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Abstract

Background—Reliable mapping of brain function across sessions and/or subjects in task- and 

resting-state has been a critical challenge for quantitative fMRI studies although it has been 

intensively addressed in the past decades.

New Method—A spatially regularized support vector machine (SVM) technique was developed 

for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain 

mapping techniques, which implement supervised classifications of specific brain functional states 

or disorders, the proposed method performs a semi-supervised classification for the general brain 

function mapping where spatial correlation of fMRI is integrated into the SVM learning. The 

method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and 

identify a true boundary between active and inactive voxels, or between functionally connected 

and unconnected voxels in a feature space.

Results—The method was evaluated using synthetic and experimental data at the individual and 

group level. Multiple features were evaluated in terms of their contributions to the spatially 

regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained 

from individual subjects and at the group level.

Comparison with Existing Methods—A comparison study was performed with independent 

component analysis, general linear model, and correlation analysis methods. Experimental results 

indicate that the proposed method can provide a better or comparable mapping performance at the 

individual and group level.

Conclusions—The proposed method can provide accurate and reliable mapping of brain 

function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.
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1. Introduction

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is an 

efficient tool for the mapping of brain functional activity in task- and resting-state. Due to 

fMRI nonstationarity, which is typically caused by physiological fluctuation, brain 

plasticity, subject attention, fatigue, mood, head movement, machine instability, etc., fMRI 

data exhibit significant intra- and inter-subject variations. As a result, the reliable mapping 

of brain function across sessions and/or subjects in task- and resting-state remains a great 

challenge for various quantitative fMRI studies.

Statistical model-driven techniques have been widely used for brain function mapping. 

Typical methods include general linear model (GLM) based methods and correlation 

analysis (Friston et al., 1995; Woolrich et al., 2009). In these methods, fMRI data/features 

are characterized by a statistical model, and test statistics are computed based on the model 

and data/features. If a voxel's test statistic is great than a threshold, the voxel is identified as 

“active” or functionally “connected”. The statistical model and threshold are usually 

experientially determined and fixed in each study. If a quantitative fMRI study requires 

multiple scan sessions over certain period of time and/or across multiple subjects, a fixed 

statistical model and threshold won't be sufficient to adapt to the intra- and inter-subject 

variations (Genovese et al., 2002, Voyvodic et al., 2009, Wang et al., 2011).

Data-driven techniques can overcome some limitations of model-driven methods because 

they do not superimpose parametric models to fMRI data/features. Semi-supervised and 

unsupervised data-driven approaches can adapt to changes of data characteristics with or 

without training data with known class labels. A widely used data-driven method is 

independent component analysis (ICA) (McKeown et al., 1998; Calhoun et al., 2001; Van de 

Ven et al., 2004; Beckmann et al., 2005), which assumes that fMRI data is a linear 

combination of independent signal and noise sources in the spatial or temporal domain. ICA 

can characterize high order statistics among multiple voxels. Due to its unsupervised 

learning mechanism, ICA can adapt to the intra- and inter-subject variations of fMRI data. 

In addition, ICA results may be transferred into probability measures to enable a “soft” 

decision (Beckmann et al., 2004). Since the real number of signal and noise sources in fMRI 

data is unknown, a major issue of ICA is that each spatial or temporal component could be a 

combination of multiple sources, and a visual inspection or template matching of ICA 

results has to be performed to identify expected task activation or resting-state networks 

(Greicius et al., 2003; Van de Ven et al., 2004; Schöpf et al., 2010).

Another data-driven technique, support vector machine (SVM), is becoming a popular tool 

for fMRI data analysis. SVM and its extensions can provide a unique solution with a good 

out-of-sample generalization and an implicit implementation of nonlinear classification 

using the kernel technique (Vapnik, 1998). SVM has been used to perform supervised 

classifications of specific brain functional states/disorders in a variety of task conditions 
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(Cox et al., 2003; Mitchell et al., 2004; LaConte et al., 2005). More recently, SVM has been 

applied to the supervised classifications of resting-state fMRI data for different purposes 

(Craddock et al., 2009; Supekar et al., 2009; Deshpande et al., 2010, Dosenbach et al., 2010; 

Shen et al., 2010; Shah et al., 2011; Zhang et al., 2011; Meier et al., 2012). Because of the 

intra- and inter-subject variability, an SVM classifier trained using a subject's data acquired 

from one scan session may not perform well on data collected from different sessions and/or 

different subjects. Therefore, the SVM-based methods are not suitable for the general 

mapping of brain function in task- and resting-state. In our previous work (Song et al., 

2009), an SVM-based technique was proposed to detect active voxels in task stimuli, and it 

was recently extended to the mapping of resting-state network (Song et al., 2014). The basic 

idea of the method is to formulate the mapping of active/functionally connected voxels as an 

outlier detection process. Since active voxels in a task condition or functionally connected 

voxels in a resting-state network are spatially grouped together at multiple anatomic 

locations, in order to improve the mapping performance, it is necessary to introduce spatial 

regularization into the SVM learning. In this work, we propose a spatially regularized semi-

supervised SVM method that unifies the analysis of task- and resting-state fMRI data into 

the same process. The proposed technique can perform functional mapping for an entire 

brain or a single slice at the individual and group level.

2. Materials and Methods

In this work, the mapping of active/functionally connected voxels is formulated as an outlier 

detection procedure. This is based upon an assumption that active voxels under a task 

condition, or functionally connected voxels in a resting-state network are less than 50% of 

all voxels. Our observation from the results of a study of 8000+ subjects indicates that active 

brain voxels associated with a task stimulation are less than a half of all brain voxels (Laird 

et al., 2011). Due to a close correspondence between active functional networks and resting-

state connectivity (Smith et al., 2009), this observation is applicable to both task-related and 

resting-state fMRI studies, and forms the basic assumption of the proposed method. In this 

context, “outliers” indicate active voxels in a task-related study, or functionally connected 

voxels in a resting-state network. As the opposite class of “outliers”, “majority” corresponds 

to inactive voxels in a task condition or functionally unconnected voxels in resting-state.

In the proposed method, the outlier detection is implemented using the one-class SVM 

(OCSVM). OCSVM is a special type of the traditional two-class SVM (TCSVM) that 

estimates a classification hyperplane in a feature space to isolate a pre-specified part of data 

from the origin with the maximum distance (Schőlkopf et al., 2001b). The formulations of 

TCSVM and OCSVM are based upon the assumption that each data sample is independently 

drawn from an unknown probability distribution (Burges 1998). It is well known that there 

exists strong spatial correlations between neighboring voxels in fMRI data, and ignoring 

such correlations may deteriorate the functional mapping performance. There are different 

ways to integrate this spatial constraint into the mapping process. One approach is to use 

spatial smoothing in the preprocessing, which has been a routine step in most fMRI studies 

(Lindquist 2008). Another approach is to use features containing spatial correlation 

information in the mapping process (Goutte et al., 1999; Song X et al., 2010, 2014). In our 

previous work, a spatial constraint based prototype selection approach was used to identify 
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spatially grouped voxels in task-related and resting-state studies for SVM learning (Song X 

et al., 2010, 2014). Efforts were also made to integrate spatial constraints into the data 

classifier training (Liang et al., 2006; Baldassano et al., 2012, Cuingnet et al., 2013). In this 

work, a spatially regularized SVM method was developed where all of the aforementioned 

ways of integrating spatial constraints are considered.

Figure 1 shows the block diagram of the proposed method. An input fMRI time series 

acquired from a task-related or resting-state study is first preprocessed to remove subject 

movement artifacts and low frequency scanner drift. Spatial smoothing is performed using a 

wavelet domain Bayesian shrinkage method (Song et al., 2006). After the spatial smoothing, 

multiple features are extracted from each voxel. An offline feature selection is performed to 

select a subset of salient features to represent each voxel. The feature selection is aimed to 

improve the computational efficiency and to reduce potential effects from irrelevant 

features. After this, a spatially regularized OCSVM (SR-OCSVM) learning is performed to 

generate an initial mapping of brain function. Next, a spatial-feature domain prototype 

selection is used to identify voxels that are correctly classified by the SR-OCSVM. Then, 

the identified voxels are used to train a spatially regularized TCSVM (SR-TCSVM) to 

reclassify all input voxels and finally to obtain a refined functional map. Although it is not 

necessary, the prototype selection and SR-TCSVM reclassification could be repeated several 

times till the change in the final mapping results is zero or below a predefined threshold. The 

details of the method are described in the following subsections.

2.1 Preprocessing

Subject head movement artifacts are first attenuated using a six degree-of-freedom rigid 

body registration tool in FSL (Jenkinson et al., 2002; Woolrich et al., 2009). Then an in-

house Matlab program is used to remove the linear trend in fMRI data. Resting-state data are 

low-pass filtered at a cut-off frequency of 0.1 Hz to extract low frequency fluctuations-of-

interest. For any task-related study, the expected haemodynamic response (HDR) is 

estimated by convolving the experimental paradigm with the canonical haemodynamic 

response function (Friston et al., 1995). For the resting-state study, a seed is selected from a 

brain region that is part of a network-of-interest based on previously reported seed locations. 

For group level study, the motion corrected fMRI data are spatially normalized to the 2 mm 

Montreal Neurological Institute (MNI) template using a twelve degree-of-freedom 

registration (Jenkinson et al., 2002).

2.2 Spatial Smoothing

The fMRI data are spatially smoothed using a multiscale wavelet domain Bayesian noise 

removal method (Song et al., 2006). In this method, each voxel is transformed into the 

multiscale wavelet domain using the stationary wavelet transform (Nason et al., 1995). The 

wavelet coefficients are characterized by a 2-component Gaussian mixture model (GMM). 

The student's t-test is performed on each voxel's time course in the wavelet domain to 

provide a prior information about the significance of the wavelet coefficients. The 

expectation maximization (EM) algorithm is used to estimate the GMM parameters and 

obtain a posterior estimation of the wavelet coefficients (Dempster et al., 1977). After the 

wavelet domain analysis, the spatially smoothed fMRI data are obtained by performing an 
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inverse wavelet transform. This method can effectively attenuate spatial noise while 

preserving signal details without over-smoothing the data.

2.3 Feature Extraction

Given the expected HDR or predefined seed region, multiple candidate features are 

calculated from each voxel's time course (TC) and its neighboring voxels. For a task-related 

study, the following candidate features are computed: maximum intensity of the voxel's TC, 

Pearson's correlation coefficient (cc) value between the TC and expected HDR, signed 

extreme value of the cross-correlation function (ccf) between the TC and HDR, average 

between-trial cc value of each voxel, minimum, average, and maximum cc values between 

the HDR and voxels within its 3×3 neighborhood for the single-slice analysis (3×3×3 

neighborhood for the multi-slice or whole brain analysis), minimum, average, and maximum 

signed extreme value of ccfs between the voxel and its neighboring voxels. For resting-state 

data, a similar set of features are considered: maximum intensity of the voxel's TC, cc value 

between the seed and voxel, signed extreme value of the ccf between the seed and voxel, 

minimum, average, and maximum cc values between the voxel and its neighboring voxels, 

minimum, average, and maximum cc values between the seed and the voxel's neighboring 

voxels, average signed extreme value of the ccf between the seed and the voxel's 

neighboring voxels. Each candidate feature is scaled between 0 and 1.

2.4 Feature Selection

Feature selection aims to identify most representative candidate features in terms of the 

classification performance or other criteria. Feature selection is not always considered in 

fMRI studies. A reduced feature set may exclude part of remaining noise and artifacts in the 

original feature set and improve the mapping performance and computational efficiency. 

Feature selection is typically implemented offline, and the selected feature categories will be 

fixed for future studies. In this work, an SVM-based feature selection technique was used to 

quantify how each candidate feature affects the learning of SVM classification hyperplane 

(Evgeniou et al., 2003). During the SVM learning, the contribution index from the mth 

candidate feature Im is quantified as:

(1)

where NSV is the total number of support vectors, xi and xj are the ith and jth support vectors, 

yj is the class label of xj, αj is the Lagrange multiplier in the SVM formulation (Vapnik 

1998), and Km(xj, xi) is the first derivative of a kernel matrix K(xj, xi) regarding the mth 

dimension evaluated at xi. After evaluating all candidate features, those resulting in the 

largest Im values are selected. In our recent study (Song et al., 2014), this feature selection 

method was used to evaluate candidate feature extracted from resting-state fMRI data under 

the conventional formulation of TCSVM. In this work, this method was used to evaluate 

candidates features for both task and resting-state fMRI data under the spatially regularized 

SVM formulation.
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2.5 Spatially Regularized Support Vector Machines

SVM, which is also termed two-class SVM (TCSVM), is a supervised classification 

technique (Vapnik, 1998). In this work, the two classes are “active” and “inactive” in task-

related studies, and functionally “connected” and “unconnected” in resting-state fMRI. The 

TCSVM learning constructs a linear classification hyperplane in a feature space to 

maximally separate two classes in training data. Given a set of independent identically 

distributed training data samples xi ∈ Rm, i = 1, ... n, and their class labels yi, the TCSVM 

learning aims to maximize the following objective function:

(2)

subject to , where w is a normal vector defining the hyperplane with 

the offset parameter  is the slack variable corresponding to training errors, and 

parameter C controls a tradeoff between the hyperplane complexity and training error. One-

class SVM (OCSVM) is an extension of TCSVM. It constructs a classification hyperplane in 

a feature space to maximally separate a majority of the learning data from the origin, and the 

two classes in TCSVM become the “majority” and “outliers” classes (Schőlkopf et al., 

2001b). The OCSVM learning minimizes the following objective function:

(3)

subject to , where ρ is the offset parameter,  is the slack variable 

corresponding to outliers, and ν ∈ (0,1] controls an upper bound of outliers.

The OCSVM and TCSVM learning can be unified into a more general regularization 

framework (Belkin et al., 2006):

(4)

where V is a loss function,  represents a reproducing kernel Hilbert space (RKHS), 

is the norm of the classification function in , and  is a regularization parameter. 

According to the Representer theorem (Schőlkopf et al., 2001a), the solution of (4) is in the 

form of :

(5)

Based upon an assumption that fMRI data/features lie in a manifold of a high dimensional 

space (Shen et al., 2008), the mapping of active or functionally connected voxels is a 

classification problem regularized by the geometry of the underlying manifold. In our work, 

the manifold is estimated by characterizing the spatial correlation of neighboring voxels in 

fMRI data using a graph representation, where each voxel is considered as a vertex and 

connected to its neighboring voxels through edges. The connection strength of each edge is 

quantified by a weight. Based upon the graph representation of this spatial constraint, an 
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adjacency matrix  can be formed with each entry θi,j showing the connectivity strength of 

the edge between the ith voxel and its jth neighbor, and a penalty term can be formed as 

follows:

(6)

where k is the number of neighboring voxels of the ith voxel. If this spatial constraint is 

integrated into the SVM learning, then the modified formulation of (4) becomes:

(7)

where λs is the weight of the penalty term. The optimization of SVMs is typically performed 

on their dual forms (Burges 1998, Schőlkopf et al., 2001b). It was shown that the inclusion 

of the penalty form in (6) to the SVM formulation in (7) is equivalent to replacing the 

original kernel matrix K with a modified kernel matrix  in the dual forms of OCSVM and 

TCSVM (Sindhwani et al., 2005):

(8)

where M = λsL, and L is the graph Laplacian defined as , and D is a diagonal 

matrix with each element computed as: . The corresponding spatial 

regularized OCSVM and TCSVM are denoted as SR-OCSVM and SR-TCSVM in this 

work.

Different approaches was considered to determine . A typical way is to assign an equal 

weight to all edges (Stoeckel et al., 2005; Dundar et al., 2006; Liang et al., 2006; Baldassano 

et al., 2012; Flamary et al., 2013). Another way is to use the RBF kernel defined as: 

, and in this case, the algorithm becomes the Laplacian SVM (Belkin et al., 2006). 

The equal weight does not reflect the true similarity between neighboring voxels, and could 

bring ambiguity in mapping results around the boundaries of active or functionally 

connected brain regions. The use of RBF kernel needs a proper selection of kernel width σ, 

which is usually experimentally or experientially determined, and could be affected by 

spatial resolution, feature characteristics, and other unknown factors. In this work, a 

different method was proposed to calculate the adjacency matrix :

(9)

where cc(xi, xj) is the Pearson's cc value (normalized by the Fisher r-to-z transformation) 

between the ith and jth voxels. This correlation-based edge weight may reflect the true 

similarity between neighboring voxels and is expected to provide an improved boundary 

specificity in the mapping results.

Before performing the SR-OCSVM learning, the parameter ν needs to be set to provide an 

upper bound of the number of voxels identified as active or functionally connected. This 
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parameter is task-, network-, session-, and subject-dependent, and cannot be accurately 

estimated. A more realistic solution is to make the algorithm insensitive to the variation of ν 

when ν is set within a predefined range. This issue was addressed previously using the 

standard OCSVM and TCSVM learning techniques (Song et al., 2009, 2014). In this work, 

instead of using experiential ν values in a predefined range, the correlation analysis with 

Bonferroni correction was performed to obtain an initial estimation of ν. This estimation is 

conservative and the final ν was obtained by multiplying the estimated ν value by a number 

ranging from 1.0 to 3.5. The sensitivity of the proposed method to ν was investigated under 

the spatially regularized SVM formulations.

The SR-TCSVM results can be transferred into probability estimates (Wu et al., 2004). The 

final decision is made via a “soft” decision by comparing each voxel's probabilities of 

“active” and “inactive” in a task condition, or probabilities of functionally “connected” and 

“unconnected” in resting-state. For group level mapping in a task condition, each voxel's 

probabilities of active and inactive are averaged over all sessions and subjects. A final 

decision is made by comparing the averaged probabilities. The same procedure is used for 

the group level resting-state network mapping.

2.6 Spatial-feature Domain Prototype Selection

A prototype consists of the feature vector of a voxel and its class label. SR-OCSVM results 

may contain a significant number of mis-classifications due to the deviation of ν from its 

true value and/or indistinguishable voxels in the feature space. As a result, before using the 

SR-OCSVM results to train a SR-TCSVM to reclassify the initial input, a prototype 

selection procedure is necessary to identify voxels that are most possible to be correctly 

classified by SR-OCSVM. Using the graph representation of each voxel, if the class 

assigned to a voxel is the dominant class in its predefined neighborhood, then this voxel is 

selected as a training sample for SR-TCSVM. To improve the representativeness of training 

data, 5% voxels in the majority and outlier classes that are closest to the SR-OCSVM 

classification hyperplane in the feature space are excluded from the training data in light of a 

higher chance of them to be mis-classified.

2.7 Evaluation Methods

The proposed method was evaluated using both synthetic and experimental fMRI data. The 

effects of the three different edge weighting methods were evaluated using the SR-OCSVM 

results of the synthetic data based upon three numerical criteria, including accuracy, 

precision, and recall. Accuracy is the overall classification accuracy. Precision is defined as 

a ratio of the number of truly active/connected voxels to the number of identified active/

connected voxels. Recall is defined as a ratio of the number of identified truly active/

connected voxels to the number of all truly active/connected voxels. The weighting method 

that provided the best numerical performance was used in the study of experimental data. 

The effects of the SR-OCSVM parameter ν on the final mapping results were also 

investigated using the synthetic data. When the experimental data were used, the mapping 

performance was examined for individual subjects and at the group level in both task- and 

resting-state.
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The proposed method was compared to several widely used brain mapping techniques in the 

experimental study. In the study of individual subjects, the probabilistic ICA (PICA) was 

used for the comparison (Beckmann et al., 2004). In the PICA method, the intensity values 

of each independent component (IC) are transferred into spatial Z-scores and a GMM is 

used to characterize the Z-scores. The final decision can be made with a probability 

threshold of 0.5, which is equivalent to the soft decision of the proposed method by 

comparing the probabilities of active/connected and inactive/unconnected. In the group level 

analysis of task data, the group ICA (GICA) and a GLM-based Bayesian methods were 

performed (Calhoun et al., 2009, Woolrich et al., 2009). The group level activation maps 

obtained from the task data were evaluated in terms of the distributions of average contrast-

to-noise ratio (CNR). The CNR measure of each voxel was computed using the method 

proposed by Menon et al. (Menon et al., 1997). In the individual level analyses of resting-

state data, the proposed and PICA methods were assessed in terms of their performances on 

the mapping of the default mode network (DMN) and sensori-motor network (SMN). In the 

group level analysis, mapping results of DMN and SMN obtained from GICA and the 

correlation analysis with false discovery rate (FDR) control were compared to those 

obtained from the proposed method. The seeds used in the correlation analysis are the same 

as those used in the feature extraction stage of the proposed method.

Kendall's coefficient of concordance (KCC) was also calculated to measure the regional 

homogeneity of active or functionally connected regions identified by the methods used in 

the experimental study (Zang et al., 2004). KCC was used with mapping results together to 

evaluate the mapping performance. If active or functionally connected regions are 

sufficiently identified, a higher KCC value indicates that the measured mapping results 

better match the true functional regions as compared to others.

2.8 fMRI Data

2.8.1 Synthetic Data—The synthetic task data was generated from a single slice echo 

planar imaging (EPI) image of size 64 × 64. A 60-image time series was formed using this 

image with a simulated block design paradigm: 20 images off, 20 images on, and 20 images 

off. Figure 2 (a) shows the image overlaid by two artificially added active regions of 

irregular shapes. The active region on the top left represents 3.93% of the brain area, and the 

bold increase during the task period is 2% of the baseline average. The active region on the 

bottom right covers 4.52% of the brain area with a BOLD increase of 3% to the baseline. 

The synthetic resting-state time series was generated from another single slice EPI image of 

size 120 × 120. The time series consists of 100 images with four artificially added 

functionally connected regions of irregular shapes, as shown in Figure 2 (b). Regions 1~4 

represents 2.03%, 2.45%, 2.79% and 1.64% of the brain area, respectively. Sinusoid signals 

were added to regions 1 and 4 at a frequency of 0.08 Hz. The signal amplitude in region 1 is 

107% of the baseline average, and that in region 4 is 104% of the baseline average. The 

signal in region 4 has a phase shift of −0.52 radians compared to that in region 1. Regions 1 

and 4 form network A. Sinusoidal signals were added to regions 2 and 3 at a frequency of 

0.03 Hz. The signal amplitudes are 102% of the baseline average in region 2, and 103% of 

the baseline average in region 3. The signal phase in region 2 lags that in region 3 by 0.78 

radians. The corresponding network is denoted as network B. Rician noise was added to the 
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synthetic task and resting-state data using a method proposed by Wink et al. (Wink et al., 

2004). After mean-centering the data, the SNR is 6.5 × 10−5dB for the task data, and 

−23.92dB for the resting-state data.

2.8.2 Experimental Data—Multiple task-related experimental datasets collected from 

three fMRI experiments were used in the study. In the first experiment, one dataset was 

obtained using a 3 Tesla (T) GE system with an 8-channel coil at Duke University Medical 

Center. The dataset was collected from a healthy subject using a T2*-weighted EPI 

sequence with SENSE acceleration factor of 2. The subject was instructed to perform a 

right-hand finger-tapping motor task with a blocked-design paradigm, which consisted of 

four 25-second task blocks and five 25-second off blocks. Repetition time (TR) was 2 

seconds, echo time (TE) was 30 milliseconds, and the flip angle was 90°. Thirty axial-slices 

were collected in each volume with 4 mm slice thickness and 1mm gap. Field of view 

(FOV) was 24 cm × 24 cm, and image matrix size was 120 × 120. A 15-second dummy scan 

was performed at the beginning and excluded from the analysis.

In the second experiment, three datasets were acquired from a single subject using a 3 T 

Siemens Allegra scanner at New York University Center for Brain Imaging (cbi.nyu.edu). 

The first two datasets were collected using a single channel head coil, and the third dataset 

was acquired using a surface coil. Imaging parameters include: TR=1.5 seconds, TE= 30 

milliseconds, and flip angle=70°. A visual stimulation was used by alternatively showing a 

left and right circular hemifield stimulus of alternating checks at full contrast. There are 150 

volumes in each dataset with twenty five axial-slices in each volume. The image matrix size 

was 64 × 80, and spatial resolution of each isotropic voxel was 3 × 3 × 3 mm3.

The datasets in the third experiment were acquired from eight right-handed healthy subjects 

using a 1.5 T GE MR scanner at Brigham and Women's Hospital (Yoo et al., 2005). Nine 

scan sessions were implemented for each subject with an inter-session gap between 21 and 

140 days. The overall experiment period for each subject ranged from 378 to 536 days, with 

an average of 454.9 ± 47.2 days. During each scan session, the subject was performing a 

right hand finger tapping task, and the block design paradigm consisted of four 30-second 

task blocks and five 30-second off blocks. The EPI parameters were: TR=2.5 seconds, 

TE=50 milliseconds, and flip angle=90°. Twenty four axial-slices were acquired for each 

volume with a slice thickness of 6 mm. The matrix size was 64 × 64. A total of 114 volumes 

were collected in each scan, and the first 6 volumes were removed as the dummy scan. Thus, 

there are 108 volumes in each scan that were used in the analysis.

Multiple resting-state fMRI datasets collected from three experiments were used to evaluate 

the proposed method. The first experiment was performed using a 3 T GE system with an 

eight-channel coil at Duke University Medical Center. A dataset was acquired from a 

healthy adult subject using a T2*-weighted parallel EPI with an acceleration factor of 2, 

while the subject was looking at a crosshair. The scan lasted 5 minutes. EPI parameters 

included a TR of 2 seconds, a TE of 25 milliseconds, and a flip angle of 90°. Thirty five 

axial-slices were acquired in each volume with a slice thickness of 3 mm. FOV was 24 cm × 

24 cm, and the image matrix size was 64 × 64.
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The second experiment was performed using the same scanner as the first experiment. A 

dataset was acquired from another healthy adult who was instructed to look at a crosshair 

during the scan. The imaging parameters included a TR of 4 second, a TE of 35 

milliseconds, and a flip angle of 90°. The FOV was 24 cm × 24 cm, and the matrix size was 

140 × 140. 56 axial-slices were collected to cove the brain volume with a 3-mm slice 

thickness, and a total of 74 volumes were collected in this dataset.

The resting-state fMRI data in the third experiment were acquired from eight healthy 

subjects using a 1.5 T GE MR scanner at Brigham and Women's Hospital (Chou et al., 

2012). Nine scan sessions were performed for each subject, with an inter-session gap ranged 

from 21 to 133 days. The entire experiment period for each subject ranged from 384 to 554 

days, with an average of 463±58.4 days. In each scan, twenty four EPI axial-slices were 

acquired to cover the entire brain volume with 6 mm slice thickness and no gap. The 

imaging parameters comprised a TR of 2.5 seconds, a TE of 50 milliseconds, and a flip 

angle of 90°. The matrix size was 64 × 64, and the FOV was 24cm × 24cm. 114 volumes 

were collected in each scan, and the first 6 volumes were removed as dummy scans, 

resulting a total of 108 volumes in each scan. Due to a computer storage failure, not all task 

and resting-state data acquired at Brigham and Women's Hospital were retrievable. In the 

task data, there are five subjects with all nine sessions of data available, two subjects with 

eight sessions, and one subject with five sessions. In the resting-state data, there were six 

subjects with nine sessions of data available, one subject with eight sessions, and one subject 

with sessions.

3. Results

3.1 Feature Selection

Feature selection was performed using all experimental fMRI data included in this work. 

Table 1 shows the average feature contribution in the task-related experiments. Each value 

was averaged over all feature selection results of individual datasets, and normalized against 

the largest value. It was found that the feature contribution varies across subjects and 

sessions, but three features always rank higher than the others, including the cc value 

between each voxel's TC and the expected HDR, the average and minimum cc value of each 

voxels’ neighboring voxels and the HDR. The top five features were finally used to 

represent each voxel in the analysis. For the resting-state datasets, the top three features are: 

cc value between each voxel's TC and a seed, the average and maximum cc between each 

voxel's neighboring voxels and a seed, as shown in Table 2. The top five features were 

finally used in the study.

3.2 Synthetic Data

When the proposed SR-OCSVM was evaluated on the synthetic data, the following 

parameter settings were used: λr = 0.01, λs = 0.001, ν = 0.15 for the mapping of the 

synthetic task data, and ν = 0.1 for the mapping of the synthetic resting-state data. The RBF 

kernel was used to implement nonlinear support vector learning with a kernel width σ = 1.58 

determined by the cross validation. When the RBF kernel was used to compute the edge 

weight in the adjacency matrix , the same kernel width was used. Figure 3 (a) shows the 
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activation map of the synthetic task data obtained using the conventional OCSVM, and (b)-

(d) are the mapping results obtained from SR-OCSVM with the three edge weighting 

methods. It was observed that SR-OCSVM with the correlation-based edge weighting 

provides a better performance compared to the others, and the SR-OCSVM results with the 

equal and RBF-based edge weighting are similar to each other.

Figure 4 shows another comparison using the synthetic resting-state data, where (a) is the 

mapping result of network A obtained usingx OCSVM, and (b)-(d) show the connectivity 

maps obtained using SROCSVM with the three different edge weighting methods. Figures 4 

(e)-(h) show a similar set of mapping results for network B. Tables 3 and 4 list the accuracy, 

precision and recall rates computed from the mapping results shown in Figures 3 and 4. It 

can be seen that SR-OCSVM outperforms the original OCSVM, and the correlation-based 

edge weighting outperforms the other two weighting methods when SR-OCSVM is used.

Figure 5 (a) shows the dependence of final mapping results on the OCSVM/SR-OCSVM 

parameter ν obtained from the synthetic task fMRI data, where the solid line indicates the 

ratio of active voxels identified by the proposed method to all voxels in the brain area. The 

dashed line is the true ratio value, which is 0.0845, and the dotted line is the ratio obtained 

from the OCSVM results. When ν is between 0.01 and 0.3, the ratio obtained from the 

proposed method is the same as the true ratio, and when ν is greater than 0.3, the ratio 

increases but is still much less than those from OCSVM. This implies that if we do not know 

the true ratio of active voxels, but set ν between 0.01 and 0.3, then the ratio obtained from 

the proposed method is quite close or the same to its true value. Figure 5 (b) shows the same 

dependence patterns obtained from the synthetic resting-state data. The true ratio calculated 

from networks A and B is 0.0891. The ratio obtained from the proposed method slightly 

varies around the true ratio when ν is between 0.01 and 0.5. The dependence on ν is much 

less than that of OCSVM.

Figures 6 (a)-(c) show the final mapping results of the synthetic task fMRI data obtained 

from the proposed method using three different ν values: (a) 0.1, (b) 0.2, and (c) 0.3. The 

identified active regions match the ground truth very well. Figures 6 (d)-(i) show networks 

A and B identified by the proposed method using the same set of ν values as (a)-(c). There 

are slight variations in the numbers of functionally connected voxels identified around the 

boundaries of functionally connected regions, but no false positives were observed in other 

brain regions.

3.3 Experimental Data

3.3.1 Task-related Experimental Data—The performance of the proposed method on 

the task-related fMRI experimental data was first investigated on the motor and visual task 

data acquired from the individual subjects in the first and second task-related experiments. 

The values of λr and λs were the same as those for the synthetic data. The SR-OCSVM 

parameter ν was estimated using the correlation analysis.

Figures 7 (a)-(c) show the activation maps overlaid on an individual slice covering part of 

motor cortex identified by the proposed method using three ν values: ν=0.14, 0.18, and 0.21, 

which are 2, 2.5, and 3 times the originally estimated ν value. Figure 7 (d) is the mapping 
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result of PICA. All ICs obtained from PICA were visually inspected and those relevant to 

the motor task were combined together to form the activation map. The final decision of 

PICA is made in the same way as the proposed method by comparing each voxel's 

probabilities of active and inactive. When PICA is used, more voxels are identified to be 

active in the supplementary motor cortex area, but fewer active voxels are detected in the 

primary/pre-motor cortex region compared to those obtained by the proposed method. The 

KCC values of active regions shown in Figures 7 (a)-(d) are 0.178, 0.171, 0.171 and 0.142, 

respectively. The mapping results of this dataset obtained from the proposed method exhibit 

a higher regional homogeneity than those from PICA.

Figure 7 (e) shows the initial mapping result obtained from SR-OCSVM when ν=0.21 and 

the prototype selection and SR-TCSVM reclassification steps were not performed. Figure 7 

(f) shows the mapping result of the proposed method when ν=0.21 and the prototype 

selection procedure was not used. False positives can be visually identified from these two 

figures in brain regions that are not relevant to the motor task. This indicates that the 

prototype selection and SR-TCSVM reclassification are two necessary procedures to obtain 

reliable mapping results.

Figure 8 shows the activation maps from the subject in the visual task experiment, where 

(a)-(c) were obtained using the proposed method with three ν values: 0.11, 0.14, and 0.17, 

which are 2, 2.5, and 3 times the estimated ν value. Figure 8 (d) shows the PICA result, and 

(e), (f) are the mapping results obtained by using SR-OCSVM (ν=0.17) and the proposed 

method (ν=0.17) without the prototype selection step. Again, the observed false positives in 

(e) and (f) indicate the necessity of the prototype selection and SR-TCSVM reclassification 

procedures. Since the left and right eyes were alternatively stimulated, the temporal 

variation in the left and right visual cortex are significantly different. Therefore, the regional 

homogeneity was evaluated using the identified active voxels in the left visual cortex region, 

and the computed KCC values of Figures 8 (a)-(d) are 0.215, 0.206, 0.206 and 0.157, 

respectively. Higher KCC values were obtained from the mapping results of the proposed 

method.

For the group analysis of the motor task data in the third task experiment, both λr and λs 

were set to be 0.1 after trying different combinations of them. The group level activation 

maps obtained from the proposed method, GICA, and the GLM-based method are illustrated 

in Figure 9 over the average CNR map computed from all data in the third task experiment. 

Regions encircled by the dark lines in (a)-(d) are the group level active regions in the 

ipsilateral cerebellar area, where (a) and (b) were obtained using the proposed method with ν 

values 2.0 and 3.0 times the originally estimated values. Figures 9 (c) and (d) are the 

mapping results of the GICA and GLM methods. These two approaches do not provide a 

probability-based decision and a threshold is required to make the final mapping. In order to 

make the comparison meaningful, a rectangular region encircled by the grey line was 

defined in Figure 9 (b) to include the ipsilateral cerebellar area. The thresholds of the GICA 

and GLM methods were adjusted to identify the same number of active voxels as that in (b) 

in this region. Then the comparison was based on the same level of mapping sensitivity in 

this brain area. The boundaries of active regions were evaluated in terms of the CNR 
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distribution. It can be seen that the active regions identified by the proposed technique and 

GICA better match the high CNR region compared to that identified by the GLM method.

Figures 9 (e)-(h) show the mapping results from a slice partially covering the primary/pre-

motor and supplementary motor cortex areas, where (e) and (f) were obtained using the 

proposed method with ν values 2.0 and 3.0 times the estimated ones. The supplementary 

motor cortex region is encircled by the grey rectangular in Figure 9 (f), and the thresholds of 

the GICA and GLM methods were selected to identify the same number of active voxels in 

this region, as shown in (g) and (h). The boundary of the identified active region in the 

primary/pre-motor area is also encircled by the dark lines as shown in Figures 9 (e)-(h). It 

was observed that the variation of ν value does not result in apparent changes in the 

activation maps when the proposed method was used. Under the same mapping sensitivity, 

the active regions in the supplementary motor cortex identified by the proposed technique 

and GICA match the high CNR region well. However, the active region in the primary/pre-

motor areas identified by the proposed method from the same slice better matches the high 

CNR region in this area compared to the GICA result, as shown in Figures 9 (f) and (g). The 

active regions identified by the GLM method do not match the high CNR regions so well as 

the proposed and GICA methods in this slice.

Figures 9 (i)-(l) illustrate the mapping results from another slice, where those shown in (i) 

and (j) were obtained using the proposed method with ν values 2.0 and 3.0 times the 

estimated ones. The activation maps shown in (k) and (l) were obtained from the GICA and 

GLM methods. The primary/pre-motor areas in this slice is encircled by the grey line as 

shown in Figure 9 (j), and the thresholds of the GICA and GLM methods were set to 

identify the same number of active voxels as that in the rectangular region shown in (j). The 

active region in the supplementary motor cortex is also illustrated in each of the mapping 

results. It can be seen that the activation maps shown in Figures 9 (i) and (j) better match the 

high CNR regions in the primary/pre-motor and supplementary motor cortex areas compared 

to those shown in Figures 9 (k) and (l). In addition, the activation maps obtained using 

GICA better match the CNR distribution than those identified by the GLM method. The 

regional homogeneity of the identified active voxels in each encircled region shown in 

Figure 9 was computed and is listed in Table 5. The average and standard deviation of KCC 

values computed from the active regions in the ipsilateral cerebellar and primary/pre-motor 

cortex areas identified by the three methods are slightly different with several permillage or 

percentage points. But the average KCC values of the active regions in the supplementary 

motor cortex identified by the proposed and GICA methods are apparently greater than that 

obtained from the GLM method.

3.3.2 Resting-state Experimental Data—For the analysis of the individual subjects’ 

data from the first two resting-state experiments, the following parameter settings were used: 

λr = 0.01, λs = 0.005. Initial ν values were estimated using the correlation analysis based on 

predefined seeds. Figures 10 (a) and (b) show part of DMN overlaid on an individual slice 

from the subject in the first resting-state experiment identified using the proposed method 

with ν = (a) 0.27 and (b) 0.41, which are 2.0 and 3.0 times the originally estimated value. 

Figure 10 (c) shows the mapping result of PICA. The KCC values of the identified 

functionally connected regions in (a)-(c) are 0.115, 0.118 and 0.098, respectively. Figures 10 
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(d)-(f) show part of SMN overlaid on another slice from the same subject, where (d) and (e) 

were obtained using the proposed method with ν = (d) 0.25 and (e) 0.34, corresponding to 

1.5 and 2.0 times the estimated one. Figure 10 (f) shows the PICA mapping result. The KCC 

values of the identified regions in (d)-(f) are 0.117, 0.121 and 0.123, respectively. The 

regions identified by the proposed method show a higher regional homogeneity for DMN 

and a slightly lower homogeneity for SMN as compared to those obtained from PICA.

Figure 11 shows part of DMN and SMN from the subject in the second resting-state 

experiment. The network maps in (a) and (b) were obtained using the proposed method with 

ν = (a) 0.17 and (b) 0.25, corresponding to 2.0 and 3.0 times the estimated value. Figure 11 

(c) was obtained from PICA. A total of 6915 voxels in this slice were used in the analysis. 

When ν value increases from 0.17 to 0.25, there are only 103 more voxels identified as part 

of DMN by the proposed method, indicating 5.37 times less dependence on the change of ν 

than OCSVM. The network maps shown in Figures 11 (d) and (e) were obtained using the 

proposed method with ν = (d) 0.34 and (e) 0.43, corresponding to 2.0 and 2.5 times the 

estimated one. Figure 11 (f) is the network map identified by PICA. There are 3116 voxels 

in this slice involved to the analysis, and only 12 more voxels are identified as part of SMN 

by the proposed method when ν increases from 0.34 to 0.43, showing 23.37 times less 

dependence on the change of ν than OCSVM. The regional homogeneity of the identified 

regions in Figures 11 (a)-(f) are 0.621, 0.63, 0.539, 0.224, 0.226 and 0.226, respectively. 

The regions identified by the proposed method show a higher or similar regional 

homogeneity compared to the PICA results.

In the group analysis of the resting-state data from the third experiment, the settings of λr 

and λs were the same as the group analysis for the motor task data. Figure 12 shows the 

mapping results of DMN and SMN, where the connectivity maps shown in (a),(b) and (e),(f) 

were obtained using the proposed method with ν equal to 2.0 and 3 times the originated 

estimated values, those shown in (c) and (g) were obtained using GICA, and those shown in 

(d) and (h) were generated using the correlation analysis with FDR control. The thresholds 

of the GICA and correlation analysis methods were chosen to generate the same numbers of 

functionally connected voxels in the encircled regions shown in Figures 12 (b) and (f). The 

regional homogeneity of functionally connected regions identified by the three methods was 

computed for each network, and is listed in Table 6. The SMN regions identified by the 

three methods show quite similar regional homogeneity in terms of the average and standard 

deviation of KCC values. For DMN, the average KCC value of the regions identified by the 

correlation analysis is slightly higher than that obtained by the proposed method, and the 

regions identified by GICA have the lowest average KCC value. It was observed that at the 

same level of mapping sensitivity in the posterior cingulate cortex area, the functionally 

connected voxels in media prefrontal cortex are not sufficiently identified by GICA, and 

those in left and right inferior parietal cortex are not sufficiently detected by the correlation 

analysis.

4. Discussion

The feature selection method used in this study is heuristic and can only provide an 

approximate estimation of the features’ contributions to the spatially regularized SVM 
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learning. It was found that the computed feature contribution index values vary across 

sessions and subjects. There are multiple possible factors that could affect the estimation, 

including but not limited to: remaining head movement artifacts, physiological noise, 

imaging artifacts, and data preprocessing. In order to provide a reliable estimation, all 

experimental data were used and the estimated feature contribution index values were 

averaged over all experimental data. Although it might not be absolutely accurate, the 

averaged feature contribution index values may provide guidance about what category of 

features can contribute more to the spatially regularized SVM learning. For instance, it was 

observed that four of the top five features selected from the task-related experimental data 

are computed using each voxel's neighboring voxels. Similarly, four of the top five features 

selected from the resting-state experimental data also involve each voxel's neighboring 

voxels. These features, which are denoted by “spatiotemporal features” in our study, not 

only capture the temporal correlation between each voxel and an expected HDR or a 

predefined seed region, but also contain spatial correlation information within the voxel's 

neighborhood. This observation is consistent to our previous studies where no spatial 

regularization was considered for the SVM learning (Song et al., 2009, 2014). The between-

trial cc value of each voxel, which is also called temporal self-correlation of the voxel, is 

usually considered as a useful feature in task fMRI studies where multiple trials are acquired 

in each scan session (Ngan et al., 2001, Lu et al., 2003). However, this feature shows less 

contribution compared to the others in the experimental study. There are two possible 

reasons for this observation. First, temporal self-correlation does not contain any spatial 

information, and for the spatial regularized SVM learning, it is not helpful in forming 

spatially grouped active regions. Second, the cardiac- and respiration-induced physiological 

noise in fMRI data may introduce global temporal correlation in grey matters, ventricle and 

other regions close to large blood vessels. As a result, most of the voxels in these regions 

may exhibit a relatively high temporal correlation, and the contributions from the between-

trial cc values of truly active voxels could be overwhelmed. The peak delay of the ccf could 

be another useful feature if the TR is sufficiently short, but it was not considered in this 

study because relatively large TRs of the experimental data. The feature study in this work 

did not cover all possible features that can be extracted from fMRI data. Any features that 

could contribute to the SVM learning can be added to the candidate feature set and assessed.

From the comparison study of the three edge weighting methods, it was found from Figures 

3, 4 and Table 3 that the proposed correlation-based edge weighting is a better choice as 

compared to the equal edge weighting and the RBF kernel-based edge weighting. Using an 

equal weight for all edges with neighboring voxels may bring ambiguities around 

boundaries of active or functionally connected regions, and is not appropriate to be applied 

to different experimental data with different spatial resolutions because the spatial 

correlation between neighboring voxels is affected by voxel size. The RBF-based edge 

weighting needs a proper setting of the RBF kernel width, which is unknown but should be 

adjusted according to spatial resolution as well. Correlation-based weighting can 

automatically reflect the true spatial correlation between neighboring voxels and adapt to the 

spatial resolution. Consequently, it can potentially better characterize the boundaries of 

active or functionally connected regions. The neighborhood size is another factor that may 

affect the final mapping performance. In our study, it was found that a 3×3 neighbor (the 
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single-slice case) is sufficient for all datasets used in the experiments. With an increased 

image resolution, a greater neighborhood might be needed.

In the proposed method, the SR-OCSVM parameter ν is usually set greater than the initially 

estimated value in order to obtain a sufficient mapping sensitivity. This leads to false 

positives in the initial mapping results. The effects from the false positives can be maximally 

removed by using the prototype selection and SR-TCSVM reclassification. The reason to 

use SR-TCSVM instead of SR-OCSVM for the reclassification is that SR-TCSVM provides 

a better mechanism to control the generalization performance of SVM learning. It was found 

that the dependence of the proposed method to ν is further decreased in the group study 

compared to those shown in the individual subject studies. For instance, two more ν values 

were tested for the proposed method in the group level motor task study: ν=1.5 and 3.5, and 

the corresponding mapping results are almost the same as those shown in Figure 9. This 

indicates that the proposed method is a reliable tool for group level fMRI data analysis.

In the group level analyses of task and resting state data, the thresholds of the GICA, GLM, 

and correlation methods were adjusted for each individual slice to achieve the same mapping 

sensitivity as the proposed method in a pre-specified region. This resulted in multiple 

thresholds in each analysis. For instance, three different thresholds were used in the GLM 

method in order to obtain the activition maps shown in Figures 9 (d), (h), and (j). If only one 

threshold is used, which is typical when the GICA, GLM, and correlation methods are used, 

these methods cannot achieve the same mapping performance as the proposed method. For 

example, it was found that if the threshold used to obtain the map shown in Figure 9 (d) is 

used for all slices, then the activation in the supplementary motor cortex cannot be identified 

by the GLM method.

Since the fMRI spatial correlation is considered not only in the SR-OCSVM and SR-

TCSVM learning, but also in the preprocessing (spatial smoothing), feature representation of 

each voxel, and prototype selection, it would not be necessary to assign large values to the 

regularization parameters λr and λs, and our experimental study verified this. There is no 

theoretical guidance about how to set these two parameters, and they were experimentally 

determined in this work. It was also found that slight changes of these two parameters won't 

bring considerable variations in the final mapping results.

“Soft” decision (or a probability threshold of 0.5) is used in the proposed method and PICA 

by comparing each voxel's probabilities of active and inactive, or functionally connected and 

unconnected. This is equivalent to assigning equal loss to false positives and false negatives 

(Hartvig et al., 2000; Beckmann et al., 2004). If a lower level of false positive rate or a 

higher mapping sensitivity is required in a study, we may switch to a “hard” decision by 

choosing a probability threshold above or below 0.5. But in such situations, the equivalent 

SVM classification hyperplane might not well match the true boundary between active/

connected and inactive/unconnected voxels in the feature space.

KCC was used to estimate the regional homogeneity of identified active or functionally 

connected regions to provide supportive information for the evaluation of the mapping 

performance. Typically, false positives may lead to a decreased regional homogeneity. For 
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instance, active regions shown in Figure 7 (d) comprise mis-identified voxels, and the 

computed KCC value is lower than that calculated from active regions shown in Figure 7 

(c). It is noted that KCC cannot be used alone for the performance evaluation because 

insufficiently identified functional regions may result in greater KCC values than 

sufficiently identified ones. Therefore, KCC should be used together with mapping results to 

evaluate the mapping performance.

Unlike most SVM-based brain mapping methods, which perform supervised learning and 

classifications on specific brain cognitive states or disorders, the proposed technique is 

aimed to provide a general mapping of brain function in various task conditions or resting-

state. For this purpose, supervised learning was not considered because there exist 

significant variations in brain functions in different task conditions or resting-state, and it is 

costly and inconvenient to obtain training data for each brain mapping task. Therefore, semi-

supervised or unsupervised learning techniques are more appropriate in such circumstances. 

The proposed method is a semi-supervised technique that can adapt to the intra- and inter-

subject variations of fMRI data. Users need to provide prior information from an expected 

HDR in a specific task condition, or a seed region related to a specific network-of-interest in 

resting-state to perform brain functional mapping. ICA is an unsupervised approach that 

does not require the expected HDR or seed information, and can simultaneously generate all 

possible signal and noise patterns indicated by ICs. However, all ICs have to be visually 

inspected or compared to predefined templates to identify functional patterns-of-interest. 

The experimental results in this work indicate that the proposed method can provide similar 

or better mapping performance compared to ICA at the individual and group level.

The proposed method has several advantages. First, it is data-driven and SR-OCSVM and 

SR-TCSVM do not superimpose any parametric models to fMRI data/computed features. 

Second, the semi-supervised learning procedure enables it to adapt to the intra- and inter-

subject variations of fMRI data, and no fixed thresholds are required for the final decision. 

Third, by formulating the brain functional mapping as an outlier detection process, the 

proposed method can identify a small number of active or functionally connected voxels that 

might not be revealed by conventional techniques (Miller et al., 2008). Finally, it can 

identify brain function in individual slices and whole brain for individual subjects and at the 

group level, and can be used as a general tool for brain functional mapping in various task-

related and resting-state studies. It is worth noting that the application of the proposed 

technique is not limited by the basic assumption that the number of active voxels in a task 

condition or functionally connected voxels in a specific network is less than 50% of that of 

all voxels in brain. Under certain circumstances, for instance, a sufficiently low noise level 

and/or a complete characterization of BOLD effects in different brain areas, observable 

brain functional activations induced by a task stimulation could expand to a majority of 

brain (Gonzalez-Castillo et al., 2012). In such cases, the mapping of brain function can be 

implemented by using the proposed technique in two different ways. One is to perform the 

mapping multiple times with each time associated with a specific temporal pattern of BOLD 

response, and to combine the mapping results together. The other is to perform the proposed 

analysis in an opposite way by treating the majority class identified by SR-OCSVM as 

active or functionally connected voxels.
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The limitations of the proposed method primarily lie in two aspects. First, a change of seed 

location in the resting-state studies may affect the mapping results. In this work, all seed 

regions were chosen based on previously reported works. It was found that a shift of the 

seed position by one or two voxels usually leads to a negligible change of mapping results in 

the group level study, but may result in more changes in mapping results of individual 

subjects. Second, the proposed method is sensitive to remaining imaging artifacts and noise 

in fMRI data, such as the subject head movement artifacts and cardiac- and respiration-

induced physiological noise. Thus some preprocessing steps are necessary to attenuate these 

effects.

5. Conclusion

In summary, a spatially regularized SVM method was developed for the general mapping of 

brain function in task- and resting-state. The method implements a semi-supervised learning 

to adapt to the intra- and inter-subject variations of fMRI data, and can approximate a true 

boundary between active/connected and inactive/unconnected voxels in a feature space. The 

primary innovation of the method is to integrate the spatial regularization into the OCSVM 

and TCSVM learning with a correlation-based edge weighting for the initial and final 

mapping. The method was compared to PICA in the experimental study of individual 

subjects’ data acquired from the task- and resting-state. Group level studies were also 

performed based on the comparison with the GICA, GLM, and correlation analysis methods 

using the multi-subject motor task and resting-state fMRI data. Experimental results indicate 

that the proposed method can provide a similar to better mapping performance compared to 

the others, and be used as a brain functional mapping tool in various quantitative fMRI 

studies.
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Highlights

• A quantitative method is developed for task- and resting-state fMRI data 

analysis.

• The brain functional mapping is formulated as an outlier detection process.

• Support vector machines are used to implement a semi-supervised learning.

• Spatial constraints are integrated into the support vector learning.

• Salient features are identified for the brain mapping in task- and resting-state.
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Figure 1. 
Block diagram of the proposed method
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Figure 2. 
(a) Synthetic task fMRI data with two artificially added active regions. (b) Synthetic resting-

state fMRI data with two artificially generated functional networks each of which consists of 

two functionally connected regions: regions 1 and 4 are connected to form network A, and 

regions 2 and 3 are connected to form network B.
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Figure 3. 
A comparison of the mapping result of the synthetic task data obtained using: (a) OCSVM, 

(b) SR-OCSVM with the equal edge weighting, (c) SR-OCSVM with the RBF-based edge 

weighting, and (d) SR-OCSVM with the correlation-based edge weighting.
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Figure 4. 
A comparison of OCSVM and SR-OCSVM using the synthetic resting-state data. (a)-(d) are 

network A identified using (a) OCSVM, (b) SR-OCSVM with the equal edge weighting, (c) 

SR-OCSVM with the RBF-based edge weighting, and (d) SR-OCSVM with the correlation-

based edge weighting. (e)-(h) Network B identified by the same order of algorithm settings 

as (a)-(d).
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Figure 5. 
Dependence of the final mapping results on the OCSVM/SR-OCSVM parameter ν obtained 

using (a) synthetic task fMRI data, and (b) synthetic resting-state fMRI data.
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Figure 6. 
(a)-(c) Mapping results of the synthetic task data obtained by the proposed method with 

three different ν values: (a) 0.1, (b) 0.2, (c) 0.3. (d)-(f) Network A identified by the proposed 

method with the same set ν values as (a)-(c). (g)-(i) Network B obtained by the proposed 

method using the same set of ν values as (a)-(c).
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Figure 7. 
(a)-(c) Mapping results of the motor task fMRI data from an individual subject obtained 

using the proposed method with three different ν values: (a) 0.14, (b) 0.18, (c) 0.21. (d) 

PICA result. (e) SR-OCSVM result (ν=0.21). (f) Mapping result of the proposed method 

without using the prototype selection procedure (ν=0.21).
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Figure 8. 
(a)-(c) Mapping results of the visual task fMRI data from an individual subject using the 

proposed method with three different ν values: (a) 0.11, (b) 0.14, (c) 0.17. (d) PICA result. 

(e) SR-OCSVM result (ν=0.17). (f) Mapping result of the proposed method without using 

the prototype selection step (ν=0.17).
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Figure 9. 
Group level mapping results of the motor task fMRI data using the proposed method, GICA, 

and GLM-based method. (a)-(b), (e)-(f), (i)-(j) Active regions in the ipsilateral cerebellar, 

primary/pre-motor and supplementary motor cortex areas identified by the proposed method 

with ν values 2.0 (a, e, i) and 3.0 (b, f, j) times the originally estimated values. (c),(g),(k) 

GICA mapping results. (d),(h),(l) Mapping results of the GLM method. Dark lines indicate 

the boundaries of the identified active regions. The thresholds of GICA and GLM methods 

were selected to identify the same numbers of active voxels in the regions encircled by the 

grey lines as shown in (b), (f), and (j).
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Figure 10. 
(a)-(b) Part of DMN identified from an individual subject using the proposed method with 

two ν values: (a) 0.27, (b) 0.41. (d)-(e) Part of SMN obtained using the proposed method 

with ν equal to (d) 0.25 and (e) 0.34. (c), (f) PICA mapping results.
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Figure 11. 
(a)-(b) Part of DMN obtained from another individual subject using the proposed method 

with two ν values: (a) 0.17, (b) 0.28. (d)-(e) Part of SMN mapped using the proposed 

method with ν equal to (d) 0.34 and (e) 0.43. (c), (f) PICA mapping results.
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Figure 12. 
(a), (b) Part of DMN identified in the group study using the proposed method with ν equal to 

(a) 1.0 and (b) 3.0 times the estimated ones. (e), (f) Part of SMN identified at the group level 

using the proposed method with ν equal to (e) 1.0, and (f) 3.0 times the originally estimated 

values. (c), (g) GICA mapping results. (d), (h) Mapping results from the correlation analysis 

with FDR control. The thresholds of the GICA and correlation analysis methods were 

selected to identify the same numbers of functionally connected voxels in the encircled 

regions as shown in (b) and (f).
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Table 1

Feature selection results of task-related fMRI experimental data.

Candidate feature Im value Rank

AVG_CC_HDR 1 1

MIN_CC_HDR 0.86 2

CC_HDR 0.75 3

MAX_CC_HDR 0.72 4

AVG_XC_NB_HDR 0.57 5

MAX_XC_NB_HDR 0.56 6

MAX_XC_HDR 0.43 7

MIN_XC_NB_HDR 0.39 8

MAX_TC 0.31 9

SELF_CC 0.30 10

All Im values were normalized against the largest one. (AVG/MAX/MIN_CC_HDR: average/maximum/minimum cc value between neighboring 
voxels of a voxel and the expected HDR; AVG/MAX/MIN_XC_NB_HDR: average/maximum/minimum signed extreme value of the ccfs 
between a voxel's neighboring voxels and the expected HDR; CC_HDR: cc value between a voxel and the expected HDR; MAX_TC: maximum 
intensity of a voxel's time course; MAX_XC_HDR: the signed extreme value of the ccf between a voxel and the HDR; SELF_CC: the average 
between-trial cc value of each voxel.)
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Table 2

Feature selection results of resting-state fMRI experimental data.

Candidate feature Im value Rank

MAX_CC_SEED 1 1

AVG_CC_SEED 0.98 2

CC_SEED 0.83 3

AVG_CC_NB 0.48 4

MIN_CC_SEED 0.39 5

AVG_XC_NB_SEED 0.40 6

MAX_CC_NB 0.38 7

MAX_XC_SEED 0.26 8

MAX_TC 0.14 9

MIN_CC_NB 0.01 10

All Im values were normalized against the largest one. (AVG/MAX/MIN_CC_SEED: average/maximum/minimum cc value between neighboring 
voxels of a voxel and a seed; AVG/MAX/MIN_CC_NB: average/maximum/minimum cc value between a voxel and its neighboring voxels; 
AVG_XC_NB_SEED: the average signed extreme value of the ccfs between neighboring voxels of a voxel and a seed; CC_SEED: cc value 
between a voxel and a seed; MAX_TC: maximum intensity of a voxel's time course; MAX_XC_SEED: the signed extreme value of the ccf 
between a voxel and a seed.)
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Table 3

Numerical performances of OCSVM and SR-OCSVM computed from the mapping results of the synthetic 

task fMRI data shown in Figure 3.

Accuracy (%) Precision (%) Recall (%)

OCSVM 89.96 44.75 80.2

SR-OCSVM (equal weight) 91.46 49.69 80.2

SR-OCSVM (RBF kernel) 90.21 45.51 80.2

SR-OCSVM (correlation) 99.75 97.12 100

J Neurosci Methods. Author manuscript; available in PMC 2017 January 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Song et al. Page 39

Table 4

Numerical performances of OCSVM and SR-OCSVM calculated from the mapping results of the synthetic 

resting-state fMRI data shown in Figure 4.

Accuracy (%) Precision (%) Recall (%)

Network A Network B Network A Network B Network A Network B

OCSVM 93.51 93.25 35.94 42.4 98.0 80.84

SR-OCSVM (equal weight) 97.04 96.65 55.39 62.96 99.33 87.38

SR-OCSVM (RBF kernel) 93.61 94.03 36.43 46.32 99.33 88.32

SR-OCSVM (correlation) 98.7 97.94 74.13 72.73 99.33 97.2
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Table 5

Regional homogeneity (KCC) of the group level mapping results in the three brain areas obtained by the 

proposed, GICA, and GLM methods. The mean and standard deviation (std) of KCC values were computed 

across all subjects and sessions.

Proposed Method GICA GLM

Mean Std Mean Std Mean Std

Ipsilateral cerebellar 0.573 0.131 0.579 0.132 0.566 0.132

Supplementary motor cortex 0.63 0.074 0.638 0.078 0.507 0.083

Primary/pre-motor cortex 0.417 0.07 0.403 0.067 0.406 0.081
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Table 6

Regional homogeneity (KCC) of mapping results obtained by the proposed, GICA, and correlation methods in 

the group level resting-state study. The mean and standard deviation (std) of KCC values were computed 

across all subjects and sessions.

Proposed Method GICA Correlation Analysis

Mean Std Mean Std Mean Std

DMN 0.205 0.055 0.18 0.054 0.238 0.056

SMN 0.275 0.074 0.272 0.072 0.273 0.078
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