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Abstract

Bayesian theories of neural coding propose that sensory uncertainty is represented by a probability 

distribution encoded in neural population activity, but direct neural evidence supporting this 

hypothesis is currently lacking. Using fMRI in combination with a generative model-based 

analysis, we found that probability distributions reflecting sensory uncertainty could reliably be 

estimated from human visual cortex and, moreover, that observers appeared to use knowledge of 

this uncertainty in their perceptual decisions.

The information that the brain receives from the senses is typically consistent with a range 

of possible stimulus values; consequently, all of our perceptual decisions have to be made 

under uncertainty. It is well known that this sensory uncertainty can affect behavior1,2, but 

how the fidelity of sensory knowledge is represented in cortex remains unclear. Bayesian 

theories of neural coding postulate that a probability distribution over sensory stimuli is 

encoded in the activity of a whole population of neurons, with the width of this distribution 

reflecting the degree of uncertainty about the stimulus3–6. Although indirect 

neurophysiological evidence is consistent with this notion7,8, this hypothesis has yet to be 

tested directly in sensory cortex. We used functional magnetic resonance imaging (fMRI) in 

combination with a model-based analysis to address two fundamental questions. First, can a 

probability distribution that reflects sensory uncertainty be extracted from population 

activity in human visual cortex? Second, do observers use knowledge of this uncertainty in 

their perceptual decisions? Notably, unlike previous behavioral studies on probabilistically 

optimal inference, no external noise was added to the visual stimuli to manipulate 
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uncertainty, as changes in physical stimulus properties could then act as external cues to 

reliability9. We hypothesized that varying degrees of internal neural noise might nonetheless 

affect sensory processing on a trial-by-trial basis; if uncertainty is part of the neural sensory 

code, then these fluctuations in uncertainty should alter human perceptual decision-making.

Participants viewed annular gratings of random orientations while we measured activity in 

visual cortex using fMRI. Shortly after the presentation of each grating, observers reported 

its orientation by rotating a bar presented at fixation. Observers generally performed well on 

this task. The mean angular difference between reported and actual orientations was 4.5°, 

ranging between 0.003° and 37.68° on individual trials. These fluctuations in behavioral 

accuracy are often thought to arise, in part, from internal neural noise affecting the fidelity 

of cortical orientation representations. We asked whether this trial-by-trial variability in the 

fidelity of internal knowledge was reflected in fMRI activation patterns. We addressed this 

question using a model-based decoding approach to analyzing fMRI data (Online Methods). 

Specifically, using a generative model incorporating the orientation preferences of voxels as 

well as their (correlated) noise, we approximated on each trial the posterior probability 

distribution over orientation, given the pattern of blood oxygen level–dependent (BOLD) 

activity. This approach differs from conventional fMRI decoding studies10–12 in that it 

explicitly recovers a full probability distribution over stimulus values, rather than a single 

stimulus estimate. The (circular) mean of the posterior distribution serves as an estimate of 

the presented orientation, and its width (circular s.d.) as a measure of the degree of stimulus 

uncertainty in the cortical representation. Regions of interest were those portions of visual 

areas V1–V3 that corresponded to the retinotopic representation of the stimuli.

To benchmark our approach, we first tested its ability to identify the presented orientation 

from activity patterns in areas V1–V3 (Supplementary Fig. 1a,b). The decoded and 

presented orientations were significantly correlated (r = 0.69, P ≈ 0), consistent with 

previous findings13,14. We then turned to the degree of trial-by-trial uncertainty about 

orientation. The decoder’s estimates of uncertainty varied from trial to trial as a result of 

noise in the fMRI measurements (Fig. 1a). To the extent that our decoding approach 

appropriately models the fMRI data, uncertainty on a single trial should be related to 

variability across trials. Accordingly, to verify the decoder’s assumptions and test whether 

the decoded uncertainty followed the actual degree of noise in the fMRI data, we binned the 

data according to posterior width, and calculated the trial-by-trial variability in decoded 

orientation estimates for each of the bins (Supplementary Fig. 1c). We found that the 

decoded uncertainty was indeed significantly correlated with the across-trial variability in 

decoded orientations (r = 0.91, P ≈ 0). A comparison between different noise models 

revealed that the one used here best captured the fMRI data (Supplementary Fig. 2). 

Altogether, these findings corroborate the validity of our assumptions and suggest that 

posterior width captures the overall degree of uncertainty in the data on a trial-by-trial basis.

Having established that the decoded uncertainty reflects the aggregate of all fMRI noise 

sources, we next asked whether it captures variability in cortical stimulus representations in 

particular. We addressed this question in two sets of analyses, focusing first on gratings of 

different orientations. Consistent with previous work15,16, behavioral orientation judgments 

were more accurate for cardinal than for oblique orientation stimuli (correlation between 
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behavioral variability and the angle of the presented stimulus with the nearest cardinal axis: 

r = 0.54, P = 1.8 × 10−5; Fig. 1b). Because behavioral accuracy is directly related to 

uncertainty, we tested whether this oblique effect in behavior was paralleled in visual 

cortical responses. Indeed, the width of the decoded posterior probability distribution was 

narrower for stimulus orientations closer to the cardinal axes (r = 0.35, P = 0.008; Fig. 1b). 

Thus, similar to behavior, horizontal and vertical orientations are represented with greater 

precision in visual cortex.

For the second set of analyses, we focused on repeated presentations of physically identical 

orientation stimuli. We reasoned that, if the posterior distribution also captures random, 

trial-by-trial fluctuations in cortical activity, then more certain decoder estimates should be 

linked to reduced variability in the observer’s behavior, even for physically identical 

orientation stimuli6. To test this relationship, we divided each participant’s data into bins of 

increasing decoded uncertainty, calculated the across-trial variability in participant behavior 

for each of the bins and computed the partial correlation coefficient between the two (while 

controlling for stimulus orientation and between-subject variability, Online Methods). This 

revealed that observers clearly made more accurate decisions when the information decoded 

from their visual activity was more precise (r = 0.31, P = 0.021; Fig. 1c). By contrast, 

neither the error in decoded orientation (Supplementary Fig. 3) nor the amplitude or width of 

the estimated neural population response (Supplementary Fig. 4) reliably predicted 

behavioral variability, demonstrating the power of the posterior distribution in capturing 

trial-by-trial fluctuations in cortical processing. Control analyses established that these 

results could not be accounted for by differences in eye movements, gross BOLD amplitude 

or subject head motion (Supplementary Fig. 5), and were specific to voxels tuned to the 

retinotopic location of the stimulus (that is, we found no reliable correlation between 

decoded uncertainty and behavioral variability when selecting V1–V3 voxels preferring 

other retinotopic locations, P = 0.17). Taken together, these results demonstrate that the 

fidelity of a sensory representation can reliably be extracted from fMRI activation patterns.

Armed with the ability to estimate uncertainty in sensory representations, the critical 

question is whether observers take this uncertainty into account when making perceptual 

decisions. If so, then this would provide strong empirical support for probabilistic models of 

perception6. To address this question, we relied on a well-established behavioral finding17,18 

that we replicated here: orientation judgments were biased away from the cardinal axes 

(Supplementary Fig. 6). Although the precise neural mechanisms underlying such repulsive 

biases have yet to be determined, all theoretical models18–20 of these biases generate the 

same prediction: if the observer takes into account the uncertainty in perceptual 

representations, the amount of behavioral bias should depend on the degree of sensory 

uncertainty. Indeed, we found that behavioral biases increased when the decoded fidelity of 

cortical information about the visual stimulus was low (r = 0.32, P = 0.017; Fig. 1d), 

consistent with a recent theoretical prediction that the repulsive bias should increase with 

increasing levels of internal uncertainty20. Given that the physical stimulus was held 

constant, this suggests that human observers use knowledge of internal uncertainty in their 

perceptual decision-making and, moreover, that they monitor fluctuations therein on a trial-

by-trial basis.
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A major limitation of previous work on probabilistically optimal inference has been the use 

of external sources of noise, leaving open the possibility that observers simply monitor 

certain image properties, such as blurriness or contrast, as external cues to uncertainty. For 

this reason, we held physical stimulus properties constant and relied on fluctuations in 

internal noise to make perceptual information more or less reliable to the observer. We 

found that the uncertainty in perceptual representations could reliably be extracted as a 

probability distribution from human visual cortex with fMRI, and, moreover, that human 

observers appeared to rely on the uncertainty in this internal evidence when making 

perceptual decisions. These results suggest that neural activity encodes probability 

distributions over stimulus values, rather than merely point estimates, and that the brain uses 

this probabilistic information in its computations.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Participants

18 healthy adult volunteers (aged 22–31, seven female), with normal or corrected-to-normal 

vision, participated in this study. All participants provided informed written consent. The 

study was approved by the Radboud University Institutional Review Board. Assuming effect 

sizes similar to those reported here, a power analysis indicated that 18 subjects would 

produce a power level of 0.76–0.86. Indeed, this sample size is consistent with previous 

decoding studies21,22.

Data acquisition

MRI data were acquired using a Siemens 3T Magnetom Trio scanner with an eight-channel 

occipital coil located at the Donders Center for Cognitive Neuroimaging. For each 

participant, a high-resolution T1-weighted magnetization-prepared rapid gradient echo 

anatomical scan (MPRAGE, FOV 256 × 256, 1-mm isotropic voxels) was collected at the 

start of the session. Functional imaging data were acquired using T2*-weighted gradient-

echo echoplanar imaging, in 30 slices oriented perpendicular to the calcarine sulcus, 

covering all of the occipital and part of posterior parietal and temporal cortex (TR 2,000 ms, 

TE 30 ms, flip angle 90°, FOV 64 × 64, slice thickness 2.2 mm, in-plane resolution 2.2 × 2.2 

mm).

Experimental design and stimuli

Stimuli were generated by a Macbook Pro computer running Matlab and the Psychophysics 

Toolbox23,24, and displayed on a rear-projection screen using a luminance-calibrated EIKI 

projector (resolution 1,024 × 768 pixels, refresh rate 60 Hz). Observers viewed the visual 

display through a mirror mounted on the head coil.

Participants were required to maintain fixation on a central bull’s eye target (radius: 0.25°) 

throughout each experimental run. Each run consisted of an initial fixation period (4 s), 

followed by 18 stimulus trials (12 s) and a final fixation period (4 s). Trials were separated 
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by a 4-s inter-trial interval. Each trial started with the presentation of an orientation stimulus 

(1.5 s). Orientation stimuli were counterphasing sinusoidal gratings (contrast: 10%, spatial 

frequency: 1 cycle per °, randomized spatial phase, 2-Hz sinusoidal contrast modulation) 

presented in an annulus surrounding fixation (inner radius: 1.5°, outer radius: 7.5°, grating 

contrast decreased linearly to 0 over the outer and inner 0.5° radius of the annulus). The 

orientation of the stimulus was determined pseudo-randomly (from 0–179°) to ensure an 

approximately even sampling of orientations in each run. The grating was followed by a 

fixation interval (6.5 s), and then a response period (4 s) in which a black line (length: 2.8°, 

width: 0.1°) appeared at the center of the screen at an initially random orientation. The line 

disappeared gradually over the last 1 s of the response period to indicate the approaching 

end of this window. Subjects reported the orientation of the grating by rotating the line using 

separate buttons for clockwise or counterclockwise rotation on an MRI-compatible button 

box.

Participants completed 10–18 stimulus runs. Each scan session also included two visual 

localizer runs, in which flickering checkerboard patterns were presented within the same 

aperture as the gratings (check size: 0.5°, display rate: 10 Hz, contrast: 100%). 

Checkerboards were presented in 12-s blocks, interleaved with fixation blocks of equal 

duration.

Retinotopic maps of visual cortex were acquired in a separate scan session using 

conventional retinotopic mapping procedures25–27.

fMRI data preprocessing and regions of interest

Functional images were motion corrected using FSL’s MCFLIRT28 and passed through a 

high-pass temporal filter with a cut-off period of 40 s to remove slow drifts in the BOLD 

signal. Residual motion-induced fluctuations in the BOLD signal were removed through 

linear regression, based on the alignment parameters generated by MCFLIRT. Functional 

volumes were aligned to a previously collected anatomical reference scan using 

FreeSurfer29.

Regions of interest (ROIs; V1, V2 and V3) were defined on the reconstructed cortical 

surface using standard procedures25–27. In each area, we selected all voxels that responded 

to the localizer stimulus at a lenient threshold (P < 0.05 uncorrected) for subsequent 

analysis, in the native space for each participant. Control analyses verified that our results 

were not strongly affected by the number of voxels selected for analysis (Supplementary 

Fig. 7). In one of our control analyses, we tested the degree to which the decoded 

uncertainty was specific to the retinotopic location of the stimulus. For this analysis, we 

selected those voxels in areas V1–V3 combined that were not significantly activated by the 

localizer stimulus (at a statistical threshold of P > 0.2), obtaining on average 1,257 voxels 

per subject (by comparison, the average number of voxels in individual ROIs was 660; 

Supplementary Fig. 1).

The time series of each voxel was z-normalized using the corresponding time points of all 

trials in a given run. Activation patterns for each trial were defined by averaging together the 

first 4 s of each trial, after adding a 4-s temporal shift to account for hemodynamic delay. 
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This relatively short time window (4 s) was chosen in order to ensure that activity from the 

response window was excluded from analysis. Control analyses verified that this time 

window was close to the peak of the hemodynamic response function (time series for this 

analysis were normalized to percentage signal change units, defined relative to the average 

activation level across each run; Supplementary Fig. 8). In addition, temporally expanding 

the time window to include an earlier time point did not greatly affect any of our results. For 

the control analyses of Supplementary Figure 5, mean BOLD intensity values were obtained 

by averaging across all voxels in a given ROI. Subject head motion was calculated as the 

Euclidian norm of the temporal derivatives of the realignment parameters generated by the 

motion correction algorithm – a quantity that reflects the total amount of head motion per 

time step. We averaged across TRs 3 and 4 of each trial, similar to our decoding analyses.

Decoding analysis

The generative model—Our decoding approach started with the assumption that voxels 

in early visual cortex are selective to orientation10,11,13,14,30,31, and that voxel activity varies 

across trials due to (correlated) noise32,33. More specifically, we assumed that the BOLD 

response of voxel i to orientation s can be characterized as a linearly weighted combination 

of the idealized tuning functions f(s) of K neural populations13,14 (K = 8), each tuned to a 

different orientation, combined with Gaussian noise

(1)

Here, fk(s) is the mean response (or tuning curve) of the kth population as a function of 

stimulus orientation s, Wik is the contribution of population k to the response of voxel i, and 

both ηk and νi model sources of noise. The latent (unobserved) variable η is normally 

distributed as , and specifies noise that is shared among neural populations 

of similar orientation preference (which is why it is weighted by W). It models global 

changes in the population response due to, for example, shifts in response gain. The variable 

ν was included to capture various remaining sources of noise, such as variability in the fMRI 

signal due to thermal, electrical or physiological noise, as well as residual sources of neural 

noise. The distribution of ν is given by

(2)

(3)

Thus, ν describes noise specific to individual voxels (with variance τi
2 for voxel i), as well 

as noise shared globally among voxels irrespective of their tuning properties (scaled by ρ). 

Population tuning curves (or basis functions) f(s) are half wave-rectified cosine functions, 

raised to the fifth power13
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(4)

where φk is the preferred orientation of the kth population. Preferred orientations are equally 

spaced between 0–180°, with one basis function maximally tuned toward horizontal.

The conditional probability of a voxel activation pattern given a noisy population response 

(f(s) + η) is then defined as

(5)

Marginalizing over η results in

(6)

(7)

When developing the model, we considered four different, increasingly complex models. 

The current model was found to best capture the data on two relevant benchmark tests 

(Supplementary Fig. 2). Supplementary Table 1 provides an overview of all parameters.

Training and testing—Model parameters were estimated using the fMRI activation 

patterns for the orientation stimuli in a leave-one-run-out cross-validation procedure. Data 

were divided into a training data set (consisting of data from all but one fMRI run) and a 

testing data set (consisting of data from the remaining run). The average training data set 

consisted of 249 trials and 1,981 voxels. When training the model, we maximized the 

likelihood of the model parameters given the orientation stimuli. Model parameters were 

estimated in a two-step training procedure to constrain the number of free parameters and 

prevent overfitting of the covariance matrix. In the first step of this estimation procedure, we 

imposed a regularizing prior on the covariance matrix, assuming that σ = 0. This reduces the 

number of free parameters in the covariance matrix considerably (from ((K+1)M + 2) to (M 

+ 2)), but results in a predictable underestimation of σ in the second step of the estimation 

procedure (see below), when we relaxed the prior on σ. However, simulations indicated that 

this did not seriously affect our ability to reconstruct the uncertainty present in the activation 

patterns (see Supplementary Fig. 9). Under the assumption that σ = 0, the maximum 

likelihood estimation of W is simplified to an ordinary least-squares (OLS) regression.

(8)

In the second step of the estimation procedure, we relaxed the regularizing assumption on σ, 

and maximized the likelihood of the remaining parameters (ρ, τ and σ), conditioned on Ŵ. 

This maximization step was performed numerically, using a Matlab implementation of the 
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conjugate gradient method. The resulting parameter estimates are summarized in 

Supplementary Figure 10.

After fitting the model to the training data set, we tested the model on the held-out 

(independent) testing data set. By applying Bayes rule and using a flat stimulus prior (see 

below), we obtained for each test trial the posterior probability distribution over stimulus 

orientation given the fitted model parameters

(9)

where , and the normalization constant  was computed 

numerically. The circular mean of the posterior served as an estimate of the presented 

stimulus orientation, and its circular s.d. as a measure of the degree of uncertainty in the 

orientation estimate. Both of these summary statistics were computed using numerical 

integration. The cross-validation procedure was repeated until each run served as a test run 

once, resulting in a single posterior probability distribution for each trial of BOLD activity.

The prior—Unlike our decoding algorithm, human observers appear to employ in their 

behavior a more naturalistic prior favoring cardinal orientations16. Would it have been more 

appropriate to apply such a non-uniform prior in our analyses? The answer to this question is 

negative. From a decoding perspective, a uniform prior correctly represents the a priori 

knowledge that all orientations were presented equally often in the current experiment. Had 

we instead used a prior favoring cardinal orientations, this would have (wrongfully) biased 

the decoder’s estimates toward horizontal and vertical orientations, and automatically 

changed the width of the posterior distribution for cardinal and oblique orientations, even 

when there was no evidence for an oblique effect in brain activity.

Behavioral data

The observer’s behavioral error on a given trial was computed as the acute-angle difference 

between the reported orientation and the presented orientation. Behavioral variability was 

calculated after correcting for an orientation-dependent shift in mean (Supplementary Fig. 

6), by fitting a 4-degree polynomial to each observer’s behavioral errors as a function of 

stimulus orientation. We then used the residuals from this fit, i.e. the bias-corrected 

behavioral errors, in our calculation of behavioral variability.

In general, participants finished adjusting the probe’s orientation well before the end of the 

response window, taking on average 2,254 ± 47 ms (mean ± s.e.m.) to respond. On 0–6 

trials (out of 180–324), the behavioral error exceeded the mean error (for that observer) by 

more than 3 s.d., suggesting that the participant randomly guessed the orientation of the 

grating. These trials were excluded from further analysis.
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Eye tracking

Eye-tracking data were acquired for 12 of 18 subjects, using an SR Research Eyelink 1000 

eye-tracking system. Gaze position was sampled at 1 kHz. After removing blinks, we 

applied a band-pass temporal filter with a low-frequency cut-off period of 100 s, and a high-

frequency cut-off period of 0.1 s. Similar to all fMRI analyses, the mean and s.d. of eye 

position were computed for the time window corresponding to stimulus presentation. 

Specifically, with respect to mean eye position, we first calculated the average x- and y-

coordinates of the gaze data during the first 4 s of each trial, and then took the absolute 

distance from this average (x, y) position to the central fixation target. Eye movement (that 

is, variability in eye position) was quantified by first calculating, for each sample of (x, y) 

gaze coordinates, the absolute distance to the mean (x, y) eye position. This distance was 

then averaged across the first 4 s of each trial.

Statistical procedures

Decoding accuracy was computed by taking, for each individual observer, the circular 

correlation coefficient between the presented and decoded orientations. This correlation 

coefficient was subsequently Fisher transformed and standardized to a Z-score across 

observers. Its (two-sided) P value was derived from the inverse cumulative normal 

distribution, and the average of the Fisher transformed values was converted back to the 

correlation scale for reporting.

Many of our analyses focused on the relationship between decoded uncertainty and across-

trial error distributions. For these analyses, data were binned and summary statistics were 

computed for each bin. When testing for an oblique effect in BOLD activity, trials were 

sorted into four equally spaced bins of increasing angle between the stimulus orientation and 

the nearest cardinal axis (for illustrative reasons, Fig. 1b shows the data sorted into 12 

equally spaced orientation bins). Behavioral variability was computed as the circular s.d. of 

all (bias-corrected) behavioral errors in each of the bins. When testing for the link between 

decoded uncertainty and behavioral variability or bias, trials were sorted into four bins of 

increasing decoded uncertainty. Behavioral variability was computed as the circular s.d. of 

all (bias-corrected) behavioral errors in each of the bins, while behavioral bias was 

calculated as the mean of all (biased) behavioral errors in the bins. We used the same 

number of bins for each participant (four), with a constant number of samples across bins 

within each participant. To test whether decoded uncertainty was correlated with the 

variable of interest, we calculated partial correlation coefficients via a multiple linear 

regression analysis. Independent variables were distance to cardinal axis (Fig. 1b–d and 

Supplementary Fig. 1d–f) and decoded uncertainty (Fig. 1c,d and Supplementary Fig. 1c,e–

f). All regression analyses furthermore included subject-specific intercepts to remove 

between-subject variability. Dependent variables were decoded uncertainty (Fig. 1b and 

Supplementary Fig. 1d), behavioral variability (Fig. 1b,c and Supplementary Fig. 1e), and 

behavioral bias (Fig. 1d and Supplementary Fig. 1f). The significance of individual 

regression coefficients was assessed with a (two-sided) t test. We verified that the residuals 

of all regression analyses were independent (Durbin-Watson test) and normally distributed 

(Anderson-Darling test), and that our results were not affected by violations of 

homoscedasticity. For ease of exposition, regression coefficients were standardized to partial 
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correlation coefficients, and in Figure 1c,d, data are displayed in the form of partial residual 

plots, showing the partial relationships of interest and residuals obtained from the 

regressions (but omitting any effects of the variables-of-no-interest, as well as between-

subject differences in intercept).

Code availability

Custom code written in Matlab is available on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stimulus uncertainty decoded from human visual cortex correlates with behavior. (a) 

Examples of probability distributions over stimulus orientation, decoded from fMRI 

activation patterns obtained from areas V1–V3, and five different trials (trials indicated by 

different colors; s, stimulus orientation; b, BOLD activity). (b) Both behavioral variability 

and decoded uncertainty increased for more oblique stimulus orientations in areas V1–V3 

(behavioral variability, t(53) = 4.71, P = 1.8 × 10−5; decoded uncertainty, t(53) = 2.75, P = 

0.008). For illustrative purposes, trials were sorted into 12 equally spaced orientation bins. 

(c) Behavioral variability was significantly correlated with posterior width in areas V1–V3 

(t(52) = 2.39, P = 0.021). (d) Behavioral biases increased with increasing width of the 

posterior distribution in areas V1–V3 (t(52) = 2.46, P = 0.017). In c and d, colors indicate 

four within-observer bins of increasing decoded uncertainty (for each of 18 observers). In all 

plots, error bars represent ±1 s.e.m., dashed lines represent best linear fits and reported r 

values are partial correlation coefficients obtained from a linear regression analysis (Online 

Methods). Similar results were found for visual areas V1–V3 (Supplementary Fig. 1).
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