model applications that use oscillating applied

fields, with n ¼ n cos 2pft ẑ and f¼ 10 kHz. The combined

simulations concur with previous works that show the high

sensitivity to applied field amplitude in deciding which

mechanism will occur.14 In Fig. 3, we examine the realistic

scales of anisotropy constant r ranging from 3! 30. In the

case of a lower applied field n¼ 4 shown on the left panels,

minimal steady-state Brownian responses occur even as the

anisotropy (and N�eel relaxation time) increases (see the bot-

tom 4th and 5th plots), and the external polarization (direc-

tion of the easy axis Nz) still lags behind the internal

polarization (magnetization Mz). On the right panels when

n¼ 20, an even larger anisotropy is needed to observe

Brownian rotations because the larger applied field is able to

force N�eel rotations. Purely changing the zero-field N�eel

relaxation time by changing r in Eq. (6) does not block the

N�eel oscillations because the equilibrium timescale is no lon-

ger valid. With that logic, the ratio of r=n, the anisotropy rel-

ative to dimensionless field, is important to consider in

predicting which mechanism dominates.

Though the formalism is quite general, we quickly com-

ment on the amount of Brownian and N�eel rotation expected

in specific examples. The saturation magnetization and anisot-

ropy constants for typical magnetite particles are on the order

of 100 kA/m and 10 kJ/m3, respectively. Thus, the sizes of the

particles and the field amplitudes applied can be used to clas-

sify their probable behavior in comparison to Fig. 3. For

example, hyperthermia typically uses particles with 5 nm core

radius and 15 nm hydrodynamic radius and fields and frequen-

cies up to 100 mT/l0 and above 100 kHz.25 Using Eq. (5)

leads to s0 � 10�10; r � 1; n0 � 3, and log10ðsN=sBÞ � �4,

well within the range for expected N�eel rotations. Magnetic

particle imaging uses particles with roughly 15 nm core and

25 nm hydrodynamic radii in 25 kHz, 20 mT/l0 applied

fields.26 This leads to s0 � 10�9; r � 20; n0 � 20, and

log10ðsN=sBÞ � 2, likely leading to predominantly N�eel

FIG. 2. Three regimes of magnetization

decay to disorder with randomized easy

axes. At higher anisotropy, the magnet-

ization decay does not fit an exponential

of the form Mz ¼ expð�t=sNÞ.
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rotations but as has been shown recently, may include some

Brownian rotation especially when a size distribution is pres-

ent.12 In biosensing applications with 10 mT/l0 fields, 20 nm

core and 50 nm hydrodynamic radii particles,1 s0 � 10�8;
r � 80; n0 � 10, and log10ðsN=sBÞ � 12 and we expect

Brownian rotation. These calculations are nicely accordant

checks on the theory as these technologies are proven.

For the success of technology, understanding the nano-

particle rotation mechanism is necessary. Our conclusion is

that purely by comparing the equilibrium relaxation times

that arise from the average size of the nanoparticles, it is

unlikely that the mechanisms will be accurately predicted.

Moreover, in cases including polydisperse size- and

anisotropy-distributions, there will be a mixture of effects

and the formalism provided here allows exploration with

specific and detailed simulations given the application or

nanoparticles of interest.
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