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Purpose: To derive a noniterative gridding-type reconstruction framework for nonCartesian magnetic
resonance imaging (MRI) that prospectively accounts for gradient nonlinearity (GNL)-induced image
geometrical distortion during MR image reconstruction, as opposed to the standard, image-domain
based GNL correction that is applied after reconstruction; to demonstrate that such framework is able
to reduce the image blurring introduced by the conventional GNL correction, while still offering
effective correction of GNL-induced geometrical distortion and compatibility with off-resonance
correction.
Methods: After introducing the nonCartesian MRI signal model that explicitly accounts for the
effects of GNL and off-resonance, a noniterative gridding-type reconstruction framework with inte-
grated GNL correction based on the type-III nonuniform fast Fourier transform (NUFFT) is derived.
A novel type-III NUFFT implementation is then proposed as a numerically efficient solution to the
proposed framework. The incorporation of simultaneous B0 off-resonance correction to the proposed
framework is then discussed. Several phantom and in vivo data acquired via various 2D and 3D
nonCartesian acquisitions, including 2D Archimedean spiral, 3D shells with integrated radial and
spiral, and 3D radial sampling, are used to compare the results of the proposed and the standard GNL
correction methods.
Results: Various phantom and in vivo data demonstrate that both the proposed and the standard GNL
correction methods are able to correct the coarse-scale geometric distortion and blurring induced
by GNL and off-resonance. However, the standard GNL correction method also introduces blurring
effects to corrected images, causing blurring of resolution inserts in the phantom images and loss of
small vessel clarity in the angiography examples. On the other hand, the results after the proposed
GNL correction show better depiction of resolution inserts and higher clarity of small vessel.
Conclusions: The proposed GNL-integrated nonCartesian reconstruction method can mitigate the
resolution loss that occurs during standard image-domain GNL correction, while still providing effec-
tive correction of coarse-scale geometric distortion and blurring induced by GNL and off-resonance.
C 2015 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4936098]
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1. INTRODUCTION

In conventional magnetic resonance imaging (MRI), the
spatial encoding gradient fields are usually assumed to vary
linearly across the entire imaging field-of-view (FOV). Due
to engineering limitations, perfect gradient linearity can never
be exactly achieved in practice, and may even be intentionally
compromised to alleviate peripheral nerve stimulation, relax
technical requirements on system hardware, and/or to enable
high gradient amplitudes and slew rates.1–3 Gradient nonlin-
earity (GNL), if not compensated, manifests as geometric

distortion in reconstructed images.4–6 Many MRI applications
rely on high geometric accuracy, such as radiation therapy
pretreatment planning or multicenter, longitudinal studies
of neurodegenerative diseases, and attenuation correction
for MR/PET. In such scenarios, correction of GNL-induced
geometric distortion has been reported to be beneficial by
increasing imaging anatomical accuracy, improving image
reproducibility, and reducing cross-site variability.7–11

Conventionally, the geometric distortion induced by GNL
is corrected after MRI reconstruction via image-domain
interpolation based on a presumed a priori known spatial
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distortion field.1 Such techniques are widely available on
commercial MR scanners (e.g., “GradWarp” on General
Electric’s scanners). Despite being able to accurately correct
coarse-scale geometric distortion, standard GNL correction
methods introduce additional, unnecessary image blurring and
resolution loss to the corrected images due to the intrinsic
smoothing effect of image interpolation.12–14 In the case
of nonCartesian MRI, the image blurring effect is further
complicated by the presence of main magnetic field (B0)
inhomogeneity and susceptibility.15,16

Recently, a model-based reconstruction framework for
Cartesian MRI that performed GNL correction during—
rather than after—image reconstruction was developed.13 This
integrated GNL correction method was shown to be able to
alleviate the image blurring and resolution loss introduced by
the standard GNL correction. In this work, we discuss the
generalization of this GNL-aware reconstruction framework
for nonCartesian acquisitions. The signal model is modified
to account for the effect of GNL during nonCartesian data
acquisition, from which we derive a noniterative, gridding-
type reconstruction framework that also prospectively cor-
rects for the GNL-induced spatial distortion during image
reconstruction. A numerically efficient implementation of
this framework is then proposed. The incorporation of
simultaneous B0 off-resonance correction (ORC) to the
proposed framework is also discussed. Finally, representative
reconstruction results for several 2D and 3D nonCartesian
acquisition methods are presented to compare the proposed
and the standard GNL correction methods.

2. THEORY
2.A. NonCartesian signal model with GNL

In the presence of both GNL and B0 inhomogeneity, the
κth k-space signal measurement, g[κ], obtained during a
nonCartesian MRI acquisition can be modeled as17

g[κ]=

Ω

f (x)e− jω0(x)t[κ]e− jω[κ]∆(x)dx+n[κ], (1)

where f (x) is a continuous image-domain function denoting
the object of interest, with x denoting the (true) physical
coordinates; Ω is the field of excitation; and ∆(x) is the
distortion field mapping from physical to distorted coordinates
due to GNL. In the context of GNL correction, ∆(x) is
assumed to be bijective and invertible. In practice, the
distortion mapping can be obtained from electromagnetic
field simulation, or measured with phantoms designed for
distortion tracking,18–20 and is therefore assumed to be a
priori known; ω0(x) indicates the spatial off-resonance map;
t[κ] is the readout time of the κth signal measurement; ω[κ]
denotes the k-space coordinates of the κth signal sample for
a certain nonCartesian k-space sampling trajectory. Finally,
n[κ] is zero-mean proper complex Gaussian noise in the κth
measurement.

Given a finite measurement vector, g, the goal of image
reconstruction is to estimate the continuous image function
f ; however, auxiliary assumptions must be made for this

problem to be well-posed. Hence, a finite series representation
of f is usually pursued instead, i.e., f (x)≈i∈Θu[i]b(x−r[i]),
where b(·) is the continuous pixel model function, r[i] is the
physical position of the ith pixel, and u[i] is its corresponding
display coefficient.21 Assuming a Dirac delta pixel model,
i.e., b(x)= δ(x), Eq. (1) reduces to

g[κ]=

i∈Θ

u[i]e− jω0(r[i])t[κ]e− jω[κ]∆(r[i])+n[κ], (2)

which has the following affine algebraic form:

g=Au+n, (3)

with A(κ,i) = e− jω0(r[i])t[κ]e− jω[κ]∆(r[i]) denoting the forward
encoding matrix that accounts for the effects of nonCartesian
sampling, off-resonance effects, and GNL-based distortion.

2.B. Proposed implementation of type-III nonuniform
fast Fourier transform (NUFFT)

In the absence of B0 inhomogeneity, i.e., ω0(x)= 0, Eq. (3)
reduces to

g= Âu+n. (4)

In nonCartesian imaging, k-space data are sampled on a
nonuniform grid. In the absence of GNL, ∆(r) = r, and
the true pixel positions are located on a uniform grid
in the image space. In this case, Eq. (4) reduces to the
standard nonCartesian MRI signal model, while Â denotes
a discrete-space Fourier transform (DSFT) mapping from
a uniform image grid onto a nonuniform k-space grid. In
conventional gridding nonCartesian MRI reconstructions, the
adjoint operator, Â∗, is applied to the (density-compensated)
k-space data to reconstruct the image vector. This process can
be efficiently implemented by a type-II NUFFT.22,23

With GNL, ∆(r), r, and the pixel positions deviate from
uniform image-domain grids due to GNL-induced distortion.
The forward operator, Â, then represents a mapping from
nonuniform image space grids to nonuniform k-space grids
for nonCartesian MRI, which can be implemented via a type-
III NUFFT.24 Note that for Cartesian imaging with GNL,
the forward operator Â can be realized as a type-I NUFFT
(Ref. 13) operation.

Whereas the algebraic structure of type-I and type-II
NUFFTs is well-defined, type-III NUFFTs were initially
introduced only abstractly.24 As such, attempts at efficiently
realizing nonuniform-to-nonuniform mappings have been pro-
posed. One implementation of the type-III NUFFT has been
described and used in reconstruction of parallel acquisition
with localized gradient (PATLOC) with radial k-space sampl-
ing.25 In PATLOC, nonlinear, nonbijective spatial encoding
magnetic fields are intentionally introduced to increase the
efficiency of gradient usage.26 In Ref. 25, the forward type-III
NUFFT is implemented by combining one forward type-I
and one adjoint type-II NUFFT operator, which requires two
oversampled FFTs and one regular-sized FFT per execution. In
the rest of this section, we will describe an integrated type-III
NUFFT operator that provides improved numerical efficiency
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by requiring only a single Fourier transform operation per
execution.

Various NUFFT operators use interpolation either before
or after an oversampled FFT operator to account for distortion
in image space (type-I NUFFT), or nonuniform sampling
in k-space (type-II NUFFT), or both (type-III NUFFT).
Such an interpolation is typically performed using a convo-
lutional kernel of finite supports, such as a Kaiser–Bessel
kernel used in this work as well as other nonCartesian
reconstruction methods.22,23 Since the Kaiser–Bessel kernel
itself is not interpolating and can potentially introduce
blurring, an explicit deapodization/deconvolution step is
usually integrated into NUFFT operator to modify the kernel
into interpolating and account for these blurring. Therefore,
implementations of NUFFT operators typically involve data
interpolation, oversampled FFT, and deapodization.22–25 In
the case of nonuniform-to-nonuniform mappings, interpo-
lation and deapodization operations must be performed
both spatially and spectrally. For example, the distortion in
image domain caused by GNL is implemented using the
convolutional interpolation, while a deapodization kernel is
applied in k-space to account for the blurring that may
happen. These operators mirror the function of gridding kernel
and deconvolution kernel used in gridding reconstruction
of nonCartesian acquisition. In this work, we utilize the
following type-III NUFFT form, which is also illustrated in
the flow chart in Fig. 1,

Â≈DGNLC∗NCFD∗NCCGNL, (5)

where CGNL denotes an oversampled interpolation that maps
the regular image grids onto oversampled uniform image grids
in an extended field of view with zeros values at the edges.
Note that the convolution accounts for the distortion induced
by GNL, and the purpose of interpolating into extended field

of view is to account for the later oversampling in k-space
and to prevent aliasing due to GNL distortion and circulant
boundary condition setting. DGNL indicates a deapodization
operation that accounts for the blurring introduced by CGNL;
F is an oversampled FFT operator; C∗NC denotes a truncated
gridding operator that maps from oversampled uniform k-
space grids onto nonuniform k-space grids (corresponding
to a certain nonCartesian k-space sampling pattern) within
the k-space sampling range specified by this nonCartesian
acquisition; and finally, D∗NC defines a deapodization operation
that accounts for the blurring introduced by C∗NC.

The effects of each operator in Eq. (5) are illustrated
in Fig. 1. Regular-sized image matrix (denoted as f) is
first interpolated/distorted onto an oversampled grid in an
extended FOV with zero values on the edges. The obtained
image matrix (CGNLf) is then weighted/deapodized at each
pixel

�
D∗NCCGNLf

�
, and Fourier transformed into k-space�

FD∗NCCGNLf
�
. The obtained oversampled k-space samples are

then gridded onto a nonCartesian sampling trajectory within
a predefined k-space range

�
C∗NCFD∗NCCGNLf

�
. Since this k-

space sampling range is by definition smaller than the range of
the oversampled k-space, matrix truncation is implied. Finally,
each sample is weighted/deapodized according to its position
in k-space

�
DGNLC∗NCFD∗NCCGNLf

�
.

The adjoint operator, Â∗, has the similar structure as Eq. (5),

Â∗≈C∗GNLDNCF∗CNCD∗GNL, (6)

where C∗GNL and D∗GNL are the adjoint operators of CGNL and
DGNL, respectively; CNC and DNC are the adjoint operators
of C∗NC and D∗NC, respectively. Note that, different from the
implementation in Ref. 25, Eqs. (5) and (6) only require
one oversampled FFT. A detailed computational complexity
analysis based on floating point operation (FLOP) number is
demonstrated later.

F. 1. Schematic representation of work flow demonstrating the structure of the forward operator of the proposed type-III NUFFT operator. f: regular-sized
image vector; F: oversampled forward FFT operator; CGNL: image-domain oversampled interpolation operator; C∗NC: k-space gridding operator; DGNL and D∗NC:
deapodization operators accounting for the blurring introduced by CGNL and C∗NC, respectively.
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2.C. Reconstruction with modified gridding algorithm

In the absence of off-resonance, the display coefficient
vector u in Eq. (4) can be reconstructed using the method-
of-moments estimator, similar to the conventional gridding
reconstruction. Take the expected value [E(·)] on both sides
of Eq. (4) and substitute Eq. (5) into Eq. (4), it gives E (g)
= E
(
Âu+n

)
= Âu ≈DGNLC∗NCFD∗NCCGNLu. The method-of-

moments estimator replaces the ensemble average [E(·)] with
the sample average, or, in this case, the observation vector
itself, i.e., E (g) = g. Consequently, the display coefficient
vector u can be reconstructed by sequentially inverting each
operator of Â in Eq. (5), which leads to

u ≈
�
C∗GNLCGNL

�−1C∗GNL

�
DNCD∗NC

�−1

×DNCF∗CNC
�
C∗NCCNC

�−1�D∗GNLDGNL
�−1D∗GNLg. (7)

In conventional gridding nonCartesian image reconstruction,
the

�
C∗NCCNC

�−1 term is approximated as a diagonal matrix
representing a density compensation function, ΦNC.27 Fur-
thermore, previous work has shown that the

�
C∗GNLCGNL

�−1

term can be approximated by a diagonal matrix denoting
the Jacobian determinant of the distortion field, JGNL.13

The diagonal matrix approximations of
�
C∗NCCNC

�−1 ≈ΦNC

and
�
C∗GNLCGNL

�−1 ≈ JGNL imply that each row of CNC and
CGNL contains relatively few nonzero elements (due to the
finite extent of the convolution kernel). Therefore, energy
in the Gram matrix C∗NCCNC and C∗GNLCGNL is concentrated
about the main diagonal and the diagonal approximation is
efficient. For consistency, following the migration of CNC
and CGNL from a convolution operator to a simple pointwise
scaling (i.e., diagonal matrix), its corresponding “inverse”
operator, DNC and DGNL, must be similarly translated. It
then follows that DNC and DGNL as well as

�
DNCD∗NC

�−1

and
�
D∗GNLDGNL

�−1 can be practically approximated by a
simple scaling, i.e.,

�
DNCD∗NC

�−1≈ αI and
�
D∗GNLDGNL

�−1≈ βI.
Hence, Eq. (7) reduces to

u∝ JGNLC∗GNLDNCF∗CNCD∗GNLΦNCg= JGNLÂ∗ΦNCg. (8)

From Eq. (8), the image vector u can be reconstructed by
applying the adjoint operator Â∗ to the density compensated k-
space signal,ΦNCg, followed by an image intensity correction
indicated by JGNL. Note that, without GNL, Â∗ represents
the adjoint operator of a type-II NUFFT, and JGNL = I. In
such case, the above expression reduces to the conventional
nonCartesian gridding reconstruction.

2.D. Time-segmented signal approximation

The spatiotemporal dependence of the off-resonance
components of the forward operator, A, in Eq. (3) impedes
the direct use of computational efficient algorithm like
standard or nonuniform fast Fourier transforms (NUFFT)
for its application. To enable efficient application, a low-
rank approximation of this operator is typically adopted.
This approximation of A may be obtained by temporally
segmenting the presumed a priori known off-resonance

phasor,28 i.e.,

A(κ,i) = e− jω0(r[i])t[κ]e− jω[κ]∆(r[i])

≈ *
,

L
l=1

wl(κ)e− jω0(r[i])tl+
-

e− jω[κ]∆(r[i])

= *
,

L
l=1

wl(κ)vl(i)+
-

e− jω[κ]∆(r[i]), (9)

where L is the number of segments; tl denotes the center of
the time window corresponding to the lth k-space segment;
wl(κ) is a k-space window function that weights each data
sample based on the difference between its measurement
time, t[κ], and the window center, tl, i.e., |t[κ]− tl |; and
vl(i)= e− jω0(r[i])tl is pixelwise weighting function in the image
domain associated with the lth time segment. In general, using
a smooth spectral windowing function, wl, like a Hanning
window will result in superior approximation performance.28

The time-segmented approximation model in Eq. (9) can be
summarized in the following affine algebraic form:

A≈
L
l=1

WlÂVl, (10)

and Eq. (3) then resorts to

g≈ *
,

L
l=1

WlÂVl
+
-

u+n, (11)

where K and N are the numbers of signal measurements
and pixels, respectively; Wl is a K × K diagonal matrix
[Wl(κ,κ)= wl(κ)]; Vl denotes an N × N diagonal matrix
[Vl(i,i)= vl(i)]; and Â(κ,i)= e− jω[κ]∆(r[i]) denotes the forward
spatial encoding operator (K×N matrix) that accounts for the
effect of GNL.

2.E. Off-resonance correction

For nonCartesian imaging, B0 inhomogeneity can cause
image blurring and spatial distortion, especially for long
readout acquisitions or when at high field strength. Similar
to conventional gridding, off-resonance correction can be
incorporated into the proposed reconstruction framework in
Eq. (8) by replacing the adjoint operator Â∗ with A∗, which
accounts for off-resonance effects, i.e.,

A∗≈
L
l=1

V∗lÂ
∗W∗

l . (12)

Hence, the reconstruction framework accounting for both
GNL and off-resonance can be expressed as

u∝ JGNLA∗ΦNCg≈ JGNL*
,

L
l=1

V∗lÂ
∗W∗

l
+
-
ΦNCg. (13)

Mirroring the base case above, without GNL, the above
expression reduces to the conventional time-segmented
nonCartesian gridding reconstruction with integrated off-
resonance correction.28
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2.F. Iterative SENSE reconstruction

The proposed signal model in Eq. (1) can be utilized
into various model-based iterative reconstruction frame-
works, such as nonCartesian SENSE-type reconstruction
with Tikhonov regularization, by replacing the forward and
adjoint DFT operator with their type-III NUFFT counterparts.
Denoting S (N by C matrix) as the sensitivity profile for the C
channels of the phased array receiver coil, the objective image
vector, u (N ×1 vector) can be reconstructed by solving the
following least-squares optimization problem:

argmin
u

∥ΦAdiag{u}S−G∥2
F+λ ∥u∥2

2, (14)

where G indicates the multicoil k-space measurement matrix
(K by C); Φ is a binary undersampling matrix; diag{u}
denotes a diagonal matrix with the ith diagonal element
diag{u}(i, i) = ui; ∥·∥2

F represents the Frobenius norm of
matrix; and λ > 0 is a regularization parameter. Such an opti-
mization problem can be solved iteratively using conjugate
gradient (CG) method.29 Note that the off-resonance effect can
be accounted for using the time-segmentation approximation
shown in Eq. (10).

3. MATERIALS AND METHODS
3.A. Computational complexity analysis

The proposed type-III NUFFT operators as in Eqs. (5) and
(6) consist of five successive operations, including two over-
sampled interpolations

�
CGNL and C∗NC

�
, two deapodization

operations
�
DGNL and D∗NC

�
, and one oversampled FFT (F).

Since two oversampled interpolations are involved, the overall
oversampling factor (OF) is the product of the oversampling
factor in each. Define the interpolation kernel size as J and
the overall oversampling factor as OF. Then, the oversampling
factor for each of the interpolation can be assigned as

√
OF.

The overall computational load of the proposed NUFFT
operator is the sum of the five individual operators. For the
purpose of demonstration, assume a ND×1 display coefficient
vector to be reconstructed from a K × 1 measurement data
vector, where D is the dimension of the reconstructed matrix
size. Then, the five operations in Eq. (5), from right to
left, require 2ND × JD, (N ×OF)D, 5D(N ×OF)Dlog2(N
×OF), 2K × JD, and K FLOPs, respectively. Thus, the total
FLOP number of the proposed type-III NUFFT operator is
(N ×OF)D(5Dlog2(N ×OF)+1)+ 2JD

�
ND+K

�
+K . For a

certain reconstruction matrix size
�
ND

�
and data size (K), the

FLOP number is a function of oversampling factor, OF, and
interpolation kernel size, J.

The type-III NUFFT operator proposed in PATLOC
reconstruction25 consists of one forward operator of type-
I NUFFT, one regular-sized FFT, followed by one adjoint
operator of type-II NUFFT. Assuming the same oversampling
factor and kernel size is used, the number of floating point
operations required for these three operators is 2ND × JD

+ 5D(N ×OF)Dlog2(N ×OF)+ ND, 5D × NDlog2(N), and
2K × JD + 5D(N ×OF)Dlog2(N ×OF) + ND, respectively,

which add up to a total of 10D(N ×OF)Dlog2(N ×OF)+5D
×NDlog2(N)+2JD

�
ND+K

�
+2ND FLOPs.

3.B. Experiments

Several 2D and 3D nonCartesian protocols were used
to compare the standard and the proposed GNL correction
methods. A static cylindrical phantom with resolution bars15

was scanned on a 3 T scanner (General Electric, Signa HDxt,
v16.0) using the zoom mode gradient [maximum gradient
amplitude 40 mT/m; slew rate 200 (T/m)/s] and a single-
channel T/R head coil. The phantom was translated to 84 mm
in gradient inferior direction to observe a relatively strong
GNL effect, and scanned with a 2D Archimedean spiral
sequence (FOV = 22 cm, slice thickness = 3 mm, acquisition
plane = axial, T R= 100 ms, BW =±62.5 kHz, F A= 30◦, 16
interleaves, 4096 readout points per interleave).16 A separate
2D Cartesian B0 mapping sequence that uses two different TEs
was then performed at the same location (FOV = 22 cm, slice
thickness = 3 mm, acquisition plane = axial, T R = 100 ms,
matrix= 256×256, receive BW =±31.25 kHz, F A= 30◦, echo
spacing= 1.0 ms).

The same phantom was additionally scanned on a 1.5 T
(General Electric, Signa HDxt, v16.0) scanner with an 8-
channel receive-only head coil and zoom mode gradient using
the same 2D Archimedean spiral sequence and B0 mapping
sequence. The phantom was translated to 75 mm in gradient
inferior direction. A separate calibration scan was performed
to obtain coil sensitivity information.

The brain of a healthy volunteer subject was also scanned
on a 3 T scanner (General Electric, DVMR, v22.0) with
a 8-channel receive-only head coil under an IRB-approved
protocol using an accelerated 3D contrast enhanced (CE)
shells with integrated radial and spiral (SWIRLS) with
acquisition setting as FOV = 243 cm3, T R = 80 ms, BW
= ±62.5 kHz, F A= 35◦, 8047 shots, 512 sample per shot.15

A test bolus of 1 ml was first used for bolus arrival timing.
Then, a bolus of 18 ml gadobenate dimeglumine contrast agent
(Multihance, Bracco Diagnostics, Princeton, NJ, USA) was
injected into the right antecubital vein at 3 ml/s, followed
by 25 ml of saline flush with a power injector. Then, a 3D
Cartesian B0 mapping sequence based on two different TEs
was performed separately with the same spatial coverage
(FOV = 243 cm3, matrix = 256 × 128 × 60, T R = 95 ms,
BW =±31.25 kHz, F A= 10◦, echo spacing= 2.3 ms).

Finally, the American College of Radiology (ACR) quality
control MR phantom was scanned on a 1.5 T scanner (Gen-
eral Electric, Signa Hdx; v23.0) with a cardiac MR gradient
[maximumgradient amplitude33mT/m;slewrate120(T/m)/s]
usingacenter-out, fully3Dradialprotocol30,31 (FOV= 243 cm3,
BW = ±31.25 kHz, F A= 15◦, number of readouts = 30 000,
readout length = 258). An 8-channel cardiac coil was used
(GE HD Cardiac, Waukesha, WI). A high bandwidth dual-echo
3D radial GRE protocol with the same spatial coverage and
matrix size (T R= 4.2 ms, first T E = 120 µs, BW =±160 kHz,
F A = 15◦, echo spacing = 3.0 ms) was also performed and
subsequently used for off-resonance map estimation. For all
the experiments, raw complex k-space data were retained.

Medical Physics, Vol. 42, No. 12, December 2015



7195 Tao et al.: NonCartesian MRI reconstruction with integrated GNL correction 7195

3.C. Reconstruction analysis

All computational experiments in this work were imple-
mented in /++ with FFTW and OpenMP parallelization
and executed on a dual 8-core 2.6 GHz machine with 128 GB
memory. The standard GNL corrections were implemented
with cubic spline interpolation.1 The cubic spline interpolation
is used in this work since vendor’s GNL correction is based
on the same technique.1 We have previously compared cubic
spline interpolation with other interpolation techniques like
Kaiser–Bessel interpolator, which is used in the NUFFT
operator itself.22,23 The results showed that the cubic spline
interpolation, when used for GNL correction in image domain,
offered superior performance. All types of NUFFT operators
were implemented with a 1.25× oversampled FFT, and a
five point Kaiser–Bessel interpolator.22,23 Phase unwrapped B0
maps for all data sets were estimated using a graph cut based
optimization procedure.32 For all the experiments in this work,
the vendor-provided gradient field parameterization was used
to obtain GNL distortion field.

For each data set, four separate reconstructions were per-
formed. To separately investigate the blurring effect caused by
off-resonance and GNL, the standard gridding reconstruction
without and with off-resonance correction was first performed
with no GNL correction based on Eqs. (8) and (13), but with
Â∗ denoting the adjoint operator of type-II NUFFT. Then,
the standard GNL correction was applied to the image with
off-resonance correction, followed by image intensity correc-
tion based on Jacobian determinant of the distortion field.
Finally, the same data were directly reconstructed with the
proposed reconstruction strategy with integrated GNL and off-
resonance correction [Eq. (13)], where Â∗ denotes the adjoint
NUFFT operator of type-III implemented based on Eq. (6).

The reconstruction matrix size of 2D spiral data was set
as 2562 for all four reconstruction experiments, and off-
resonance correction was performed with L = 64 time seg-
ments. The reconstructed images were 4× sinc interpolated for
display. For the in vivo 3D SWIRLS scan, the reconstruction
matrix size was set as 2403, and off-resonance correction was
performed with L = 8 segments. Then, each 2D slice in coronal
plane was sinc interpolated to 512×512 points slice by slice,
and the maximum intensity projection (MIP) was then applied
to a coronal thin slab of 20 mm centered at 50 mm in the

anterior direction. Finally, the 3D center out radial scan data
were reconstructed onto a 2563 image grid, and a total of
L = 16 time segments are used for off-resonance correction.
The images were then sinc interpolated (4×) for display.

To examine the compatibility of the proposed method
with iterative nonCartesian reconstruction framework, the
multicoil 2D spiral data set was retrospectively undersampled
(2×) by discarding every other readout to simulate a 2D
SENSE-type nonCartesian reconstruction scenario. The coil
sensitivity profiles were estimated from a separate calibration
scan using ESPIRiT.33 Two reconstruction experiments were
performed on the same data set based on the SENSE-
type reconstruction scheme shown in Eq. (14). In the first
experiment, the conventional SENSE reconstruction was
performed, with A denoting a conventional type-II NUFFT
operator. The reconstructed image was then corrected with the
standard GNL correction method. Next, the proposed iterative
reconstruction scheme was performed with A denoting the
proposed type-III NUFFT operator. In both cases, the effect
of off-resonance was accounted for using time-segmented
approximation (L = 64). All the images were sinc interpolated
(4×) and Fermi windowed for display. Our previous study has
investigated the effect of performing sinc interpolation before
standard GNL correction.13 As a comparison, the standard
GNL correction was also applied to the sinc interpolated (4×)
image obtained from the standard reconstruction scheme.

4. RESULTS
4.A. Computational complexity analysis

Figure 2 shows the FLOP numbers (at three different
interpolation kernel sizes J) versus oversampling factor
(OF) for the proposed implementation of type-III NUFFT
(proposed) and that used in radial PATLOC reconstruction
(PATLOC). A 3D reconstruction scenario based on the
SWIRLS acquisition indicated in Sec. 3 is assumed. For each
kernel size, the proposed implementation is more efficient
in terms of FLOP number at the same oversampling factor.
The FLOP number ratio between the implementation used in
Ref. 25 and the proposed is 1.6 under the numerical setting in
this study (OF = 1.25, J = 5) and gradually increases to 2.0
when OF increases to 4 (as used in Ref. 25).

F. 2. FLOP numbers of the proposed type-III NUFFT operator (solid lines) and that used in reconstruction of PATLOC with radial k-space sampling (dash
lines) at different oversampling factors and interpolation kernel sizes (J = 3, 5, 7).
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4.B. 2D spiral

Figure 3 shows the images reconstructed from 2D spiral
scan data by (a) standard gridding algorithm without off-
resonance correction or GNL correction, (b) standard gridding
algorithm with off-resonance correction, (c) applying the
standard GNL correction to the gridding reconstruction result
in (b), and (d) the proposed NUFFT-based correction with
simultaneous off-resonance correction and GNL correction.
The enlargements of the resolution bars are also shown. The
outer contours of the cylindrical phantom were tracked from
images after GNL corrections and are indicated as the red
circles overlapping onto each panel of Fig. 3. Comparison
between Figs. 3(a) and 3(b) highlights that the majority
of blurring in Fig. 3(a) is caused by off-resonance effect.
Both the standard and the proposed GNL correction methods
are able to correct the geometric distortion caused by GNL
and off-resonance correction [Figs. 3(c) and 3(d)], but the
standard GNL correction also introduces image blurring as

shown around the resolution bars (see arrows), similar to
that observed in Cartesian imaging.13 On the other hand, the
resolution bars are better depicted in the image corrected
with the proposed strategy [Fig. 3(d)]. Figure 3(e) shows
the line profiles across three groups of resolution bars in the
images after the standard and the proposed GNL correction
in Figs. 3(c) and 3(d) (positions marked in zoom-in panels).
The standard GNL correction decreases the contrast of the
resolution bars as reflected by the decreased bar prominence.
Note that the rightmost resolution bar in the image corrected
with the standard method (red curve) is hardly identifiable.
The line profile is better preserved in the image reconstructed
with the proposed NUFFT-based correction (blue curve).

4.C. 3D contrast enhanced SWIRLS

Figure 4 shows the 20 mm coronal thin slab MIP (full
scale and magnified insets) for the in vivo 3D-SWIRLS data

F. 3. Images reconstructed from 2D spiral acquisition data. [(a) and (b)] Image obtained by conventional gridding reconstruction without (a) and with (b)
ORC; (c) image obtained after applying standard GNL correction (std. GNLC) to (b); (d) result of the proposed reconstruction method with integrated GNL
correction and simultaneous ORC; (e) line profiles across three groups of resolution bars in the images after the standard (c) and the proposed GNL correction
(d). The red circles indicate the outer contours of the phantom tracked from the images after GNL correction.
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F. 4. Coronal thin slab MIP of images (full scale and magnified insets) reconstructed from the in vivo 3D-SWIRLS data set. [(a) and (e)] and [(b) and (f)] MIP
of images (full scale and magnified insets) reconstructed by conventional gridding reconstruction without [(a) and (e)] and with [(b) and (f)] ORC; [(c) and (g)]
MIP of images (full scale and magnified insets) obtained after applying standard GNL correction (std. GNLC) to the gridding reconstruction results with ORC;
[(d) and (h)] MIP of images (full scale and magnified insets) reconstructed by the proposed method with integrated GNL correction and simultaneous ORC. The
blue arrows in (a)–(d) demonstrate the change of vessel contour in MIP images caused by correction of GNL-induced distortion. The green arrows in (a)–(d)
show that the proposed method (d) provides effective off-resonance correction as the standard gridding reconstruction [(b) and (c)]. The red arrows in [(e)–(h)]
highlight that the proposed method with integrated GNL correction (h) prevents the blurring caused by standard GNL correction (g) and improves the vessel
clarity in corrected image.

set. Figures 4(a) and 4(b) show the full scale MIP images of the
results of direct, standard gridding reconstruction without and
with off-resonance correction, respectively. Figure 4(c) shows
the MIP image obtained after applying standard GNL correc-
tion to the gridding reconstruction results with off-resonance
correction. Figure 4(d) is the MIP image reconstructed by
the proposed NUFFT-based framework with integrated GNL
correction and off-resonance correction. Again, the GNL-
induced image distortion is corrected by both the standard
and the proposed GNL method. Note the change of vessel
contour in MIP images before [Fig. 4(b)] and after [Figs. 4(c)
and 4(d)] GNL correction, as indicated by the blue arrows in
Figs. 4(a)–4(d). The green arrows in Figs. 4(a)–4(d) demon-
strate the effect of off-resonance correction of the standard
and proposed reconstruction methods. As shown, the proposed
method [Fig. 4(d)] provides effective off-resonance correction
similar to that of the standard gridding reconstruction with off-
resonance correction [Figs. 4(b) and 4(c)]. The effect of GNL
correction is highlighted in Figs. 4(e)–4(h). Although the GNL
induced distortion is relatively small in this example, the stan-
dard GNL correction causes loss of small vessel clarity, which
is better preserved by the proposed NUFFT-based correction,
as revealed in Figs. 4(g) and 4(h) (see red arrows). Note that
the image intensity change due to GNL-induced distortion was
corrected in both standard GNL correction and the proposed
reconstruction method using the Jacobian determinant of the
distortion field. Therefore, the clearer vessel definition shown

in Fig. 4(h) is due to the benefit of proposed reconstruction
method, rather than image intensity shift.

4.D. 3D radial

The axial resolution inserts slices of the ACR phantom
images reconstructed from 3D radial data are shown in
Fig. 5. Figures 5(a) and 5(b) are the conventional grid-
ding reconstruction results without and with off-resonance
correction. Figure 5(c) is the image corrected with the
standard GNL correction. Figure 5(d) shows the image
reconstructed with the proposed method. The red circles
in Fig. 5 indicate the outer contours of the ACR phantom
tracked from the images after GNL correction. Off-resonance
induced image blurring and distortion are corrected in
results of both the conventional gridding [Fig. 5(b)] and the
proposed reconstruction [Fig. 5(d)]. As shown in Fig. 5(c),
the conventional GNL correction method introduces blurring
to images especially around the smallest resolution insert
group (see arrows). On the other hand, the image corrected
with the proposed method [Fig. 5(d)] shows better depiction
of resolution inserts, while providing equivalent distortion
correction as the conventional method.

4.E. 2D SENSE

Figure 6 depicts the results (full scale images and magnified
inserts) of the conventional and the proposed iterative SENSE
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F. 5. Images reconstructed from 3D radial acquisition data. [(a) and (b)] Image obtained by conventional gridding reconstruction without (a) and with (b)
ORC; (c) image obtained after applying standard GNL correction (std. GNLC) to (b); (d) result of the proposed reconstruction method with integrated GNL
correction and simultaneous ORC. The dashed circles indicate the outer contours of the phantom tracked from the images after GNL correction.

reconstruction schemes. Figure 6(a) shows the conventional
SENSE reconstruction results with off-resonance correction
but before GNL correction. Figure 6(b) is obtained after
applying the standard GNL correction to Fig. 6(a). As a
comparison, Fig. 6(a) is sinc interpolated (4× zero-padding
in k-space) and GNL-corrected using the standard method to
obtain Fig. 6(c). Figure 6(d) shows the image reconstructed
using the proposed method based on type-III NUFFT. The
blurring around the resolution inserts can be observed in
the images before GNL correction [Fig. 6(a)], corrected with
the standard GNL correction either before [Fig. 6(b)] or after
sinc interpolation [Fig. 6(c)] but is reduced in the image

obtained using the proposed reconstruction with integrated
GNL correction [Fig. 6(d)].

5. DISCUSSION

In this work, we have described a GNL-aware nonCartesian
MR image reconstruction and derived a noniterative gridding-
type framework for this application. The proposed signal
processing framework prospectively accounts for the effect of
GNL, as opposed to the standard image-domain based GNL
correction method that is applied after image reconstruction is
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F. 6. Images reconstructed using the conventional and the proposed iterative SENSE reconstruction schemes. [(a) and (b)] Image obtained by conventional
iterative SENSE-type reconstruction with ORC before and after standard GNL correction (std. GNLC), respectively; (a) is first sinc interpolated (k-space
zero-padding, ZP) and then GNL-corrected using the standard method to obtain (c); (d) result of the proposed iterative SENSE reconstruction method with
integrated GNL correction and simultaneous ORC.

performed. Due to the smoothing effect of strict image-domain
interpolation operations, the conventional GNL correction
method introduces unnecessary image blurring and resolution
loss to the GNL-corrected images, as previously reported for
Cartesian MRI acquisitions. This blurring can be prevented
by the proposed type-III NUFFT-based correction, as demon-
strated with various nonCartesian protocols. As shown in
Figs. 3 and 5, the blurring around the resolution inserts in
phantom images after the conventional GNL correction was
eliminated by the proposed correction. Figure 4 shows that the
vessel continuity and clarity in MIP image are better preserved
by the proposed method. In nonCartesian MR protocols, off-
resonance effects can cause significant blurring and distortion
especially for long-readout acquisitions or when at high field
strengths. Similar to the conventional gridding algorithm for
nonCartesian reconstruction, off-resonance correction can be
incorporated into the proposed integrated GNL reconstruc-
tion framework without limiting computational burden. Fig-
ures 3–5 show that the geometric distortion and blurring effect
caused by GNL and off-resonance can be simultaneously
corrected by the proposed method. The proposed signal model
as in Eq. (11) can also be integrated into iterative model-
based reconstruction frameworks by replacing the forward and
adjoint type-II NUFFT operators with the type-III NUFFT
operators, as demonstrated in Eq. (14) using an iterative
SENSE type reconstruction scenario. The results in Fig. 6
show that image details are better preserved by the proposed
method. The proposed method can also be incorporated
into other advanced reconstruction schemes assuming more
sophisticated data undersampling strategies and constraints,
such as compressed sensing.

As shown by our previous work,13 performing sinc
interpolation can only partly reduce the blurring observed
after conventional GNL correction but not fully eliminate
the problem. Consistent with these previous results, the
comparison between Figs. 6(c) and 6(d) shows that the
proposed NUFFT-based reconstruction method is able to
better reserve image details and can retain image information
that is not recoverable merely using image-domain based GNL
correction.

The framework described in this work is quite general
and can be readily extended to other nonCartesian data
acquisitions where noniterative gridding-based reconstruction
is applied. This includes hybrid Cartesian acquisitions, such
as ramp-sampled echo planar imaging (EPI).

The resolution preserving effect of the proposed method
is expected to be more pronounced for regions where strong
GNL presents, as reported in Cartesian MRI cases.13 It may
especially benefit nonCartesian applications with a large FOV
and high resolution requirement, e.g., 3D MR angiography
with full-brain coverage or 3D MR peripheral angiography of
the lower limbs,34 since GNL is usually stronger in regions
far away from gradient isocenter. The proposed reconstruction
method is also expected to provide benefit even in regions
with moderate GNL distortion. As shown in our previous
work,13 the standard image-domain GNL correction removes
the high frequency component in the noise power spectra of
the reconstructed images and causes image blurring—similar
to a low pass filtering effect. On the other hand, the NUFFT
operator used in the proposed reconstruction scheme is able
to retain these high frequency components and reduce image
blurring observed after conventional GNL correction. The
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forward and adjoint operators of type-III NUFFT described
in Eqs. (5) and (6) are also compatible with the recon-
struction framework for radial PATLOC (Ref. 25) or other
MRI applications where nonlinear spatial encoding gradients
are intentionally employed. These include single-shot MR
acquisition technique with higher-dimensional encoding35

and alternative spatial encoding schemes where dynamic,
higher-order spatial encoding field was performed together
with conventional linear gradient fields.36 The proposed type-
III NUFFT implementation is more numerically efficient
than the implementation used in Ref. 25 in terms of float
point operation per operator. Detailed comparison between
different implementations of type-III NUFFT in terms of
numerical accuracy at various configurations is beyond the
scope of this work. If necessary, the B0 inhomogeneity
and susceptibility effects in PATLOC reconstruction can be
corrected based on the same framework described here by
adopting the type-III NUFFT operators with integrated off-
resonance correction as in Eqs. (10) and (12). Note that in the
context of nonlinear spatial encoding schemes, the forward
spatial encoding operator A is usually rank deficient, and
one may have to resort to advanced iterative reconstruction
methods making use of coil sensitivity information and further
auxiliary assumption on imaging object.

Gradient delays and eddy currents can lead to deviations
between the nominal and actual k-space trajectories utilized
by the scanner, causing blurring, ghosting, or distortion in
reconstructed images if unaccounted for. For conventional
nonCartesian acquisitions, these trajectory errors can be
estimated via a gradient system characterization procedure
assuming a linear time invariant (LTI) system model37 or
a combination of anisotropic gradient delay model and
convolution eddy current model.38 The k-space trajectories
presumed during image reconstruction are then updated based
on this information. In a similar fashion, the effects of gradient
delay and eddy current can be integrated into the proposed
reconstruction framework by updating the signal model in
Eq. (1) according to the actual k-space trajectory obtained
from the same characterization procedures for conventional
nonCartesian acquisition. We expect the resolution preserving
effect of the proposed method to be consistent.

6. CONCLUSIONS

In this work, we have developed a gridding-based recon-
struction framework with integrated GNL and off-resonance
correction for nonCartesian MRI. The proposed method is
able to mitigate the resolution loss that occurs during standard
image-domain GNL correction, while still providing effective
correction of coarse-scale geometric distortion and blurring
induced by GNL and off-resonance.
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