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SUMMARY

Network-based molecular modeling of physiological behaviors has proven invaluable in the study 

of complex diseases such as cancer, but these approaches remain largely untested in contexts 

involving interacting tissues such as autoimmunity. Here, using Alopecia Areata (AA) as a model, 

we have adapted regulatory network analysis to specifically isolate physiological behaviors in the 

skin that contribute to the recruitment of immune cells in autoimmune disease. We use context-

specific regulatory networks to deconvolve and identify skin-specific regulatory modules with 

IKZF1 and DLX4 as master regulators (MRs). These MRs are sufficient to induce AA-like 

molecular states in vitro in three cultured cell lines, resulting in induced NKG2D-dependent 

cytotoxicity. This work demonstrates the feasibility of a network-based approach for 

compartmentalizing and targeting molecular behaviors contributing to interactions between tissues 

in autoimmune disease.
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INTRODUCTION

Systems-level analysis using reverse-engineered regulatory networks is an emerging 

computational discipline that has demonstrated great promise in the study of complex 

diseases such as cancer and Alzheimer’s disease (Aubry et al., 2015; Chen et al., 2014; 

Shelanski et al., 2015; Zhang et al., 2013). This approach enables the modeling of complex 

physiological behaviors as modules of genes (subsets of differentially expressed genes that 

associate with disease) that are controlled by master regulators (MRs). MRs represent the 

minimal number of transcription factors (TFs) that are predicted to specifically activate or 

repress a target module and, by extension, the associated physiological behavior (Carro et 

al., 2010; Lefebvre et al., 2010). They can be regarded as molecular “switches” that regulate 

physiological behaviors. The inference of MRs is made possible through the reverse 

engineering of context-specific regulatory networks using computational algorithms such as 

ARACNe (Margolin, Nemenman, et al., 2006a).

These MRs are validated biologically and serve as targetable “hubs” governing disease 

pathology. These approaches have proven highly effective for the study of cell autonomous 

behaviors in diseases such as cancer, i.e. behaviors of a tumor mass. Physiological behaviors 

such mesenchymal transformation in glioblastoma (Carro et al., 2010) and oncogenesis in B 

cell lymphoma or breast cancer (Chen et al., 2014; Mani et al., 2008), as well as onset of 

Alzheimer’s disease(Zhang et al., 2013) have been functionally linked to a relatively small 

number of MRs, which in turn become the “bottleneck” that can be used to infer driver 

mutations in patients(Chen et al., 2014) or become the targets of drug screens for 

treatment(Shelanski et al., 2015).

However, this type of computational approach is only starting to be implemented to target 

pathogenic, non-cell autonomous interactions between different tissues such as autoimmune 

disease. In particular, inferring master regulators cannot be done directly using typical 

ARACNe-based analysis because of fundamental assumptions made during the generation 

of a regulatory network: 1) that the samples used are relatively pure or represent the one 

underlying transcriptional network; and 2) the underlying molecular behavior of a dataset 

exists at a steady-state such that each sample can be treated as a “snapshot” of regulatory 
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dependency within the overall network(Basso et al., 2005; Califano, Butte, Friend, Ideker, & 

Schadt, 2012; Margolin, Wang, et al., 2006b). A contaminated sample, particularly by a 

tissue that exhibits a different context-specific regulatory network, can impair the accuracy 

of regulatory predictions. Further, when pathogenesis is dependent on the interaction 

between the two tissues, there will always be an artifact correlation between contaminant 

gene signatures and the molecular modules that recruit them but are expressed in the other 

tissue. This makes it difficult to clearly define modules exclusive to one tissue or the other 

when analyzing gene expression data generated from a mixture of the two tissues.

Alopecia Areata (AA) provides an ideal model for such a study since it is characterized by T 

cells actively infiltrating the hair follicles and scalp skin that are typically absent in normal 

skin (Xing et al., 2014). AA typically presents as loss of distinct, random patches of hair that 

can recover on its own (20–30% of cases). In 5–10% of cases, hair loss can spread to the 

entire scalp (alopecia totalis), or the entire body (alopecia universalis) (Olsen et al., 1999). 

Previous research from our lab and others has directly implicated immune genes in AA 

(Martinez-Mir et al., 2007; Petukhova et al., 2010), many of which are shared with other 

autoimmune diseases such as Type I diabetes, celiac disease, and rheumatoid arthritis (Betz 

et al., 2015; Farh et al., 2014; Petukhova et al., 2010). Previous studies have identified 

infiltration of cytotoxic CD8-positive, NKG2D-positive T cells into the skin of AA mice 

(Xing et al., 2014), and the pathology of AA involves IFN-gamma-dependent signaling 

pathways, which are frequently disrupted in association with immune evasion in 

cancer(Dunn, Bruce, Ikeda, Old, & Schreiber, 2002; Sato et al., 1998).

However, little work has been done to determine if there are intrinsic factors in the “end 

organ” (the tissue that suffers autoimmune attack) that contribute to the disease, such as 

scalp skin in AA, making this molecular component an prime target for the analysis. We 

predict that pathogenic changes in the molecular profile of the scalp skin will contain genes 

that mediate interactions with the infiltrating T cells. As a corollary, identifying the master 

regulators will grant regulatory control over the modules that are sufficient to induce 

immune recruitment. To study this, we leverage context-specific regulatory networks for the 

regulatory deconvolution of a mixed-signature gene expression profiles of AA patients. The 

goal of this work was to develop a framework capable of separating mixed AA tissue biopsy 

gene expression data into skin-specific modules of AA pathology and infiltrate recruitment.

Using this approach, we identify a molecular profile of AA that includes the genetic 

modules of infiltrate recruitment in the scalp skin by filtering genes that do not accurately 

map to a skin-specific network. This scalp skin signature allowed the subsequent 

identification of two master regulators of scalp skin contribution to infiltration: IKZF1 and 

DLX4. These two genes are expressed in primary scalp biopsies, and are sufficient to induce 

an AA-like molecular signature and NKG2D-dependent cytotoxicity in independent, wild-

type cellular contexts, allowing for direct genetic control induction of immune-mediated 

cytotoxicity.
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RESULTS

Initial definition of a pathogenic expression signature in AA reveals the presence of local 
(scalp skin) and infiltrating (immune) signals

First, we created a molecular signature comparing AA patients to controls to generate a 

molecular representation of AA. We analyzed a training set of microarray studies of patient 

biopsies from an initial cohort of 34 unique biopsy samples: 21 AA patients of varying 

clinical presentations and 13 unaffected controls. We additionally had patient-matched, non-

lesional scalp biopsies for 12 of the 21 AA patients. These 34 patients were gathered as the 

first of two cohorts totaling 96 patients, the remainder of which was saved for validation 

exercises.

We created an overall gene expression signature by comparing patients of two distinct 

clinical presentations, patchy AA (AAP) and totalis and universalis (AT/AU) all against 

unaffected controls. To account for artifacts in the signature associated with secondary 

effects of infiltration such as hair loss, we then performed hierarchical clustering using this 

gene signature on a set of patient-matched lesional (no hair, symptomatic) and non-lesional 

(hair-bearing, asymptomatic) samples. This analysis identified gene clusters that were 

differentially expressed between these samples, and those that were systemically equivalent 

across lesional and non-lesional samples. We subsequently removed from the first 

expression set any genes that fell in clusters correlating with lesional vs nonlesional (no-hair 

vs hair) states. This primarily removed a significant number (but not all) of the keratin and 

keratin-associated proteins from the signature.

The resulting gene expression signature, the AAGS (Alopecia Areata Gene Signature), 

consisted of a total of 136 unique genes (Supplemental Table 1) and provided sufficient 

information to cluster the entire training cohort into two appropriate superclusters 

corresponding to the control and disease states (Figure 1A). Clustering these genes by co-

expression also revealed two distinct modules of genes, with greater diversity of co-

expression in the genes upregulated in the disease state (Figure 1B). As a qualitative 

measure of the genes differentially expressed between affected and unaffected patients, we 

analyzed them for functional annotation enrichments. The analysis revealed the presence of 

HLA genes, immune response elements, and inflammatory and cell death pathway gene 

expression in the affected patient samples (Figure 1C). The two most significant 

superclusters of the AAGS were transmembrane signaling peptides (p=2.8×10−11) and 

secreted cell-cell signaling peptides (p=2.1×10−10). As expected, this list also contains 

several antigen-presenting elements and immune response elements that are associated with 

AA and autoimmune disease (Supplemental Table 2, Supplemental Figure S1). These results 

indicate that there are significant alterations of multiple biological processes in AA-

presenting cells. We postulate that some subset of these genes originate from the scalp skin 

and are required to induce infiltration recruitment.

There is also significant evidence for immune-related genes originating from infiltrating 

immune cells that must be filtered beforehand; or else they could confound the identification 

of skin-specific molecular programs. Gene markers associated specifically with immune 

cells were detected as part of the AAGS including CD8a, CXCL9/10, and CCL5/18/20/26 
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(full list in Supplemental Tables). In primary patient biopsy samples, defining skin-specific 

molecular behaviors contributing to AA is a difficult task due to the presence of infiltrating 

T cells and secondary response pathways in AA skin samples.

Leveraging regulatory networks to deconvolve skin and immune signatures in the AAGS 
into regulatory modules

With clear definitions of the disease signature, we sought to deconvolve the skin molecular 

program in the AAGS from the molecular program originating in infiltrating immune cells 

in a systemic, unbiased manner. Rather than using GO pathway enrichment or other 

annotation-based methods that rely on a priori knowledge and potentially ambiguous 

annotations, we instead utilize our inferred regulatory networks under the hypothesis that we 

can filter non-skin (immune infiltrate) gene expression by identifying the genes that cannot 

be mapped to a skin-specific regulatory network.

A transcriptional regulatory network of the scalp skin was generated using the ARACNe 

algorithm and associated software suites (see Methods). Specifically, to generate the 

network we included a cohort of 106 primary scalp skin samples consisting of normal 

(unaffected) whole skin biopsies and several samples of primary cultured dermal fibroblasts 

and dermal papilla cells. These sources contain few or no T cell infiltrates. This network 

represents the regulatory network in un-infiltrated skin-derived tissues, and serves as the 

cornerstone of the deconvolution, which occurs in two primary steps as detailed in Figure 2.

For deconvolution of regulatory modules, the genes in the AAGS are directly mapped to the 

regulatory network (Figure 2A, see methods for details). A gene in the AAGS is only 

retained if there is a direct regulatory interaction between it and a transcription factor using 

the regulatory logic of a skin ARACNe network (red, solid edges). Any genes that come 

uniquely from infiltrating immune cells will not have significant represention in the 

ARACNe network, and are subsequently removed from the AAGS (black, dotted edges) for 

skin, and added to an Immune Gene Signature (IGS).

The IGS was used as a “negative control” signature, adapted from previous work in 

characterizing cancer immune infiltrates (Bindea et al., 2013). The signatures were defined 

as a set of genes that are specifically expressed in each immune cell type, including T cells, 

B cells, mast cells, and macrophages. This step iteratively re-defines the AAGS and IGS by 

separating those genes whose regulation can be accounted for by an un-infiltrated regulatory 

network (AAGS) from those that cannot (IGS). By extension, we expected the filtered 

AAGS to be enriched enough in skin gene expression to generate accurate skin-specific 

regulons.

As indicated in 2B, 13 infiltrate-specific genes were removed from the AAGS (9.5% of the 

total signature) when passed through the skin-specific regulatory network. These genes are 

also listed in Supplemental Table S1. This resulted in two mutually exclusive gene modules 

(no overlapping genes, p=1.77×10−4), the AAGS and the IGS. A subsequent pathway 

enrichment analysis further confirmed loss of statistical enrichment of the “T cell activation” 

and “Immune response” categories (see Supplemental Table S2) while retaining the other 

clusters including known skin immune response elements (such as the HLA genes). This left 
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a total of 123 genes in the AAGS that we interpret to represent all end-organ programs 

associated with AA pathology, including end-organ-initiated immune recruitment and 

immune response (Supplemental Table S1, starred entries).

Note that we have made the distinction between annotations associated with immune cells 

(e.g. CD8a), and annotations associated with immune response genes (e.g. HLA). The 

former are removed by the regulatory network as unrepresented in a skin regulatory 

network. The latter are signature genes that we aim to keep, as they represent the response 

elements in the skin and are relevant for the pathology of the disease.

Clustering the filtered AAGS revealed two distinct molecular modules that define the 

transition from unaffected patients (Figure 2B, second panel) to an AA disease state (Figure 

2B, third panel). Each node represents a gene in the signature, and its size represents the 

relative expression in each state (larger means higher expression). We labeled these gene 

groups: 1) genes whose expression is increased when transitioning into the disease state, and 

2) genes whose expression is lost in the transition. This filtered AAGS reflects end-organ-

specific gene modules and served as the input to our master regulator analysis.

IKZF1 and DLX4 are master regulators of the skin AAGS and, by extension, infiltrate 
recruitment

The next step is the most important in identifying end-organ-specific master regulators. We 

performed master regulator analyses on both the deconvolved AAGS and the IGS 

independently and in parallel using the scalp skin regulatory network (Figure 2C, first panel, 

red outline). Using only regulatory interactions represented in skin, we identified the 

transcriptional regulators that had the highest specificity for the deconvolved AAGS (red 

arrows) and repeated the analysis for the IGS (black arrows). This step compares the AAGS 

against the IGS in terms of regulatory logic in the scalp skin, as opposed to direct coverage 

of gene expression. This analysis assays which transcription factors are the best candidates 

for the deconvolved AAGS (and not for the IGS) using a molecular regulatory network 

specific to the skin. We identify skin-specific candidate master regulators by keeping only 

the candidates that were both significant in AAGS coverage and insignificant for IGS 

coverage.

Of the significant candidate master regulators specifically for the AAGS, we employed a 

greedy sort to identify the fewest number of regulators needed to maximize the coverage of 

the AAGS. We found that two MRs are sufficient to cover >60% of the AAGS: IKZF1 and 

DLX4. Any additional candidates boosted the coverage by a statistically insignificant 

margin (<5%). We conclude that the maximum AAGS fidelity (most faithful recreation of 

the expression signature) and efficiency (fewest necessary regulators) could be achieved 

through these two genes (IKZF1 p=4.17×10−4, DLX4 p=4.8×10−10 FDR-corrected).

An equivalent master regulator analysis conducted on the IGS modules failed to generate 

any statistically significant or meaningful MRs when using the scalp-skin regulatory 

network. Specifically, the best candidates for the AAGS, IKZF1 and DLX4, fall to statistical 

irrelevance (falling from 1st and 2nd to 159th and 210th, respectively, FDR=1) (Figure 2C, 

table). Conducting the master regulator analysis on the AAGS without deconvolution fails to 
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generate master regulator candidates at the threshold that is typically expected (both in p-

value and signature coverage) due to the presence of contaminating genes in the signature 

which cannot accurately be mapped to a MR, but nonetheless count against enrichment in 

the analysis.

These two candidates represent the minimum number of regulators required to recreate the 

AAGS using regulatory interactions derived from a specific tissue context (scalp skin), 

distinct from any immune-specific regulatory modules that were deconvolved away using 

this method. IKZF1 and DLX4 therefore represent a genetic regulatory module in the scalp 

skin that contributes to AA pathogenesis (Figure 2C, last panel), and may be sufficient to 

induce infiltration recruitment in an AA-like manner.

The identification of IKZF1 was particularly unusual, as it is a well-established T cell 

differentiation factor, though it is not without precedent that IKZF1 may have a role in cells 

outside the immune system (Javierre et al., 2011). However, it is important to note that this 

analysis does not imply that a master regulator such as IKZF1 has no role in T cells 

contributing to AA pathogenesis, but rather, that there is significant evidence that IKZF1 

additionally functions in the scalp skin to mediate the interactions between the tissues.

Expression of IKZF1 and DLX4 induces an AAGS-like signature in normal huDP and HKs

To validate our master regulator predictions with functional studies, we exogenously 

overexpressed them in skin-derived cell lines and cultured cells to test for sufficiency in 

influencing expression of the AAGS. We cloned DLX4 and two isoforms of IKZF1 for 

exogenous expression in cultured cells. The active IKZF1 isoform served the experimental 

arm of the study, while the isoform that lacks a DNA binding domain was included as a 

negative control (IKZF1δ). We expressed these genes in cultured primary human hair 

follicle dermal papillae (huDP) and human keratinocytes (HK). This experimental system 

allowed us to directly test two distinct but related hypotheses: 1) IKZF1 and DLX4 can 

induce AA-like recruitment of immune cells, and 2) they do so through expression in the 

skin (not the immune infiltrates).

We identified a set of genes that were significantly differentially expressed in the same 

direction in IKZF1 and DLX4 transfections across both cell types. Unsupervised 

hierarchical clustering of all samples based on these transcripts reveals clean co-segregation 

of IKZF1 and DLX4 transfections from IKZF1δ and RFP controls (Figure 3A). Furthermore, 

we observed that the sub-clustering within these supergroups was not biased based on cell 

type used (HK did not cluster with HK, and DP did not cluster with DP), supporting that we 

have identified context-independent effects of master regulator overexpression. 

Interestingly, we observed that DLX4 transfections resulted in increased levels of IKZF1 

transcript and protein, whereas the IKZF1 transfections did not influence DLX4 expression 

(Figure 3B, 3C).

We subsequently interrogated the expression data for enrichment of the AAGS genes using 

gene set enrichment analysis (GSEA). We performed two differential gene expression 

studies comparing the IKZF1 transfections vs RFP controls and DLX4 transfections vs RFP 

controls. The results show that the ectopic expression of the MRs is followed by significant 
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enrichment in the induction of the AAGS (IKZF1 p=0.012, DLX4 p=2.08×10−4; Figure 3D, 

3E).

IKZF1 and DLX4 expression are sufficient to induce sensitivity to NKG2D-mediated 
cytotoxicity in normal cultured skin

The experiments of IKZF1 and DLX4 overexpression suggest that these two genes are 

master regulators capable of mediating the AAGS when applied to HK and huDP. However, 

the functional relevance of these master regulators to autoimmunity and immune infiltration 

is whether or not their expression is sufficient to induce a targeted autoimmune response. In 

order to investigate this ex vivo, we performed experiments measuring the level of cytotoxic 

cell death in HK and huDP cells when exposed to peripheral blood monocytes (PBMCs).

We again transfected both HK and huDP cells with one of four expression constructs: 

IKZF1, DLX4, RFP (negative control) or IKZF1δ (negative control). 24 hours post-

transfection, these cells were incubated with fresh, purified PBMCs. We additionally 

cultured human dermal fibroblasts that were patient-matched for the PBMCs used in this 

experiment. The PBMCs were obtained from a control subject with no history of AA or any 

other autoimmune disease.

In all comparisons, we observed a statistically significant increase in PBMC-dependent 

cytotoxicity for the IKZF1 and DLX4 transfections compared to RFP and IKZF1δ controls 

(Figure 4, center columns, total bar height). The patient-matched PBMCs and RFP-control 

transfected fibroblasts exhibited no evidence of cytotoxic interactions, as expected in 

healthy target cells (Figure 4A, center). However, the introduction of IKZF1 and DLX4 

were both sufficient to induce an interaction between these previously exclusive cells, 

resulting in significant increase of total cytotoxicity. In a similar fashion, both huDP (Figure 

4B, center) and HK cells (Figure 4C, center) showed a significant increase above 

background levels in cytotoxic sensitivity to the PBMCs.

Since we previously showed that the likely pathogenic immune cell in AA is CD8+, 

NKG2D+ activated T cells, we also performed all treatments with the addition of an 

NKG2D-blocking antibody (see Methods) to prevent NKG2D-dependent interactions. In all 

cases, we observed that blocking NKG2D suppressed the cytotoxicity in both IKZF1 and 

DLX4 treatments to levels comparable to controls (Figure 4, center panel, grey bars). From 

the difference between the inhibitor-treated and untreated cells, we can infer the cytotoxicity 

that is NKG2D-dependent (Figure 4, center panel, white bars), which can be normalized to 

that observed in controls for a relative fold change analysis. From the NKG2D blockade, we 

observed a statistically significant increase specifically in IKZF1 and DLX4 transfections 

across all trials (Figure 4 right panels). There was a large (>50 fold) increase in patient-

matched cytotoxicity compared to the control transfection, which again showed no 

significant cytotoxicity. There was approximately a 2- to 8-fold increase in NKG2D-

dependent cytotoxicity compared to both controls, despite a statistically significant but small 

(<10%) increase in NKG2D-independent cytotoxicity. We conclude from these experiments 

that IKZF1 and DLX4 are capable of inducing NKG2D-dependent interactions with normal 

PBMCs that result in toxicity for the transfected cells regardless of the exact tissue type.
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Importantly, these experiments establish the cell autonomous function for IKZF1 and DLX4 

in the scalp skin as opposed to infiltrating cells, as the exogenous modification was done 

strictly on normal cultured cells and exposed to healthy PBMCs from a source with no 

history of autoimmune disease.

MR expression permits reconstruction of a directional skin-specific master regulator 
module of infiltration recruitment

After establishing that IKZF1 and DLX4 are sufficient to induce the AAGS, we sought to 

use this data to fully reconstruct the AA master regulator module. ARACNe is capable of 

detecting direct transcriptional dependencies between a transcription factor (TF) and non-

regulatory genes that are potential targets (T) because we can infer that the regulation is 

TF→T. ARACNe cannot infer directional interactions between TF-TF pairs, and 

subsequently cannot infer secondary targets of master regulators due to the regulatory 

equivalence of TFs (Figure 5A, first panel). However, since we have directly perturbed HKs 

and huDPs with specific master regulators (Figure 5A, asterisks), we can use the gene 

expression data to infer directionality. If TFB is a target of our master regulator (TFA), then 

overexpression of TFA will result in the differential expression of TFB and we can infer that 

TFA→TFB. Subsequently, any marker genes in the signature associated with TFB can be 

linked to MR as secondary targets TFA →TFB→T (Figure 5A, top panel). If TFB functions 

upstream of or in parallel with MR then the expression of TFB and T will not be affected by 

overexpression of TFA (Figure 5A, bottom panel).

Using this logic, we reconstructed the regulatory module to measure the full extent of the 

coverage obtained by overexpressing IKZF1 and DLX4 in these cellular contexts. We 

mapped any downstream targets of TFs that both (1) respond to IKZF1/DLX4 expression in 

the experiments and (2) are predicted to have mutual information with the expressed master 

regulator by ARACNe to the regulatory module. 78% of the responding AAGS are within 2° 

of downstream separation from the master regulators IKZF1 and DLX4 based on these 

criteria (Figure 5B, full module listed in Supplementary Table S4).

IKZF1 and DLX4 can be used to predict both immune infiltration and disease severity in an 
independent cohort

As validation of this module, we returned to our original AA array cohort and performed a 

machine-learning analysis. We attempted to classify an validation AA set into control and 

affected samples using only the inferred IKZF1 and DLX4 activity. Using the earlier 

training set from Figure 1, we arrayed the samples into a search space of two dimensions: 

the consensus activity of IKZF1 (x-axis) and the consensus activity of DLX4 (y-axis) (see 

Methods). From the training set, we generated a topographical map of the consensus activity 

space to define ranges of IZKF1 and DLX4 activity associated with control samples, patchy 

AA, and AT/AU samples (Figure 5C, black lines). The region in 5C closest to the origin of 

the plot represents the lowest combined IKZF1 and DLX4 activity; its upper bound (the 

lower black line) is the support vector machine (SVM) margin that maximizes the difference 

between control and all AA patients. The next upper bound (the upper black line) represents 

the SVM margin that maximizes the separation of AT/AU patients from AAP.
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Using these measures of MR activity, we turned to the validation set and tested for the 

predictive power of these parameters in separating patients and controls. We observed a 

strong ability to separate samples into disease and control states, in addition to clinical 

severity (Figure 5C, top, p<1×10−5). A centroid map of each patient subgroup more clearly 

reveals how the transition of patient groups from Normal to AAP and AT/AU is reflected by 

relative IKZF1 and DLX4 activity (Figure 5C, bottom). For comparison, we also included a 

centroid for the AAP non-lesional sample biopsies, which were not included in the training 

set.

Deconvolution applied to independent autoimmune diseases identifies known genes

For comparison, and to provide proof-of-concept for the generalizability of our approach, 

we downloaded publicly available gene expression datasets for atopic dermatitis (AD) 

(Suárez-Fariñas et al., 2011) and psoriasis (Ps) (Yao et al., 2008). We generated gene 

expression signatures for each disease by comparing lesional biopsies to unaffected biopsies, 

similar to our AA analysis (Figure 6A, Supplemental Figure S2, Supplemental Table S3). A 

direct comparison of the genes within the AA, AD, and Ps signatures revealed statistically 

significant evidence that the AAGS is distinct from both AD and Ps (p=0.003 and 

3.93×10−13, respectively). By contrast, comparison of the AD and Ps signatures to each 

other revealed statistically significant evidence for shared molecular signatures and, by 

extension, possible shared molecular pathology (p=0.0173).

These two signatures were applied to our pipeline. Figure 6B reports the top five master 

regulators identified after the analysis, ranked by their total coverage of the appropriate 

disease signatures (Ps or AD). Also provided are the ranks of the master regulators using the 

corresponding deconvolved IGS. The results indicate that the key regulatory hubs associated 

with AA (specifically IKZF1 and DLX4) are unique to AA. Each disease was assigned its 

own unique list of master regulators, but there additionally was overlap of two candidate 

MRs in AD and Ps: SMAD2 and HLTF. SMAD2 and TGFBR1 are transcription factors 

with published evidence of involvement in psoriasis, and our pipeline was able to identify 

them with no a priori evidence, using a basic definition of a Ps gene expression signature 

(Doi, Shibata, Kiyokane, & Otsuki, 2003; Gambichler, Terras, & Skrygan, 2013). These 

results demonstrate the effectiveness of modeling complex genetic behaviors as regulatory 

modules to differentiate mechanisms of pathology.

DISCUSSION

Systemic generation and analysis of gene regulatory networks and gene expression data 

capitalizing on genome-wide profiling has proven promising in the study of complex 

diseases. Integrative projects to interrogate functional interactions have recently been 

leveraged in genome-wide expression signature deconvolution (Bindea et al., 2013; 

Newman et al., 2015) and cross-tissue interactions(MacNeil et al., 2015) in diabetes and 

atherosclerosis (Hecker, Goertsches, Engelmann, Thiesen, & Guthke, 2009; Keller et al., 

2008). These studies have been invaluable in identifying infiltrating gene signatures, which 

provides insight into the types of pathogenic immune infiltrates associated with disease; and 

they have helped identify driver genes from eQTLs and other genomic association tests, 
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similar to the systematic algorithms being developed in cancer and Alzheimer’s disease 

research (Chen et al., 2014; Zhang et al., 2013) by providing significant genome-level 

coverage of regulatory activity and tissue-level gene panels of interacting tissues.

However, particularly in contexts such as AA, little has been done to characterize the 

modular regulation of discrete pathogenic molecular behaviors within a gene expression 

profile, and how they translate to physiological interactions between tissues of the disease. 

Modeling physiological traits as genetic programs controlled by “master regulators” 

provides a uniquely powerful perspective in the study of complex disease. The approach 

canalizes large gene expression signatures into a relatively few number of selected master 

regulators that subsequently become the targets of manipulation via gene therapies or drugs 

and small molecules.

Here, we extend the application of regulatory networks to interrogate the complex molecular 

state of a mixed sample of end organ (scalp skin) and infiltrating (immune infiltrates) tissue 

in AA by comparing regulatory networks of different skin contexts (infiltrated and normal). 

We establish that in addition to their typical use for identifying the key regulatory hubs 

governing molecular phenotype switches, these networks can be used to isolate and 

compartmentalize molecular behaviors that originate from different tissues based on whether 

or not they are accurately represented in an independent context-specific network. This 

allows for more precise identification of tissue-specific molecular programs from a mixed 

sample that contribute to an integrated, interactive physiological behavior such as immune 

infiltration. Using this pipeline, we were able to reconstruct the master regulators mediating 

infiltration from the skin not only in the context of AA, but our analysis of psoriasis and 

atopic dermatitis provides additional candidates for the genetic regulation of immune 

infiltration in skin autoimmune diseases in general, and demonstrates the general 

applicability of the approach.

Aside from the direct implications in Alopecia Areata pathology, this work provides the 

proof-of-principle for two key, generalizable notions: (1) a complex interaction between two 

tissues can be modeled as a quantifiable, molecular gene expression modules; and (2) these 

modules and their regulators can be extracted from expression data, compartmentalized a 

tissue, and co-opted to induce the associated interaction in normal cell types. This was 

evidenced by our ability to recapitulate the AAGS upon ectopic expression of master 

regulators IKZF1 and DLX4, and to subsequently induce enhanced cytotoxicity in non-AA 

cell lines using normal (non-AA) PBMCs solely via the manipulation of IKZF1 and DLX4 

expression within the target end organ itself (no genetic manipulation of the PBMCs).

Specifically, our analysis identified master regulators that are sufficient to induce 

interactions with immune cells when expressed solely in scalp skin. Even in a patient-

matched context with samples from a healthy, AA-unaffected patient, IKZF1 and DLX4 

expression were sufficient to induce aberrant NKG2D-depedent interactions between dermal 

fibroblasts and PBMCs resulting in cytotoxicity. These interactions were not present in 

control transfections and they were repeated in two other (non-patient-matched) cell types, 

indicating that the expression of IKZF1 or DLX4 is sufficient to induce interactions with 

normal immune cells regardless of the specific target tissue or host matching. The 
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identification of IKZF1 and DLX4 would have been impossible without our network-based 

deconvolution, as the significant presence of infiltrating signature in the original AAGS 

would have prevented any accurate identification of candidate MRs. Instead, network-based 

deconvolution identified master regulators that are capable of inducing specific molecular 

interactions in any of several molecular contexts that are completely independent of AA 

itself.

The identification of IKZF1 was unexpected, since IKZF1 is widely studied in the context of 

T cell differentiation (Kleinmann, Geimer Le Lay, Sellars, Kastner, & Chan, 2008). 

However, its identification came solely from using a deconvolved AA signature, and not the 

immune gene signature, using regulatory logic derived from skin. Had we relied on public 

databases, previous literature, or GO annotations to filter our gene expression data, we 

would have disregarded and removed IKZF1 entirely due to extensive annotation as a T cell 

differentiation factor. Instead, by turning to regulatory networks, we were able to identify 

the possibility that local expression of IKZF1 could have a pathogenic relevance 

independent of its established role directly in immune cells.

While IKZF1 is well characterized in the context of immune cells, a role for IKZF1 outside 

of immune cells is not without precedent in the literature. The losses of IKZF1 and DLX4 

loci are also associated with oncogenesis in colorectal, lung, and breast cancers, and low-

grade squamous intraepithelial lesions (Javierre et al., 2011; Sakane et al., 2015; Tomida et 

al., 2007). These studies obtain their genomic information directly from tumor masses, 

indicating that somatic losses of these two loci can contribute to cancer pathophysiology as 

end organ genomic alterations. Our studies into IKZF1 and DLX4 as master regulators 

inducing immune infiltration support these results and raise the possibility that the loss of 

these loci may contribute to immune evasion in cancer. Further, these observations, and the 

identification of IKZF1 and DLX4 as master regulators of immune infiltration recruitment, 

provide support that there is a function for IKZF1 outside of its role as a T cell-specific 

differentiation factor, and raises support for the hypothesis that autoimmunity in AA and 

tumor immune-evasion exist at opposite extremes of normal immune interactions. The loss 

of the master regulators of immune infiltration is associated with cancer, and their 

overexpression is associated with the onset of autoimmune disease in AA.

We have shown that systems biology and network analysis can be used to model the 

molecular mechanisms mediating interactions between two distinct tissues, identify the key 

regulators, and use them to re-create the interactive trait in other contexts. While the output 

for the validation of these master regulators was ultimately induction of cell death, the 

function of these master regulators in the context of autoimmune disease is to induce a 

molecular profile that ultimately signals to and recruits immune infiltrates. Up to this point, 

applications of systems biology have mainly been to identify “breakpoints” in cell-

autonomous molecular behaviors of cancers. The controlled induction of cross-tissue 

interactions, particularly those involving the immune system, invites potentially significant 

avenues for modeling complex genetic traits with regulatory networks that has previously 

not been feasible, and provides a proof-of-concept framework that can be used to actively 

compartmentalize molecular behaviors for study even in complex diseases involving 

interactions between different tissues.
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EXPERIMENTAL METHODS

This section contains a description of the less common or unique methods implemented in 

this study. The remaining methods are detailed in Extended Experimental Methods.

ARACNe

To generate a context-specific transcriptional interaction network for scalp skin, we 

employed the ARACNe algorithm(Margolin, Nemenman, et al., 2006a) on a set on 128 

microarray experiments independent of the analytic cohorts in this study. These experiments 

represent platform-matched (Affymetrix U133 2Plus) data acquired on whole skin samples 

from a mixture of normal whole skin biopsies, AA patient biopsies, microdissected dermal 

papillae, and separated dermis and epidermis samples. These samples collectively provide 

the heterogeneity required for accurate detection of transcriptional dependencies in the scalp 

skin. The experiments were pooled and postprocessed as described above, and a standard 

ARACNe analysis was performed. The ARACNe software suite is available from the 

Califano lab website, http://wiki.c2b2.columbia.edu/califanolab/index.php/Software.

Master Regulator Analysis

Master regulators for a specific gene expression signature were defined as transcription 

factors whose direct ARACNe-predicted targets (regulon) are statistically enriched in the 

gene expression signature. Each TF’s regulon was tested for enrichment of the AAGS using 

Fisher’s Exact Test, FDR=0.05. This analysis allows for the ranking and determination of 

the minimum number of TFs required to specifically cover a gene expression module 

associated with a physiological trait.. http://wiki.c2b2.columbia.edu/califanolab/index.php/

Software/MARINA

Master regulator activity classifiers

The ARACNe-predicted targets of IKZF1 and DLX4 were integrated with the exogenous 

gene expression studies to identify all genes in the AAGS that could be mapped as targets of 

IKZF1 and DLX4. This was done by intersecting the ARACNe regulons of IKZF1 and 

DLX4 with the AAGS. The intersection of these two sets was then screened in the 

expression studies for any genes that responded with at least 25% fold change. This set of 

genes was used to construct a consensus “meta-activity” for the IKZF1 and DLX4 loci. The 

rank-normalized change of each gene across the AA patient cohort was integrated into an 

average as a consensus measure of the relative activity of the parent MR.

These values were subsequently used to define a two-dimensional search space, (X ×Y) 

where X=IKZF1 meta-activity and Y=DLX4 meta-activity, to classify each of the patients in 

the AA training set. The meta-activity vectors were rank transformed such that the minimum 

values were bound to the origin of the search space (0,0), and such that activity measures 

were positive. This transformation has no influence on the results other than projecting the 

search space into a more intuitive grid for display purposes, in which both axes are bound 

between [0,n] where n is positive.
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Classification in this space was done using a modified nonlinear, soft-margin support vector 

machine algorithm. The algorithm is formalized:

The algorithm defines a vector set (A × B), that exists within the search space (X ×Y )such 

that every given pair (a, b) maximizes the likelihood ratio f (a, b). This function is defined 

such that Sj is the next order of disease severity to Si, and QI and QIII are the quadrants I and 

III of the grid created by the hyperplanes (a × R)and (R ×b). Samples in the training set are 

mapped to each grid with known molecular subtypes and the likelihood ratio is computed 

for the segregation of subtypes defined by S. The severity ranking used for S was 

Normal<Mild<Severe. Each coordinate set in (A × B) therefore defines the points to a 

nonlinear plane that maximizes the separation between samples of different molecular 

classes in the IKZF1/DLX4 meta-activity space.

Cytotoxicity assay

PBMC-dependent cytotoxicity was measured using the CyoTox 96 Non-Radioactive 

Cytotoxicity Assay available through Promega. For the processing of samples and solutions, 

we followed manufacturer protocols. The optimization for PBMC:target was done as below, 

but using variable concentrations (1:1, 5:1, 10:1) (Supplemental Figure S3).

Cytotoxicity experiments were set up in 96-well format, with each treatment done in 

triplicate. Transfections were done 36 hours prior to the experiment. The day of the 

experiment, HK and huDP cells were trypsinized and diluted with DMEM into working 

stocks. The target concentration per well was 80k cells in 50ul DMEM, combined with 800k 

PBMCs. The NKG2D inhibitor was the Human NKG2D mAb (clone 149810) from R&D 

Biosystems (Cat. MAB139), used at a final concentration of 20ug/ml. Each transfection was 

allocated in triplicate according to manufacturer instructions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression analysis identifies mixed-tissue gene signatures
(A) Unsupervised hierarchical clustering of a cohort of Alopecia Areata patchy (AAP), 

totalis/universalis (AT/AU), and unaffected controls (Normal) using the Alopecia Areata 

gene signature (AAGS). Blue, underexpression; Red, overexpression. (B) Gene co-similarity 

matrix showing gene clusters. Stronger orange indicates lower dissimilarity in gene 

expression. Clusters over- and under-expressed in Alopecia Areata are indicated. (C) 

Graphical representation of genes in the signature and the statistically enriched functional 

categories associated with them. Blue indicates signaling pathways; yellow, immune/

inflammation pathways; orange, HLA; and red indicates cell death pathways. Pathways at 

p<0.05 FDR corrected were kept for this analysis.
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Figure 2. Identification of IKZF1 and DLX4 as master regulators
An overall flow of the pipeline used to deconvolve regulators of genes expressed in the end 

organ (skin) from those expressed in infiltrating tissue (immune cells). (A) Genes (aqua 

nodes labeled A–F) measured from a complex primary tissue sample are assigned to either 

end-organ (red, AAGS) or infiltrate (blue) based on whether or not they can be mapped to 

the skin network. Only genes mapped to the red node are considered for master regulator 

analysis. Genes mapped to the blue node are pruned away. (B) The resulting pruning of the 

AAGS provides an end-organ-enriched gene expression signature (aqua nodes) that is 

mutually exclusive with an Immune Gene Signature (IGS), p=1.77×10−4, that are 

overexpressed (cluster 1, node sizes proportional to fold change) and suppressed (cluster 2) 

in Alopecia Areata. (C) To deconvolve the scalp skin regulators, we performed master 

regulator (MR) analysis on the AAGS and the IGS, yielding candidate regulators of each 
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signature. True MRs in the skin (R2) will only appear when using the AAGS and not in the 

IGS. Infiltrate regulators (R1) will not be detected using the AAGS. IKZF1 and DLX4 only 

have significant FDR values when using the AAGS, and are insignificant (FDR=1) when 

using the IGS, left panel. This analysis establishes IKZF1 and DLX4 as AAGS (aqua 

squares) master regulators (yellow squares) in the skin, right panel.
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Figure 3. Exongeous expression of IKZF1 and DLX4 induces a context-independent AA-like 
gene expression signature
(A) Two-dimensional hierarchical clustering of gene expression measured in human dermal 

papillae (huDP) and HACAT keratinocytes (HK) transfected with plasmid vectors 

expressing IKZF1, DLX4, or controls expressing RFP and IKZFδ, an isoform lacking DNA 

binding domains. The treatment type and cell type for each experiment are indicated at the 

top of the heatmap. Blue indicates decreased expression and red indicates overexpression. 

(B) Analysis of IKZF1 and DLX4 mRNA expression in transfected cells in quadruplicate, 

represented as average ±SEM, normalized to B-actin (C) Western blot confirming IKZF1 

and DLX4 proteins. GSEA plots measuring the specificity of AA-like response assayed by 

differential expression of the AAGS following (D) IKZF1 or (E) DLX4 overexpression. 

Genes are ranked left to right from most- to least-differentially expressed on the x-axis, 

barcodes represent the positions of IKZF1 and for DLX4 signature genes. The Enrichment 

Score (ES) is shown in the plot, and the normalized Enrichment Score (nES) is displayed at 

the top. The nES is derived from the ES at the “leading edge” of the plot—that is, the first 

maximal ES peak obtained. The p-value is computed for the nES compared against a 

randomized null distribution.
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Figure 4. Exogenous expression of IKZF1 and DLX4 induces increased NKG2D-dependent 
PBMC-associated cytotoxicity in three cultured cell types
The schematic on the left of each row describes the tissues introduced to PBMCs for 

cytotoxicity assays (in triplicate). Colors indicate host sources (matching colors indicate 

host-matched tissues). Middle bar graphs present the cytotoxicity values obtained after 

either 6 hours of incubation (total bar height) or the cytotoxicity observed after 6 hours with 

the addition of human anti-NKG2D monoclonal antibody (grey bar). The NKG2D-

dependent cytotoxicity is the difference between the two (white bar). The right bar graphs 

report the changes in NKG2D-dependent cytotoxicity normalized to the RFP controls. 

IKZF1.2B indicates cells transfected with the IKZF1δ vector, and IKZF1.3B indicates the 

full-length transcript. Y-axis reports cytotoxicity measured as a fraction of maximum 

cytotoxicity (total cell count). All error bars report ±SEM. ** indicate statistically 

significant difference from RFP control at FDR<0.05. (A) Dataseries corresponding to 

WB215J PBMCs and WB215J fibroblasts. (B) WB215J PBMCs against cultured human 

dermal papillae (huDP). (C) WB215J PBMCs against cultured human keratinocytes (HK).
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Figure 5. The fully reconstructed master regulator module predicts both immune infiltration 
and severity
(A) Using the exogenous expression data, it is possible to infer both direct transcriptional 

MR targets (MR → T), as well as targets regulated by TFs that are targets of the MR (MR 

→ TF → T). Any TF (TFB) that is paired with MRs IKZF1 or DLX4 (TFA) and that exhibits 

changes in expression upon overexpression of the TFA is regulated by the TFA. 

Subsequently, any genes (T) in the AAGS that are linked to TFB are secondary targets of 

TFA (TFB responds). Any TFB that does not respond to transfection of TFA is not regulated 

by the TFA, so either TFB regulates TFA (TFB stable, left) or both are co-regulated by a 

third, TFC (TFB stable, right). (B) Using this approach, 78% of AAGS can be mapped to 

IKZF1 or DLX4 within one indirect TFB. Blue nodes represent AAGS genes that respond to 

IKZF1 or DLX4 expression, size of nodes scaled to the fold change experimentally observed 

(only nodes having at least 25% change are shown) (C) Using these targets, we generate 

single numeric scores of IKZF1 and DLX4 transcriptional activity and used them to create 

classifiers for AA severity. AA samples are then imposed over the search space to assess 

accuracy (top chart). The table provides quantitation and statistics for separation of 

presentations across territories in the search space (NC:unaffected, AAP:patchy AA, 

AT/AU: totalis/universalis). Centroid representations can be used to show how populations 
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transition into disease states by moving across the trained boundaries (bottom chart; AAP-N: 

nonlesional, AAP-L: lesional).
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Figure 6. Deconvolved regulatory modules can be generated for Alopecia Areata, psoriasis, and 
atopic dermatitis using the same naïve framework
(A) Disease-associated gene expression signatures for psoriasis (Ps) and atopic dermatitis 

(AD) can be clearly defined by differential expression. Comparison of these signatures to 

the Alopecia Areata (AA) gene signature reveals that the AA signature is statistically 

distinct from both Ps and AD signatures (Fisher’s Exact Test), whereas there is statistical 

evidence for some sharing between the Ps and AD signatures. (B) Translating these 

signatures into regulatory modules reveals entirely different master regulators governing AD 

and Ps compared to AA. Yellow nodes = AA gene signature; blue nodes = AD gene 

signature; aqua nodes = Ps gene signature; orange = AA MR; dark blue = AD MR; cyan = 

Ps MR. The list of top five AD and Ps master regulators are provided, ranked by coverage of 

the corresponding signature. Also provided are the p-values of each MR without 

deconvolution (IGS p-value). * indicates published regulators. † indicates an MR common to 

AD and Ps.
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