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Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs
are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both
industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up.
For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to
facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the
volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance
of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in
classification and efficiency in computation.

1. Introduction

Recently, big data has received a momentum from both
industry and academia. Many organizations are continuously
collecting massive amounts of datasets from various sources
such as theWorldWideWeb, sensor networks, and social net-
works. In [1], big data is defined as a term that encompasses
the use of techniques to capture, process, analyze, and visu-
alize potentially large datasets in a reasonable time frame not
accessible to standard IT technologies. Basically, big data is
characterized with three Vs [2]:

(i) Volume: the sheer amount of data generated.
(ii) Velocity: the rate at which the data is being generated.
(iii) Variety: the heterogeneity of data sources.

Artificial neural networks (ANNs) have been widely
used in pattern recognition and classification applications.
Back-propagation neural network (BPNN), themost popular
one of ANNs, could approximate any continuous nonlinear
functions by arbitrary precision with an enough number of

neurons [3]. Normally, BPNN employs the back-propagation
algorithm for training which requires a significant amount of
time when the size of the training data is large [4]. To fulfill
the potentials of neural networks in big data applications,
the computation process must be speeded up with parallel
computing techniques such as the Message Passing Interface
(MPI) [5, 6]. In [7], Long and Gupta presented a scalable par-
allel artificial neural network using MPI for parallelization.
It is worth noting that MPI was designed for data intensive
applications with high performance requirements. MPI pro-
vides little support in fault tolerance. If any fault happens, an
MPI computation has to be started from the beginning. As
a result, MPI is not suitable for big data applications, which
would normally run formany hours duringwhich some faults
might happen.

This paper presents a MapReduce based parallel back-
propagation neural network (MRBPNN). MapReduce has
become a de facto standard computing model in support of
big data applications [8, 9]. MapReduce provides a reliable,
fault-tolerant, scalable, and resilient computing framework
for storing and processing massive datasets. MapReduce
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scales well with ever increasing sizes of datasets due to its
use of hash keys for data processing and the strategy of mov-
ing computation to the closest data nodes. In MapReduce,
there are mainly two functions which are the Map function
(mapper) and the Reduce function (reducer). Basically, a
mapper is responsible for actual data processing and gen-
erates intermediate results in the form of ⟨key, value⟩ pairs.
A reducer collects the output results from multiple mappers
with secondary processing including sorting and merging
the intermediate results based on the key values. Finally the
Reduce function generates the computation results.

We present three MRBPNNs (i.e., MRBPNN 1,
MRBPNN 2, and MRBPNN 3) to deal with different
data intensive scenarios. MRBPNN 1 deals with a scenario in
which the dataset to be classified is large. The input dataset is
segmented into a number of data chunks which are processed
by mappers in parallel. In this scenario, each mapper builds
the same BPNN classifier using the same set of training data.
MRBPNN 2 focuses on a scenario in which the volume of
the training data is large. In this case, the training data is
segmented into data chunks which are processed by mappers
in parallel. Each mapper still builds the same BPNN but uses
only a portion of the training dataset to train the BPNN.
To maintain a high accuracy in classification, we employ
a bagging based ensemble technique [10] in MRBPNN 2.
MRBPNN 3 targets a scenario in which the number of
neurons in a BPNN is large. In this case, MRBPNN 3 fully
parallelizes and distributes the BPNN among the mappers in
such away that eachmapper employs a portion of the neurons
for training.

The rest of the paper is organized as follows. Section 2
gives a review on the related work. Section 3 presents the
designs and implementations of the three parallel BPNNs
using the MapReduce model. Section 4 evaluates the perfor-
mance of the parallel BPNNs and analyzes the experimental
results. Section 5 concludes the paper.

2. Related Work

ANNs have been widely applied in various pattern recogni-
tion and classification applications. For example, Jiang et al.
[11] employed a back-propagation neural network to classify
high resolution remote sensing images to recognize roads and
roofs in the images. Khoa et al. [12] proposed a method to
forecast the stock price using BPNN.

Traditionally, ANNs are employed to deal with a small
volume of data. With the emergence of big data, ANNs have
become computationally intensive for data intensive applica-
tions which limits their wide applications. Rizwan et al. [13]
employed a neural network on global solar energy estimation.
They considered the research as a big task, as traditional
approaches are based on extreme simplicity of the parame-
terizations. A neural network was designed which contains
a large number of neurons and layers for complex function
approximation and data processing. The authors reported
that in this case the training time will be severely affected.
Wang et al. [14] pointed out that currently large scale neural
networks are one of the mainstream tools for big data
analytics.The challenge in processing big data with large scale

neural networks includes two phases which are the training
phase and the operation phase. To speed up the computations
of neural networks, there are some efforts that try to improve
the selection of initial weights [15] or control the learning
parameters [16] of neural networks. Recently, researchers
have started utilizing parallel and distributed computing
technologies such as cloud computing to solve the computa-
tion bottleneck of a large neural network [17–19]. Yuan andYu
[20] employed cloud computing mainly for exchange of pri-
vacy data in a BPNN implementation in processing ciphered
text classification tasks. However, cloud computing as a
computing paradigm simply offers infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service
(SaaS). It is worth noting that cloud computing still needs
big data processing models such as the MapReduce model to
deal with data intensive applications. Gu et al. [4] presented a
parallel neural network using in-memory data processing
techniques to speed up the computation of the neural
network but without considering the accuracy aspect of
the implemented parallel neural network. In this work, the
training data is simply segmented into data chunks which are
processed in parallel. Liu et al. [21] presented a MapReduce
based parallel BPNN in processing a large set of mobile data.
This work further employs AdaBoosting to accommodate the
loss of accuracy of the parallelized neural network. However,
the computationally intensive issue may exist not only at the
training phase but also at the classification phase. In addition,
AdaBoosting is a popular sampling technique; it may enlarge
the weights of wrongly classified instances which would
deteriorate the algorithm accuracy.

3. Parallelizing Neural Networks

This section presents the design details of the parallelized
MRBPNN 1, MRBPNN 2, and MRBPNN 3. First, a brief
review of BPNN is introduced.

3.1. Back-Propagation Neural Network. Back-propagation
neural network is a multilayer feed forward network which
trains the training data using an error back-propagation
mechanism. It has become one of themost widely used neural
networks. BPNN can perform a large volume of input-output
mappings without knowing their exact mathematical equa-
tions. This benefits from the gradient-descent feature of its
back-propagationmechanism. During the error propagation,
BPNN keeps tuning the parameters of the network until it
adapts to all input instances. A typical BPNN is shown in
Figure 1, which consists of an arbitrary number of inputs and
outputs.

Generally speaking, a BPNN can have multiple network
layers. However, it has beenwidely accepted that a three-layer
BPNN would be enough to fit the mathematical equations
which approximate themapping relationships between inputs
and outputs [3]. Therefore, the topology of a BPNN usually
contains three layers: input layer, one hidden layer, and output
layer.The number of inputs in the input layer is mainly deter-
mined by the number of elements in an input eigenvector; for
instance, let s denote an input instance:

s = {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑛
} . (1)
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Figure 1: The structure of a typical BPNN.

Then, the number of inputs is 𝑛. Similarly, the number
of neurons in the output layer is determined by the number
of classifications. And the number of neurons in the hidden
layer is determined by users. Every input of a neuron has a
weight𝑤

𝑖𝑗
, where 𝑖 and 𝑗 represent the source and destination

of the input. Each neuron also maintains an optional param-
eter 𝜃

𝑗
which is actually a bias for varying the activity of the

𝑗th neuron in a layer.Therefore, let 𝑜
𝑗
󸀠 denote the output from

a previous neuron and let 𝑜
𝑗
denote the output of this layer;

the input 𝐼
𝑗
of neurons located in both the hidden and output

layer can be represented by

𝐼
𝑗
= ∑
𝑖

𝑤
𝑖𝑗
𝑜
𝑗
󸀠 + 𝜃
𝑗
. (2)

The output of a neuron is usually computed by the
sigmoid function, so the output 𝑜

𝑗
can be computed by

𝑜
𝑗
=

1

1 + 𝑒−𝐼𝑗
. (3)

After the feed forward process is completed, the back-
propagation process starts. Let Err

𝑗
represent the error-

sensitivity and let 𝑡
𝑗
represent the desirable output of neuron

𝑗 in the output layer; thus,

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
) (𝑡
𝑗
− 𝑜
𝑗
) . (4)

Let Err
𝑘
represent the error-sensitivity of one neuron in

the last layer and let 𝑤
𝑘𝑗
represent its weight; thus, Err

𝑗
of a

neuron in the other layers can be computed using

Err
𝑗
= 𝑜
𝑗
(1 − 𝑜

𝑗
)∑
𝑘

Err
𝑘
𝑤
𝑘𝑗
. (5)

After Err
𝑗
is computed, the weights and biases of each

neuron are tuned in back-propagation process using

Δ𝑤
𝑖𝑗

= Err
𝑗
𝑜
𝑗
,

𝑤
𝑖𝑗

= 𝑤
𝑖𝑗
+ Δ𝑤
𝑖𝑗
,

Δ𝜃
𝑗
= Err
𝑗
,

𝜃
𝑗
= 𝜃
𝑗
+ Δ𝜃
𝑗
.

(6)

After the first input vector finishes tuning the net-
work, the next round starts for the following input vectors.

The input keeps training the network until (7) is satisfied for
a single output or (8) is satisfied for multiple outputs:

min (𝐸 [𝑒
2
]) = min (𝐸 [(𝑡 − 𝑜)

2
]) , (7)

min (𝐸 [𝑒
𝑇
𝑒]) = min (𝐸 [(𝑡 − 𝑜)

𝑇
(𝑡 − 𝑜)]) . (8)

3.2. MapReduce Computing Model. MapReduce has become
the de facto standard computing model in dealing with data
intensive applications using a cluster of commodity comput-
ers. Popular implementations of the MapReduce computing
model include Mars [22], Phoenix [23], and Hadoop frame-
work [24, 25].The Hadoop framework has been widely taken
up by the community due to its open source feature. Hadoop
has its HadoopDistributed File System (HDFS) for dataman-
agement. A Hadoop cluster has one name node (Namenode)
and a number of data nodes (Datanodes) for running jobs.
The name node manages the metadata of the cluster whilst a
data node is the actual processing node. The Map functions
(mappers) and Reduce functions (reducers) run on the data
nodes. When a job is submitted to a Hadoop cluster, the
input data is divided into small chunks of an equal size and
saved in the HDFS. In terms of data integrity, each data
chunk can have one or more replicas according to the cluster
configuration. In a Hadoop cluster, mappers copy and read
data from either remote or local nodes based on data locality.
The final output results will be sorted, merged, and generated
by reducers in HDFS.

3.3. The Design of MRBPNN 1. MRBPNN 1 targets the sce-
nario in which BPNN has a large volume of testing data to be
classified. Consider a testing instance 𝑠

𝑖
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
},

𝑠
𝑖
∈ 𝑆, where

(i) 𝑠
𝑖
denotes an instance;

(ii) 𝑆 denotes a dataset;
(iii) 𝑖𝑛 denotes the length of 𝑠

𝑖
; it also determines the

number of inputs of a neural network;
(iv) the inputs are capsulated by a format of

⟨instance
𝑘
, target

𝑘
, type⟩;

(v) instance
𝑘
represents 𝑠

𝑖
, which is the input of a neural

network;
(vi) target

𝑘
represents the desirable output if instance

𝑘
is

a training instance;
(vii) type field has two values, “train” and “test,” which

marks the type of instance
𝑘
; if “test” value is set,

target
𝑘
field should be left empty.

Files which contain instances are saved into HDFS
initially. Each file contains all the training instances and a
portion of the testing instances. Therefore, the file number
𝑛 determines the number of mappers to be used. The file
content is the input of MRBPNN 1.

When the algorithm starts, each mapper initializes a
neural network. As a result, there will be 𝑛 neural networks in
the cluster. Moreover, all the neural networks have exactly the
same structure and parameters. Each mapper reads data in
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Figure 2: MRBPNN 1 architecture.

the formof ⟨instance
𝑘
, target

𝑘
, type⟩ fromafile and parses the

data records. If the value of type field is “train,” instance
𝑘
is

input into the input layer of the neural network.The network
computes the output of each layer using (2) and (3), until
the output layer generates an output which indicates the
completion of the feed forward process. And then the neural
network in each mapper starts the back-propagation process.
It computes and updates new weights and biases for its neu-
rons using (4) to (6). The neural network inputs instance

𝑘+1
.

Repeat the feed forward and back-propagation process until
all the instances which are labeled as “train” are processed
and the error is satisfied.

Each mapper starts classifying instances labeled as “test”
by running the feed forward process. As each mapper only
classifies a portion of the entire testing dataset, the efficiency
is improved. At last, each mapper outputs intermediate out-
put in the form of ⟨instance

𝑘
, 𝑜
𝑗𝑚

⟩, where instance
𝑘
is the key

and 𝑜
𝑗𝑚

represents the output of the 𝑚th mapper.
One reducer starts collecting and merging all the outputs

of the mappers. Finally, the reducer outputs ⟨instance
𝑘
, 𝑜
𝑗𝑚

⟩

into HDFS. In this case, 𝑜
𝑗𝑚

represents the final classifica-
tion result of instance

𝑘
. Figure 2 shows the architecture of

MRBPNN 1 and Algorithm 1 shows the pseudocode.

3.4. The Design of MRBPNN 2. MRBPNN 2 focuses on the
scenario inwhich a BPNNhas a large volume of training data.
Consider a training dataset 𝑆 with a number of instances. As
shown in Figure 3, MRBPNN 2 divides 𝑆 into 𝑛 data chunks
of which each data chunk 𝑠

𝑖
is processed by a mapper for

training, respectively:

𝑆 =

𝑛

⋃
1

𝑠
𝑖
, {∀𝑠 ∈ 𝑠

𝑖
| 𝑠 ∉ 𝑠

𝑛
, 𝑖 ̸= 𝑛} . (9)

Each mapper in the Hadoop cluster maintains a BPNN,
and each 𝑠

𝑖
is considered as the input training data for the

neural network maintained in mapper
𝑖
. As a result, each

BPNN in a mapper produces a classifier based on the trained
parameters:

(mapper
𝑖
,BPNN

𝑖
, 𝑠
𝑖
) 󳨀→ classifier

𝑖
. (10)

To reduce the computation overhead, each classifier
𝑖
is

trained with a part of the original training dataset. However,

a critical issue is that the classification accuracy of a mapper
will be significantly degraded using only a portion of the
training data. To solve this issue, MRBPNN 2 employs
ensemble technique to maintain the classification accuracy
by combining a number of weak learners to create a strong
learner.

3.4.1. Bootstrapping. Training diverse classifiers from a single
training dataset has been proven to be simple compared with
the case of finding a strong learner [26]. A number of tech-
niques exist for this purpose. A widely used technique is to
resample the training dataset based on bootstrap aggregating
such as bootstrapping and majority voting. This can reduce
the variance of misclassification errors and hence increases
the accuracy of the classifications.

Asmentioned in [26], balanced bootstrapping can reduce
the variance when combining classifiers. Balanced bootstrap-
ping ensures that each training instance equally appears in the
bootstrap samples. It might not be always the case that each
bootstrapping sample contains all the training instances. The
most efficient way of creating balanced bootstrap samples is
to construct a string of instances𝑋

1
, 𝑋
2
, 𝑋
3
, . . . , 𝑋

𝑛
repeating

𝐵 times so that a sequence of 𝑌
1
, 𝑌
2
, 𝑌
3
, . . . , 𝑌

𝐵𝑛
can be

achieved. A random permutation 𝑝 of the integers from 1 to
𝐵
𝑛
is taken. Therefore, the first bootstrapping sample can be

created from 𝑌
𝑝
(1), 𝑌
𝑝
(2), 𝑌
𝑝
(3), . . . , 𝑌

𝑝
(𝑛). In addition, the

second bootstrapping sample is created from𝑌
𝑝
(𝑛+1), 𝑌

𝑝
(𝑛+

2), 𝑌
𝑝
(𝑛 + 3), . . . , 𝑌

𝑝
(2𝑛) and the process continues until

𝑌
𝑝
((𝐵−1)𝑛+1), 𝑌

𝑝
((𝐵−1)𝑛+2), 𝑌

𝑝
((𝐵−1)𝑛+3), . . . , 𝑌

𝑝
(𝐵𝑛) is

the𝐵th bootstrapping sample.Thebootstrapping samples can
be used in bagging to increase the accuracy of classification.

3.4.2. Majority Voting. This type of ensemble classifiers per-
forms classifications based on the majority votes of the base
classifiers [26]. Let us define the prediction of the 𝑖th classifier
𝑃
𝑖
as 𝑃
𝑖,𝑗

∈ {1, 0}, 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝑐, where 𝐼 is the
number of classifiers and 𝑐 is the number of classes. If the 𝑖th
classifier chooses class 𝑗, then 𝑃

𝑖,𝑗
= 1; otherwise, 𝑃

𝑖,𝑗
= 0.

Then, the ensemble prediction for class 𝑘 is computed using

𝑃
𝑖,𝑘

=
𝑐max
𝑗=1

𝐼

∑
𝑖=1

𝑃
𝑖,𝑗
. (11)

3.4.3. Algorithm Design. At the beginning, MRBPNN 2
employs balanced bootstrapping to generate a number of
subsets of the entire training dataset:

balanced bootstrapping 󳨀→ {𝑆
1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑛
} ,

𝑛

⋃
𝑖=1

𝑆
𝑖
= 𝑆,

(12)

where 𝑆
𝑖
represents the 𝑖th subset, which belongs to entire

dataset 𝑆. 𝑛 represents the total number of subsets.
Each 𝑆

𝑖
is saved in one file in HDFS. Each instance

𝑠
𝑘

= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}, 𝑠
𝑘

∈ 𝑆
𝑖
, is defined in the format of

⟨instance
𝑘
, target

𝑘
, type⟩, where

(i) instance
𝑘
represents one bootstrapped instance 𝑠

𝑘
,

which is the input of neural network;
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Input: 𝑆, 𝑇 Output: 𝐶
𝑚 mappers one reducer
(1) Each mapper constructs one BPNN with 𝑖𝑛 inputs, 𝑜 outputs, ℎ neurons in hidden layer
(2) Initialize 𝑤

𝑖𝑗
= random

1𝑖𝑗
∈ (−1, 1), 𝜃

𝑗
= random

2𝑗
∈ (−1, 1)

(3) ∀𝑠 ∈ 𝑆, 𝑠
𝑖
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}

Input 𝑎
𝑖
→ 𝑖𝑛

𝑖
, neuron

𝑗
in hidden layer computes

𝐼
𝑗ℎ

=

𝑖𝑛

∑
𝑖=1

𝑎
𝑖
⋅ 𝑤
𝑖𝑗
+ 𝜃
𝑗

𝑜
𝑗ℎ

=
1

1 + 𝑒𝐼𝑗ℎ

(4) Input 𝑜
𝑗

→ out
𝑖
, neuron

𝑗
in output layer computes

𝐼
𝑗𝑜

=

ℎ

∑
𝑖=1

𝑜
𝑗ℎ

⋅ 𝑤
𝑖𝑗
+ 𝜃
𝑗

𝑜
𝑗𝑜

=
1

1 + 𝑒𝐼𝑗𝑜

(5) In each output, compute
Err
𝑗𝑜

= 𝑜
𝑗𝑜

(1 − 𝑜
𝑗𝑜
) (target

𝑗
− 𝑜
𝑗𝑜
)

(6) In hidden layer, compute

Err
𝑗ℎ

= 𝑜
𝑗ℎ

(1 − 𝑜
𝑗ℎ
)

𝑜

∑
𝑖=1

Err
𝑖
𝑤
𝑖𝑜

(7) Update
𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ 𝜂 ⋅ Err

𝑗
⋅ 𝑜
𝑗

𝜃
𝑗
= 𝜃
𝑗
+ 𝜂 ⋅ Err

𝑗

Repeat (3), (4), (5), (6), (7)
Until

min (𝐸 [𝑒
2
]) = min (𝐸 [(target

𝑗
− 𝑜
𝑗𝑜
)
2

])

Training terminates
(8) Divide 𝑇 into {𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

𝑚
}, ⋃𝑚
𝑖=0

𝑇
𝑖
= 𝑇

(9) Each mapper inputs 𝑡
𝑗
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}, 𝑡
𝑗
∈ 𝑇
𝑖

(10) Execute (3), (4)
(11) Mapper outputs ⟨𝑡

𝑗
, 𝑜
𝑗
⟩

(12) Reducer collects and merges all ⟨𝑡
𝑗
, 𝑜
𝑗
⟩

Repeat (9), (10), (11), (12)
Until 𝑇 is traversed.

(13) Reducer outputs 𝐶
End

Algorithm 1: MRBPNN 1.
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(ii) 𝑖𝑛 represents the number of inputs of the neural
network;

(iii) target
𝑘
represents the desirable output if instance

𝑘
is

a training instance;
(iv) type field has two values, “train” and “test,” which

marks the type of instance
𝑘
; if “test” value is set,

target
𝑘
field should be left empty.

When MRBPNN 2 starts, each mapper constructs one
BPNN and initializes weights and biases with random values
between −1 and 1 for its neurons. And then a mapper inputs
one record in the form of ⟨instance

𝑘
, target

𝑘
, type⟩ from the

input file.
The mapper firstly parses the data and retrieves the type

of the instance. If the type value is “train,” the instance is fed
into the input layer. Secondly, each neuron in different layers
computes its output using (2) and (3) until the output layer
generates an output which indicates the completion of the
feed forward process. Eachmapper starts a back-propagation
process and computes and updates weights and biases for
neurons using (4) to (6). The training process finishes until
all the instances marked as “train” are processed and error is
satisfied. All the mappers start feed forwarding to classify the
testing dataset. In this case, each neural network in a mapper
generates the classification result of an instance at the output
layer. Each mapper generates an intermediate output in the
form of ⟨instance

𝑘
, 𝑜
𝑗𝑚

⟩, where instance
𝑘
is the key and 𝑜

𝑗𝑚

represents the outputs of the 𝑚th mapper.
Finally, a reducer collects the outputs of all the mappers.

The outputs with the same key are merged together. The
reducer runs majority voting using (11) and outputs the
result of instance

𝑘
into HDFS in the form of ⟨instance

𝑘
, 𝑟
𝑘
⟩,

where 𝑟
𝑘
represents the voted classification result of instance

𝑘
.

Figure 3 shows the algorithm architecture and Algorithm 2
presents the pseudocode of MRBPNN 2.

3.5. The Design of MRBPNN 3. MRBPNN 3 aims at the
scenario inwhich a BPNNhas a large number of neurons.The
algorithm enables an entire MapReduce cluster to maintain
one neural network across it. Therefore, each mapper holds
one or several neurons.

There are a number of iterations that exist in the
algorithm with 𝑙 layers. MRBPNN 3 employs a number of
𝑙 − 1 MapReduce jobs to implement the iterations. The
feed forward process runs in 𝑙 − 1 rounds whilst the
back-propagation process occurs only in the last round. A
data format in the form of ⟨index

𝑘
, instance

𝑛
, 𝑤
𝑖𝑗
, 𝜃
𝑗
, target

𝑛
,

{𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
, . . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}⟩ has been designed to guarantee the

data passing between Map and Reduce operations, where

(i) index
𝑘
represents the 𝑘th reducer;

(ii) instance
𝑛

represents the 𝑛th training or testing
instance of the dataset; one instance is in the form of
instance

𝑛
= {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑖𝑛
}, where 𝑖𝑛 is length of the

instance;
(iii) 𝑤

𝑖𝑗
represents a set of weights of an input layer, whilst

𝜃
𝑗
represents the biases of the neurons in the first

hidden layer;

(iv) target
𝑛
represents the encoded desirable output of a

training instance instance
𝑛
;

(v) the list of {𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
, . . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
} represents the

weights and biases for next layers; it can be extended
based on the layers of the network; for a standard
three-layer neural network, this option becomes
{𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
}.

Before MRBPNN 3 starts, each instance and the infor-
mation defined by data format are saved in one file in
HDFS. The number of the layers is determined by the
length of {𝑤2

𝑖𝑗
, 𝜃
2

𝑗
. . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
} field. The number of neurons

in the next layer is determined by the number of files
in the input folder. Generally, different from MRBPNN 1
and MRBPNN 2, MRBPNN 3 does not initialize an explicit
neural network; instead, it maintains the network parameters
based on the data defined in the data format.

When MRBPNN 3 starts, each mapper initially inputs
one record fromHDFS. And then it computes the output of a
neuronusing (2) and (3).Theoutput is generated by amapper,
which labels index

𝑘
as a key and the neuron’s output as a value

in the form of

⟨index
𝑘
, 𝑜
𝑗
, {𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
. . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}, target

𝑛
⟩, where 𝑜

𝑗

represents the neuron’s output.

Parameter index
𝑘
can guarantee that the 𝑘th reducer col-

lects the output, which maintains the neural network struc-
ture. It should be mentioned that if the record is the first one
processed by MRBPNN 3, {𝑤2

𝑖𝑗
, 𝜃
2

𝑗
. . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
} will be also

initialized with random values between −1 and 1 by the map-
pers. The 𝑘th reducer collects the results from the mappers
in the form of ⟨index

𝑘
󸀠 , 𝑜
𝑗
, {𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
. . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}, target

𝑛
⟩.

These 𝑘 reducers generate 𝑘 outputs. The index
𝑘
󸀠 of the

reducer output explicitly tells the 𝑘
󸀠th mapper to start

processing this output file. Therefore, the number of neurons
in the next layer can be determined by the number of reducer
output files, which are the input data for the next layer
neurons. Subsequently, mappers start processing their corre-
sponding inputs by computing (2) and (3) using 𝑤

2

𝑖𝑗
and 𝜃
2

𝑗
.

The above steps keep looping until reaching the last
round. The processing of this last round consists of two
steps. The first step is that mappers also process ⟨index

𝑘
󸀠 ,

𝑜
𝑗
, {𝑤
𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}, target

𝑛
⟩, compute neurons’ outputs, and gen-

erate results in the forms of ⟨𝑜
𝑗
, target

𝑛
⟩. One reducer

collects the output results of all the mappers in the form of
⟨𝑜
𝑗1
, 𝑜
𝑗2
, 𝑜
𝑗3
, . . . , 𝑜

𝑗𝑘
, target

𝑛
⟩. In the second step, the reducer

executes the back-propagation process. The reducer com-
putes new weights and biases for each layer using (4) to
(6). MRBPNN 3 retrieves the previous outputs, weights, and
biases from the input files of mappers, and then it writes
the updated weights and biases 𝑤

𝑖𝑗
, 𝜃
𝑗
, {𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
, . . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}

into the initial input file in the form of ⟨index
𝑘
, instance

𝑛
, 𝑤
𝑖𝑗
,

𝜃
𝑗
, target

𝑛
, {𝑤
2

𝑖𝑗
, 𝜃
2

𝑗
, . . . , 𝑤

𝑙−1

𝑖𝑗
, 𝜃
𝑙−1

𝑗
}⟩.The reducer reads the sec-

ond instance in the form of ⟨instance
𝑛+1

, target
𝑛+1

⟩ for which
the fields instance

𝑛
and target

𝑛
in the input file are replaced

by instance
𝑛+1

and target
𝑛+1

. The training process continues
until all the instances are processed and error is satisfied.
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Input: 𝑆, 𝑇 Output: 𝐶
𝑛 mappers one reducer
(1) Each mapper constructs one BPNN with 𝑖𝑛 inputs, 𝑜 outputs, ℎ neurons in hidden layer
(2) Initialize 𝑤

𝑖𝑗
= random

1𝑖𝑗
∈ (−1, 1), 𝜃

𝑗
= random

2𝑗
∈ (−1, 1)

(3) Bootstrap {𝑆
1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑛
}, ⋃𝑛
𝑖=0

𝑆
𝑖
= 𝑆

(4) Each mapper inputs 𝑠
𝑘
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}, 𝑠
𝑘
∈ 𝑆
𝑖

Input 𝑎
𝑖
→ 𝑖𝑛

𝑖
, neuron

𝑗
in hidden layer computes

𝐼
𝑗ℎ

=

𝑖𝑛

∑
𝑖=1

𝑎
𝑖
⋅ 𝑤
𝑖𝑗
+ 𝜃
𝑗

𝑜
𝑗ℎ

=
1

1 + 𝑒𝐼𝑗ℎ

(5) Input 𝑜
𝑗

→ out
𝑖
, neuron

𝑗
in output layer computes

𝐼
𝑗𝑜

=

ℎ

∑
𝑖=1

𝑜
𝑗ℎ

⋅ 𝑤
𝑖𝑗
+ 𝜃
𝑗

𝑜
𝑗𝑜

=
1

1 + 𝑒𝐼𝑗𝑜

(6) In each output, compute
Err
𝑗𝑜

= 𝑜
𝑗𝑜

(1 − 𝑜
𝑗𝑜
) (target

𝑗
− 𝑜
𝑗𝑜
)

(7) In hidden layer, compute

Err
𝑗ℎ

= 𝑜
𝑗ℎ

(1 − 𝑜
𝑗ℎ
)

𝑜

∑
𝑖=1

Err
𝑖
𝑤
𝑖𝑜

(8) Update
𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ 𝜂 ⋅ Err

𝑗
⋅ 𝑜
𝑗

𝜃
𝑗
= 𝜃
𝑗
+ 𝜂 ⋅ Err

𝑗

Repeat (3), (4), (5), (6), (7)
Until

min (𝐸 [𝑒
2
]) = min (𝐸 [(target

𝑗
− 𝑜
𝑗𝑜
)
2

])

Training terminates
(9) Each mapper inputs 𝑡

𝑖
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}, 𝑡
𝑖
∈ 𝑇

(10)Execute (4), (5)
(11) Mapper outputs ⟨𝑡

𝑗
, 𝑜
𝑗
⟩

(12) Reducer collects ⟨𝑡
𝑗
, 𝑜
𝑗𝑚

⟩, 𝑚 = (1, 2, . . . , 𝑛)

(13) For each 𝑡
𝑗

Compute 𝐶 = max𝑐
𝑗=1

∑
𝐼

𝑖=1
𝑜
𝑗𝑚

Repeat (9), (10), (11), (12), (13)
Until 𝑇 is traversed.
(14) Reducer outputs 𝐶
End

Algorithm 2: MRBPNN 2.

For classification, MRBPNN 3 only needs to run the feed
forwarding process and collects the reducer output in the
form of ⟨𝑜

𝑗
, target

𝑛
⟩. Figure 4 shows three-layer architecture

of MRBPNN 3 and Algorithm 3 presents the pseudocode.

4. Performance Evaluation

We have implemented the three parallel BPNNs using
Hadoop, an open source implementation framework of the
MapReduce computing model. An experimental Hadoop
cluster was built to evaluate the performance of the algo-
rithms.The cluster consisted of 5 computers in which 4 nodes
are Datanodes and the remaining one is Namenode. The
cluster details are listed in Table 1.

Two testing datasets were prepared for evaluations. The
first dataset is a synthetic dataset.The second is the Iris dataset

Table 1: Cluster details.

Namenode
CPU: Core i7@3GHz

Memory: 8GB
SSD: 750GB
OS: Fedora

Datanodes
CPU: Core i7@3.8GHz

Memory: 32GB
SSD: 250GB
OS: Fedora

Network bandwidth 1Gbps
Hadoop version 2.3.0, 32 bits

which is a published machine learning benchmark dataset
[27]. Table 2 shows the details of the two datasets.
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Input: 𝑆, 𝑇 Output: 𝐶
𝑚 mappers 𝑚 reducers
Initially each mapper inputs

⟨index
𝑘
, instance

𝑛
, 𝑤
𝑖𝑗
, 𝜃
𝑗
, target

𝑛
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
⟩, 𝑘 = (1, 2, . . . , 𝑚)

(1) For instance
𝑛
= {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑖𝑛
}

Input 𝑎
𝑖
→ 𝑖𝑛

𝑖
, neuron inmapper computes

𝐼
𝑗ℎ

=

𝑖𝑛

∑
𝑖=1

𝑎
𝑖
⋅ 𝑤
𝑖𝑗
+ 𝜃
𝑗

𝑜
𝑗ℎ

=
1

1 + 𝑒𝐼𝑗ℎ

(2)Mapper outputs output
⟨index

𝑘
, 𝑜
𝑗ℎ
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
, target

𝑛
⟩, 𝑟 = (1, 2, . . . , 𝑚)

(3) 𝑘th reducer collects output
Output ⟨index

𝑘
󸀠 , 𝑜
𝑗ℎ
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
, target

𝑛
⟩, 𝑘󸀠 = (1, 2, . . . , 𝑚)

(4) Mapper
𝑘
󸀠 inputs

⟨index
𝑘
󸀠 , 𝑜
𝑗ℎ
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
, target

𝑛
⟩

Execute (2), outputs ⟨𝑜
𝑗𝑜
, target

𝑛
⟩

(5) 𝑚th reducer collects and merges all ⟨𝑜
𝑗𝑜
, target

𝑛
⟩ from 𝑚 mappers

Feed forward terminates
(6) In 𝑚th reducer

Compute
Err
𝑗𝑜

= 𝑜
𝑗𝑜

(1 − 𝑜
𝑗𝑜
) (target

𝑛
− 𝑜
𝑗𝑜
)

Using HDFS API, retrieve 𝑤
𝑖𝑗
, 𝜃
𝑗
, 𝑜
𝑗ℎ
, instance

𝑛

Compute

Err
𝑗ℎ

= 𝑜
𝑗ℎ

(1 − 𝑜
𝑗ℎ
)

𝑜

∑
𝑖=1

Err
𝑖
𝑤
𝑖𝑜

(7) Update 𝑤
𝑖𝑗
, 𝜃
𝑗
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜

𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ 𝜂 ⋅ Err

𝑗
⋅ 𝑜
𝑗

𝜃
𝑗
= 𝜃
𝑗
+ 𝜂 ⋅ Err

𝑗

into
⟨index

𝑘
, instance

𝑛
, 𝑤
𝑖𝑗
, 𝜃
𝑗
, target

𝑛
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
⟩

Back propagation terminates
(8) Retrieve instance

𝑛+1
and target

𝑛+1

Update into ⟨index
𝑘
, instance

𝑛+1
, 𝑤
𝑖𝑗
, 𝜃
𝑗
, target

𝑛+1
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
⟩

Repeat (1), (2), (3), (4), (5), (6), (7), (8), (9)
Until

min (𝐸 [𝑒
2
]) = min (𝐸 [(target

𝑗
− 𝑜
𝑗𝑜
)
2

])

Training terminates
(9) Each mapper inputs ⟨index

𝑘
, instance

𝑡
, 𝑤
𝑖𝑗
, 𝜃
𝑗
, target

𝑛
, 𝑤
𝑖𝑗𝑜

, 𝜃
𝑗𝑜
⟩, instance

𝑡
∈ 𝑇

(10) Execute (1), (2), (3), (4), (5), (6), outputs ⟨𝑜
𝑗𝑜
, target

𝑛
⟩

(11) 𝑚th reducer outputs 𝐶
End

Algorithm 3: MRBPNN 3.

Table 2: Dataset details.

Data type Instance
number

Instance
length

Element
range

Class
number

Synthetic
data 200 32 0 and 1 4

Iris data 150 4 (0, 8) 3

We implemented a three-layer neural network with
16 neurons in the hidden layer. The Hadoop cluster was
configured with 16 mappers and 16 reducers. The number
of instances was varied from 10 to 1000 for evaluating

the precision of the algorithms. The size of the datasets was
varied from 1MB to 1GB for evaluating the computation effi-
ciency of the algorithms. Each experiment was executed five
times and the final result was an average. The precision 𝑝 is
computed using

𝑝 =
𝑟

𝑟 + 𝑤
× 100%, (13)

where 𝑟 represents the number of correctly recognized
instances. 𝑤 represents the number of wrongly recognized
instances. 𝑝 represents the precision.
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Figure 4: MRBPNN 3 structure.
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(a) The synthetic dataset
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(b) The Iris dataset

Figure 5: The precision of MRBPNN 1 on the two datasets.

4.1. Classification Precision. The classification precision of
MRBPNN 1 was evaluated using a varied number of training
instances. The maximum number of the training instances
was 1000whilst themaximumnumber of the testing instances
was also 1000. The large number of instances is based on
the data duplication. Figure 5 shows the precision results
of MRBPNN 1 in classification using 10 mappers. It can be
observed that the precision keeps increasing with an increase
in the number of training instances. Finally, the precision of
MRBPNN 1 on the synthetic dataset reaches 100% while the
precision on the Iris dataset reaches 97.5%. In this test, the
behavior of the parallel MRBPNN 1 is quite similar to that
of the standalone BPNN.The reason is that MRBPNN 1 does
not distribute the BPNN among the Hadoop nodes; instead,
it runs on Hadoop to distribute the data.

To evaluate MRBPNN 2, we designed 1000 training
instances and 1000 testing instances using data duplication.

The mappers were trained by subsets of the training
instances and produced the classification results of 1000
testing instances based on bootstrapping andmajority voting.
MRBPNN 2 employed 10 mappers each of which inputs a
number of training instances varying from 10 to 1000. Fig-
ure 6 presents the precision results of MRBPNN 2 on the two
testing datasets. It also shows that, along with the increasing
number of training instances in each subneural network, the
achieved precision based onmajority voting keeps increasing.
The precision ofMRBPNN 2 on the synthetic dataset reaches
100% whilst the precision on the Iris dataset reaches 97.5%,
which is higher than that of MRBPNN 1.

MRBPNN 3 implements a fully parallel and distributed
neural network using Hadoop to deal with a complex neural
network with a large number of neurons. Figure 7 shows the
performance of MRBPNN 3 using 16 mappers.The precision
also increases along with the increasing number of training
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(a) The synthetic dataset

0

20

40

60

80

100

120

Pr
ec

isi
on

 (%
)

Number of instances in each sub-BPNN

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
1
0

2
3
0

2
5
0

2
7
0

2
9
0

3
1
0

3
3
0

3
5
0

3
7
0

3
9
0

5
0
0

7
0
0

9
0
0

(b) The Iris dataset

Figure 6: The precision of MRBPNN 2 on the two datasets.

0

20

40

60

80

100

120

Pr
ec

isi
on

 (%
)

Number of training instances

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
1
0

2
3
0

2
5
0

2
7
0

2
9
0

3
1
0

3
3
0

3
5
0

3
7
0

3
9
0

5
0
0

7
0
0

9
0
0

(a) The synthetic dataset

20

0

40

60

80

100

120
Pr

ec
isi

on
 (%

)

Number of training instances

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
1
0

2
3
0

2
5
0

2
7
0

2
9
0

3
1
0

3
3
0

3
5
0

3
7
0

3
9
0

5
0
0

7
0
0

9
0
0

(b) The Iris dataset

Figure 7: The precision of MRBPNN 3 on the two datasets.

instances for both datasets. It also can be observed that the
stability of the curve is quite similar to that of MRBPNN 1.
Both curves have more fluctuations than that of MRBPNN 2.

Figure 8 compares the overall precision of the three par-
allel BPNNs.MRBPNN 1 andMRBPNN 3 perform similarly,
whereas MRBPNN 2 performs the best using bootstrapping
andmajority voting. In addition, the precision ofMRBPNN 2
in classification is more stable than that of both MRBPNN 1
and MRBPNN 3.

Figure 9 presents the stability of the three algorithms on
the synthetic dataset showing the precision of MRBPNN 2
in classification is highly stable compared with that of both
MRBPNN 1 and MRBPNN 3.

4.2. Computation Efficiency. A number of experiments were
carried out in terms of computation efficiency using the
synthetic dataset. The first experiment was to evaluate the
efficiency of MRBPNN 1 using 16 mappers. The volume of
data instances was varied from 1MB to 1GB. Figure 10 clearly
shows that the parallel MRBPNN 1 significantly outperforms

the standalone BPNN. The computation overhead of the
standalone BPNN is lowwhen the data size is less than 16MB.
However, the overhead of the standalone BPNN increases
sharply with increasing data sizes. This is mainly because
MRBPNN 1 distributes the testing data into 4 data nodes in
the Hadoop cluster, which runs in parallel in classification.

Figure 11 shows the computation efficiency of
MRBPNN 2 using 16 mappers. It can be observed that when
the data size is small, the standalone BPNN performs better.
However, the computation overhead of the standalone BPNN
increases rapidly when the data size is larger than 64MB.
Similar to MRBPNN 1, the parallel MRBPNN 2 scales with
increasing data sizes using the Hadoop framework.

Figure 12 shows the computation overhead of
MRBPNN 3 using 16 mappers. MRBPNN 3 incurs a higher
overhead than both MRBPNN 1 and MRBPNN 2. The
reason is that bothMRBPNN 1 andMRBPNN 2 run training
and classification within one MapReduce job, which means
mappers and reducers only need to start once. However,
MRBPNN 3 contains a number of jobs. The algorithm has to
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Figure 8: Precision comparison of the three parallel BPNNs.
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Figure 9: The stability of the three parallel BPNNs.
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Figure 10: Computation efficiency of MRBPNN 1.
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Figure 11: Computation efficiency of MRBPNN 2.

start mappers and reducers a number of times. This process
incurs a large system overhead which affects its computation
efficiency. Nevertheless, Figure 12 shows the feasibility of
fully distributing a BPNN in dealing with a complex neural
network with a large number of neurons.

5. Conclusion

In this paper, we have presented three parallel neural net-
works (MRBPNN 1,MRBPNN 2, andMRBPNN 3) based on
theMapReduce computingmodel in dealing with data inten-
sive scenarios in terms of the size of classification dataset,
the size of the training dataset, and the number of neurons,
respectively. Overall, experimental results have shown the
computation overhead can be significantly reduced using a
number of computers in parallel. MRBPNN 3 shows the fea-
sibility of fully distributing a BPNN in a computer cluster but
incurs a high overhead of computation due to continuous
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Figure 12: Computation efficiency of MRBPNN 3.

starting and stopping of mappers and reducers in Hadoop
environment. One of the future works is to research in-
memory processing to further enhance the computation effi-
ciency ofMapReduce in dealingwith data intensive taskswith
many iterations.
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