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Observation of Bloch oscillations 
in complex PT-symmetric photonic 
lattices
Martin Wimmer1,2, Mohammed-Ali Miri3, Demetrios Christodoulides3 & Ulf Peschel4

Light propagation in periodic environments is often associated with a number of interesting and 
potentially useful processes. If a crystalline optical potential is also linearly ramped, light can 
undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their 
equidistant eigenvalue spectrum. Even though these effects have been extensively explored in 
conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing 
both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-
time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk 
medium, one intuitively expects that light will typically follow the path of highest amplification, in a 
periodic system this behavior can be substantially altered by the underlying band structure. Here, we 
report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. 
We show that these revivals exhibit unusual properties like secondary emissions and resonant 
restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real 
and imaginary components of the band structure by directly monitoring the light evolution during a 
cycle of these oscillations.

Bloch oscillations were first considered within the context of solid state physics by Bloch and Zener1,2. 
While a free electron under the influence of a constant electric field experiences uniform acceleration, the 
situation is completely different when this same charge carrier is placed in a crystal. Interestingly, in this 
latter setting, the transport behavior is directly governed by the band structure of the periodic medium, 
which imposes a cyclic motion to the particle, better known as a Bloch oscillation. Bloch revivals rep-
resent a general phenomenon that can be observed in many and diverse physical settings like ultra-cold 
atoms3, optical waveguide arrays4 and in semiconductor superlattices5. Given the nature of these latter 
platforms, Bloch oscillations were thus far studied in Hermitian or conservative arrangements. Recently, 
however, the prospect of observing this class of oscillations in non-Hermitian PT-symmetric optical 
arrangements has been proposed6,7. As shown in refs 6,7, in this case, Bloch oscillations are expected 
to display unusual features such as non-reciprocal cycles related to a violation of Friedel’s law of Bragg 
scattering and cascade of wavepacket splittings.

In photonics, even under the best conditions, attenuation is omnipresent and hence amplifiers are often 
used to compensate for loss. As recently indicated in a number of studies, this non-Hermitian behavior 
can be appropriately tailored by introducing parity-time (PT) symmetry8 in the system itself. Within the 
framework of optics, this symmetry can be established by judiciously incorporating gain and loss in a 
balanced fashion9. In this respect, the real part of the refractive index distribution must have a symmetric 
profile whereas the imaginary component must be antisymmetric. PT-symmetric optical arrangements 
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are known to exhibit a number of unexpected properties and characteristics including power unfolding9, 
abrupt phase transitions10–12, breaking of left-right symmetry12, simultaneous lasing-absorbing13,14, selec-
tive mode lasing15–17, and unidirectional invisibility18–20.

In a system encompassing amplifying and attenuating regions, one may anticipate that light will fol-
low the direction of gain. Yet, as we will see, Bloch oscillations in the presence of both gain and loss 
provide a counter example refuting this perception. Thus, the question arises, as to which process will 
ultimately dominate the other. Will light still follow the direction of amplification, or will Bloch oscilla-
tions instead force the wavepacket to enter the loss region and hence experience attenuation?

In this Report, we address this intriguing question, by considering the role of the complex band struc-
ture on Bloch oscillations when taking place in non-Hermitian PT-symmetric mesh lattices. We show 
that by controlling the period of Bloch oscillations, one can establish pseudo-Hermitian wavepacket 
propagation that continuously undergoes through successive cycles of amplification and attenuation. 
Along these lines, we observe a resonant restoration of PT symmetry as well as secondary emissions. This 
special case of PT-symmetric Bloch oscillations is then generalized to arbitrary Bloch gradients in locally 
PT-symmetric systems. In this case, the wavepacket trajectories in this mesh lattice can be analyzed in 
order to reconstruct both the real and imaginary parts of the band diagram associated with this system.

Experimental setup and time multiplexing
In what follows, we provide a brief introduction into time multiplexed systems based on coupled fiber 
loops and their relation to mesh lattices. In our experiments, we use two coupled fiber loops of different 
lengths, to emulate a 1+ 1D lattice (see Fig. 1a)12. Erbium doped fiber amplifiers compensate losses inside 
the fiber loops and additionally, acousto-optical modulators are inserted and set to a transmission of 
50%. By increasing or decreasing this transmission ratio, an effective gain or loss is generated. A detailed 
explanation of the experiment is reported in21. Depending on whether pulses travel through the longer 
or shorter loop, they either propagate on the equivalent lattice from “North West” to “South East” or vice 
versa (see Fig. 1b). Thus, their position on the lattice is encoded by the arrival times after m roundtrips22. 
Note that in each roundtrip, a pulse can jump either to an earlier or later arrival time slot, thus decreasing 
or increasing its position n on the equivalent lattice by ±1. In the experiment, we start with a single pulse 
at time =m 0 and at position =n 0. After passing through the 50/50 coupler the pulse splits up into 
two pulses at time =m 1 and at position = −n 1 and =n 1 with half of the intensity. Furthermore, the 
fiber coupler induces a phase shift of π/2 for the case of a crossover pulse.

To mathematically describe this process, pulses passing through the short/long loop and therefore 
arriving earlier/later or traveling to the West/East in the equivalent spatial scheme (see Fig. 1b) are labe-
led as un

m/vn
m, respectively. As dispersive spreading of the pulses is negligible only their amplitudes are of 

interest, while the pulse shape itself is neglected. In this setting, the evolution of an initial distribution 
of pulse amplitudes un

0 and vn
0 can be described by iteratively applying the evolution equations12
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Figure 1.  Experimental implementation of time multiplexing for generating 1+1D mesh lattices. 
(a) Two fiber loops of different lengths are connected by a 50/50 fiber coupler. Acousto-optical modulators 
(AOM) are used for generating an effective gain and loss distribution. The Bloch gradient is created by 
a phase modulator (PM) inside the short loop. Erbium doped fiber amplifiers (EDFA) are used in both 
loops to compensate for any unwanted losses. (b) A roundtrip inside the long (short) loop is equivalent to 
propagating from North West (North East) to South East (South West) on the lattice.
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where Gu and Gv are the gain and loss parameters for pulses inside the short (long) loop which travel on 
the lattice toward the East (West). In addition, a phase modulator is inserted into the shorter loop, which 
allows an arbitrary modulation of the phases of the pulses by inducing a time dependent shift ϕ ( )m .

This technique, which is referred to as time multiplexing22, does not only drastically reduce the num-
ber of components, since each element in the experiment is involved in every single round trip, but it also 
provides an extremely stable measurement platform. Although pulses from a non-temperature-stabilized 
DFB laser diode propagate for up to 1600 km corresponding to 400 roundtrips, they can still interfere 
with each other with high contrast. This provides an additional advantage given that in the two coupled 
fiber loops, only pulses which have traveled for the same time through the longer and shorter loop can 
interfere. Therefore, any low frequency noise is not involved in our measurements since all pulses are 
affected in exactly the same way. In principle, the setup is equivalent to a self-adjusting interferometer.

Derivation of the band structure
To better understand our system, we will first focus our discussion on the equivalent spatial mesh lattice, 
depicted in Fig. 1b. In this arrangement, the Floquet-Bloch mode eigenstates can be described according 
to:
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where θ is the longitudinal propagation constants and Q is the transverse wavenumber, also referred to 
as Bloch momentum. In our system, the eigenmodes ( , )U V t implicitly contain information as to the 
amplitude and phase relation between the longer and shorter loop. The band structure or dispersion 
relation of this system is given by23

θ = ,
( )

Qcos 1
2

cos
3

(derived by inserting Eq. 2 into Eq. 1). Evidently, it resembles a set of coupled two level systems, with an 
upper and a lower band separated by a gap (see Fig. 2a). A specific point inside the band structure can 
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Figure 2.  Experimental observation of Bloch oscillations in a conservative system. (a) The band structure 
of the conservative mesh lattice consists of two bands separated by a band gap. The Bloch gradient ϕ0 along 
the temporal direction increases the Bloch momentum (starting from ≈Q 00 ) of an initial excitation (red 
circle) at each time step by ϕ

2
0 . (b) If only a single lattice side is populated by the initial pulse distribution, 

Bloch oscillations of the entire envelope take place, having a periodicity of π ϕ= /T 4 0 (here ϕ π≈ / )200 . 
(c) In the case of a broad Gaussian initial excitation, the wave packet performs an oscillatory motion, as the 
state is shifted periodically through the Brillouin zone (ϕ π≈ / )320 .
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be excited by launching a broad Gaussian distribution in both loops, and by appropriately tuning the 
phase of the pulses in the shorter loop in order to match the state ( , )U V t.

Hermitian Bloch oscillations
In our platform, applying a constant phase gradient ϕ ( , )m n  either along the temporal (vertical) or the 
spatial (horizontal) direction is similar to a constant electric field applied to a crystal (see also 
Supplementary Note 1). Thus, if a single pulse is injected into the fiber system in presence of a phase 
modulation ϕ ϕ( ) =m m 0, the entire Brillouin zone is excited, thus resulting in a Bloch oscillation of the 
wavepacket (see Fig. 2b). In contrast, spectrally resolved measurements require the use of broad initial 
distributions, which only excite a narrow region within the Brillouin zone. Hence, starting with a 
Gaussian profile, one can approximately select a specific value of the Bloch momentum Q0. In the pres-
ence of a phase gradient, at each time step, the Bloch momentum Q is shifted by a small step, i.e.:

ϕ
= + . ( )Q Q m

2 40
0

The cyclic motion through the Brillouin zone makes the wavepacket undergo Hermitian Bloch oscil-
lations in real space (see Fig. 2c).

Bloch oscillations in globally PT-symmetric lattices
Introducing amplification and attenuation into the system in a balanced way = = −G G Gu v

1 and by 
switching the gain and loss after every roundtrip leads to an equivalent photonic lattice with vertical gain 
and loss channels that are coupled at discrete time steps m (see Fig.  3a). In order to establish full PT 
symmetry, one would also have to apply a periodic phase modulation to the system12. In the absence of 
a periodic phase modulation, however, the system enters the broken PT symmetry regime and as a result, 
a part of the band structure becomes complex, with exceptional points marking the transition between 
the real and complex band regions (see Fig. 3b). As in the Hermitian case, a ladder of eigenvalues cor-
responding to Wannier-Stark states exists (see Supplementary Figs 1 and 2 and Supplementary Note 2).

The idiosyncrasies of this lattice are also reflected in our measurements, where we again start with a 
broad Gaussian distribution in order to probe the spectral features of the band structure. In this regard, 
we find that the wave packet is strongly amplified in the regions of the band structure, where the eigen-
values have a non-vanishing imaginary part. Furthermore, the exceptional points lead to the formation 
of secondary emissions, which emerge each time the wave packet passes through the exceptional point 
(see Fig. 4). At this point, a degeneracy of the band structure occurs, which causes a redistribution of the 

Figure 3.  PT mesh lattice with a broken PT symmetry. (a) By alternating gain and loss in every other 
round trip, a 1+ 1D mesh lattice is established with vertical stripes of gain and loss. Due to the absence of 
a symmetric phase modulation, the PT phase is broken and exceptional points separating the conservative 
band structure from regions with complex eigenvalues appear (b).
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initial excitation between both bands. However, as the group velocity of the two bands has an opposite 
sign, both excitations of the upper and lower band move into opposite directions.

While in general, the existence of complex eigenvalues introduces exponential growth during Bloch 
oscillations, there are specific resonant values of the Bloch gradient6, which result in a pseudo-Hermitian 
motion with a vanishing net increase in power. In this case, a balanced passage along branches of the 
band structure with positive and negative imaginary eigenvalues causes the energy of the wave packet 
to periodically increase and decrease while the average total power remains constant over two Bloch 
oscillations (see Fig. 4). In other words, PT symmetry is restored at these resonant values. This process 
is elucidated in Fig. 4. As predicted in ref. 6 we found the reciprocal values of these resonant Bloch gra-
dients to have an equidistant spacing defined by the amplification value.

Local PT symmetry
Another interesting non-Hermitian platform where Bloch oscillations can be observed and studied is 
that of local PT-symmetric mesh lattices21. Such system can be readily implemented by time multiplexing 
techniques where all pulses inside the long loop are amplified, while at the same time the pulses inside 
the short loop are attenuated (see Fig.  5a)21. Figure  5a depicts the spatial analogue of this lattice that 
happens to be transversely PT-symmetric at every longitudinal step =m m0 (locally). Using the same 
ansatz as in Eq. 2, one can directly find the band structure of this new arrangement, which is given by 
(see also Supplementary Note 3):
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Figure 4.  Experimental and numerical observation of Bloch oscillations in a system with a broken PT 
symmetry. In all cases, the initial distribution is a Gaussian wavepacket occupying the upper band. Due to 
the partially complex band structure, the wavepacket is periodically amplified during Bloch oscillations. 
Note, that each time, the wavepacket passes through an exceptional point, a new branch of Bloch oscillations 
appears (secondary emissions). However, for resonant Bloch gradients (ϕ π≈ / .31 20  in the experiment and 
π/ .31 9 in our simulation), a pseudo-Hermitian propagation is restored, where the total energy stays constant 
over many time steps. Here, the gain/loss coefficient is = .G 1 1.
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where γ = ( )Glog . In this case, the propagation constant θ is complex for all values of the Bloch momen-
tum Q, except at the center and the edges of the Brillouin zone ( =Q 0 and π= ±Q ) (see Fig.  5b). 
Hence, light propagation in this lattice is by nature non-Hermitian and following a naive interpretation 
one would always expect exponential growth.

Still, one may ask the question: Will light follow the direction of gain by always propagating in the 
gain loop or will it perform Bloch oscillations, if a linear phase gradient ϕ0 is applied? Interestingly, the 
band structure still dictates the dynamics and as a result, Bloch oscillations take place in real space in 
the conventional way, thus disregarding the presence of gain and loss channels (see Fig.  5c,d and the 
Supplementary Figure). Because light follows one of the bands and as there are no exceptional points to 
switch between the bands, the field distribution is periodically amplified and attenuated during these 
Bloch oscillations (see Fig. 5e and Supplementary Fig. 3) but the average power stays constant.

Integrating the imaginary part of the dispersion relation (see Fig. 5b) from π= −Q  to π=Q  yields 
a vanishing imaginary component, which explains why after one cycle of Bloch oscillations no overall 
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Figure 5.  Experimental reconstruction of the band structure of a locally PT-symmetric mesh system by 
analyzing Bloch oscillations. (a) To implement a locally PT lattice, only pulses in the long loop are 
amplified, while the pulses in the short loop are attenuated ( = .G 1 1). (b) the resulting band structure is 
complex over the entire Brillouin zone (blue and red correspond to real and imaginary part). (c) Observed 
Bloch oscillations for ϕ π≈ /300 . (d) Estimated position of the wavepacket’s center of mass. In this figure, 
the horizontal axis is mapped onto the Bloch momentum Q by evaluating Eq. 4. (e) The peak power of 
the Gaussian packet depends on the position within the Brillouin zone during Bloch oscillations.  
(f) Reconstructed band structure of this locally PT-symmetric lattice (imaginary part is magnified by a 
factor of 3 for better visibility).
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increase in the power of the wave packet is observed (see Fig. 5e). Thus, similar to common PT-symmetric 
systems, the introduction of a phase potential can again lead to a pseudo-Hermitian propagation.

Based on the previous observations, we can now establish a procedure through which we can exper-
imentally reconstruct the complex band structure. To do so, we monitor at each time step the center of 
mass ( )n m0  (see Fig. 5d) and the intensity ( )I m0  (see Fig. 5e) of the wavepacket by using a Gaussian fit. 
By taking temporal derivatives, the group velocity ( )v mG  and the change in power ( )p m0  can be 
determined:

( ) =
∂
∂

( ) ( )v m
m

n m 6G 0

( ) =
∂
∂

( ). ( )p m
m

I m 70 0

Since the phase potential shifts the Bloch momentum Q by ϕ /20  at every step, after m rounds the 
Bloch momentum becomes equal to ϕ= + / .Q Q m 20 0  For experimental convenience, the initial wave 
packet is injected at the center of the Brillouin zone at =Q 00 . The imaginary part of the band structure 
can be evaluated from the growth/decay rate,

θ ( ) = −
∂
∂

( ) . ( )Q
m

I mIm[ ] 1
2

log[ ] 80

The corresponding real part of the dispersion relation is then determined (up to an unknown con-
stant) by integrating the group velocity

∫θ θ π( ) = ( = − ) + ( ′) ′
( )π′=−

Q Q v Q QRe[ ] Re[ ] d 9Q

Q

G

Thus, by evaluating Eqs. 8 and 9, the entire complex band structure can be reconstructed as shown 
in Fig.  5e. The experimentally obtained reconstruction (see Fig.  5f) is in excellent agreement with the 
theoretically calculated dispersion relation (see Fig. 5b).

Conclusions
In conclusion, we have experimentally demonstrated optical Bloch oscillations in global and local 
PT-symmetric mesh lattices. Our studies indicate that during these oscillations, this class of non-Hermitian 
systems can effectively behave in a pseudo-conservative fashion. In the case of global PT-symmetric sys-
tems, stable wave propagation was observed for a specific set of resonant Bloch gradients. For other values, 
secondary emissions occur during growing Bloch revivals. On the other hand, in locally PT-symmetric 
arrangements, the propagation was found to be always stable due to a cyclic amplification and attenua-
tion process. In addition, we have shown, that Bloch oscillations can be used to reconstruct the whole 
band structure including complex eigenvalues. Given the universality of Bloch oscillations, our results 
may be pertinent to other areas of physics where non-Hermiticity plays a role in a periodic environment.
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