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Functional properties of resting 
state networks in healthy full-term 
newborns
Josepheen De Asis-Cruz1, Marine Bouyssi-Kobar1, Iordanis Evangelou1, Gilbert Vezina2 & 
Catherine Limperopoulos1,2,3

Objective, early, and non-invasive assessment of brain function in high-risk newborns is critical 
to initiate timely interventions and to minimize long-term neurodevelopmental disabilities. 
A prerequisite to identifying deviations from normal, however, is the availability of baseline 
measures of brain function derived from healthy, full-term newborns. Recent advances in functional 
MRI combined with graph theoretic techniques may provide important, currently unavailable, 
quantitative markers of normal neurodevelopment. In the current study, we describe important 
properties of resting state networks in 60 healthy, full-term, unsedated newborns. The neonate 
brain exhibited an efficient and economical small world topology: densely connected nearby regions, 
sparse, but well integrated, distant connections, a small world index greater than 1, and global/local 
efficiency greater than network cost. These networks showed a heavy-tailed degree distribution, 
suggesting the presence of regions that are more richly connected to others (‘hubs’). These hubs, 
identified using degree and betweenness centrality measures, show a more mature hub organization 
than previously reported. Targeted attacks on hubs show that neonate networks are more resilient 
than simulated scale-free networks. Networks fragmented faster and global efficiency decreased 
faster when betweenness, as opposed to degree, hubs were attacked suggesting a more influential 
role of betweenness hub in the neonate network.

Normal brain function relies on the precise execution of complex neural processes that begins in the 
3rd week of gestation and continues into adulthood1. Although the brain is continuously remodeling 
throughout the lifespan, it is most plastic and exceedingly vulnerable during the pre- and perinatal peri-
ods2. During this time, the brain is rapidly changing and undetected insults may likely lead to long-term 
neurodevelopmental dysfunction. The ability to objectively and non-invasively assess brain function at 
these important early stages of neurodevelopment and consequently identify deviations from normal is 
critical.

Blood oxygen level-dependent (BOLD) signals detected by functional magnetic resonance imag-
ing (fMRI) in the resting brain – or resting state functional connectivity MRI (rs-fcMRI) – may offer 
critical insights into brain function. Resting state BOLD signals are spontaneous, spatially-coherent, 
low-frequency (< 0.1 Hz) fluctuations detected in the absence of external stimuli3. While our under-
standing of resting-state network physiology remains incomplete, several important observations suggest 
their assessment may be a potential proxy for direct evaluation of brain function. First, resting state 
patterns – called resting state networks or RSNs – arise from highly correlated activity within anatom-
ical regions that together form meaningful functional neural systems (i.e. visual processing, memory 
and attention, among others)4. Second, intrinsic brain activity correlates with scores on behavioral tests 
measured outside the MRI scanner; for instance, signals from the lateral parietal cortex, a component of 

1Developing Brain Research Laboratory, Children’s National Health System, Washington, D.C., USA, 20010. 
2Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, D.C., USA, 
20010. 3Fetal and Transitional Medicine, Children’s National Health System, Washington, D.C., USA, 20010. 
Correspondence and requests for materials should be addressed to C.L. (email: CLimpero@childrensnational.org)

received: 05 August 2015

accepted: 05 October 2015

Published: 07 December 2015

OPEN

mailto:CLimpero@childrensnational.org


www.nature.com/scientificreports/

2Scientific Reports | 5:17755 | DOI: 10.1038/srep17755

the executive network, varies with performance in an executive function task5. Lastly, functional discon-
nectivity has been implicated in various neuropsychiatric disorders such as depression6, attention deficit 
hyperactivity disorder7, autism spectrum disorder8 and schizophrenia9. Collectively, these data along 
with the non-invasive and non-demanding (i.e. minimal patient compliance required) nature of rs-fcMRI 
makes it a potentially useful clinical tool for evaluating brain function, especially in very young children.

Resting state networks are present and detectable in neonates10–17 . Primary sensorimotor/auditory/
visual networks and putative precursors of higher-order networks such as the default mode network 
(DMN) and dorsal attention system have been reported. Resting state maps derived using conventional 
seed-based correlation3 and spatial independent component analyses18 reveal similar connectivity pat-
terns for term and pre-term neonates scanned at term equivalent age. Differences between these two 
groups, however, became evident when quantitative approaches were used19. Premature infants showed 
reduced correlation magnitudes, most pronounced in higher order neural systems, and reduced com-
plexity of resting state networks. This recent work suggests that combining rs-fcMRI and quantitative 
techniques, it is possible to more precisely evaluate resting state activity and quantify deviations from 
typical brain function.

Graph theory provides a rich, quantitative framework from which to study resting state networks20,21. 
The brain is viewed as a complex network and represented as a graph comprised of nodes (or vertices) 
and edges (or links) – similar to the World Wide Web. Nodes are brain regions of interest (ROIs) and 
edges, in the case of rs-fcMRI, are the functional connections between nodes. Although a number of 
recent studies have described resting state activity in newborns, only three studies16,22,23 have character-
ized newborn RSNs using graph theory. These studies showed that similar to the adult brain24,25, newborn 
functional networks exhibit efficient and resilient small world topology. Small-world implies dense local 
connection between nearby regions (segregation) coupled with the capacity to communicate with distant 
areas (integration)26. Moreover, they reported that important, highly-connected brain areas or ‘hubs’ are 
mostly sensory/motor regions as opposed to association cortices in adults16,22.

These studies provide valuable insights into newborn functional networks. However, two out of the 
three studies also included infants born preterm16,23. To the best of our knowledge, only one study has 
used graph measures to characterize properties of RSNs in full-term (infants strictly ≥ 37 weeks gesta-
tional age, GA), healthy, unsedated newborns. Fransson and colleagues, in their 2011 study, evaluated 
cortical hubs and small world topology in 19 infants22. Normative data based on larger samples would 
provide valuable baseline measures from which to study impaired functional connectivity in high-risk 
infants. The availability of such well-characterized data would allow us to identify small but impor-
tant deviations from typical neurodevelopment early which is essential to initiate timely intervention 
and to minimize long-term developmental impairments. Currently, data derived from larger samples of 
full-term, healthy newborns are not available.

In this study, we use non-invasive rs-fcMRI and graph theoretic techniques to characterize the func-
tional topology of resting state networks in the healthy neonate brain. We describe key network prop-
erties in 60 healthy, full-term neonates (see Methods, Table S1 and Figure S1), namely: small-world 
topology, degree distributions, community structure and network resilience27. To the best of our knowl-
edge, this is the first study to simultaneously examine these network features in a single normative cohort 
that represents that largest sample of healthy, term neonates evaluated using these measures to date.

First, we describe small-world topology in neonate RSNs, quantify ‘small-worldness’ using the 
small-world index or SWI28 and report on cost efficiency or ‘economy’ of these networks29–31. We then 
describe the community structure (i.e. modular organization) of the neonate brain and identify putative 
brain hubs – regions that are more influential in the network compared to others. We also show how 
the neonate brain network responds to targeted insult on hubs – defined using degree and betweenness 
centrality measures – as opposed to random failure of nodes. Lastly, we explore whether removal of 
degree and betweenness hubs differentially affect the brain’s efficiency.

Results
Economical small world properties of neonate functional brain networks.  The topology of 
functional RSNs was examined in 60 healthy, full-term, unsedated newborns (median GA at birth ±  MAD: 
39.64 ±  0.74 weeks; 35 males) during the neonatal period (median age ±  MAD: 12.5 ±  6 days; Table S1). 
To determine whether neonate brains exhibit small world topology, we computed clustering coefficient, 
C, and characteristic path length, L, for each subject and obtained the average, Cneo and Lneo,for the 
group. Clustering coefficient, a measure of network segregation, reflects how well neighbors of a node 
are connected to each other; characteristic path length, a measure of integration, refers to the average 
distance between any two nodes in a graph. Relative to random networks, small world networks have 
high clustering coefficients, Cneo >> Crandom, and comparable path lengths, Lneo ≥ Lrandom

26.
Cneo was significantly greater than Crandom at all evaluated correlation thresholds, R (t-test, pcor <  0.01, 

Bonferroni corrected; Fig. 1A), suggesting that neonate brain networks are more ordered compared to 
random networks. As the correlation threshold R increases and graphs become sparser, the value of 
Cneo, as expected, decreases. Figure 1B shows characteristic path length for the neonate brain, Lneo, and 
corresponding random graphs, Lrandom. At R values less than 0.175, path lengths were not significantly 
different between random networks and functional neonate brain networks (t-test, pcor <  0.01, Bonferroni 
corrected; Fig. 1B). As the threshold increases, more and more nodes have to be traversed to get from one 
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node to the other giving rise to increased path lengths. These findings are consistent with a small-world 
network.

To quantify small-worldness of normative neonate RSNs, we then measured the small world index 
(SWI, σ). This is defined as the ratio between normalized clustering coefficient (γ =  Cneo/Crandom) and nor-
malized path length (λ =  Lneo/Lrandom)28. Small world indices significantly greater than 1 indicate a small 
world topology. At all thresholds tested, SWI was significantly greater than 1 (SWI range: 1.15–2.70; 99% 
confidence interval, CI).

To address the influence of variable number of edges at each R threshold, the Cneo, Lneo, and SWI were 
also computed as a function of average graph degree K (Fig. S2). Measured values were consistent with 
a small-world network and the findings above.

We then determined economy of small world networks in neonates. We computed global and local 
efficiency, Eglob and Eloc, by averaging efficiency values across all subjects (Fig. 2 A and B). We thresholded 
graphs at network costs (Costneo) 0 to 0.6. At these thresholds, Eglob and Eloc exceeded network costs, sug-
gesting cost-efficiency. The maximum value of cost efficiency, Eglob – Costneo, was at cost =  0.22 (Fig. 2C). 
Here cost efficiency was 0.3437 (Eglob – Costneo: 0.5637–0.2200). At this point, edge density was 22% (881 
out of 4005 of all possible edges).

It should also be noted that the efficiency of the neonate brain, both global and local, lay intermediate 
between lattice (regular) and random networks. This is typical of small world networks.

Figure 1.  Small-world properties of neonate resting state networks as a function of correlation threshold 
R. (A) Group-averaged clustering coefficient for neonates, Cneo (black), and random networks, Crandom (red). 
Cneo is significantly greater than Crandom at all thresholds evaluated, p <  0.01, Bonferroni corrected (green 
asterisks). (B) Group-averaged characteristic path length for neonates, Lneo (black), and random networks, 
Lrandom (red). Lnet and Lrandom are not different (blue asterisks) at threshold range 0 <  R <  0.175. Degree, k, and 
degree distribution, p(k), of neonate networks are preserved in random networks. (C) Small world index, 
SWI or σ (light blue). SWI >  1 (99% CI) for all thresholds tested. Also shown are normalized clustering 
coefficient (γ, black) and normalized characteristic path length (λ, red). Here, γ >> 1 and λ ≥ 1. Error bars 
are standard error of the mean (SEM).

Figure 2.  Economy of neonate small world networks. Global (A, black; Eglob) and local (B, black; Eloc) 
efficiency are greater than network cost (Costneo). Neonate RSNs are cost efficient; Eglob – cost is always 
positive (C). Efficiency of neonate networks lie between random (red) and lattice/regular (green) networks.
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Heavy-tailed degree distribution of neonate networks.  Figure 3 shows the degree distributions, 
p(k), of group-averaged connectivity matrices thresholded at different R values: 0.25, 0.35 and 0.45. The 
group-averaged degree distribution is heavy-tailed; on the right tail of the distribution, there are a few 
nodes (hubs) that are more densely connected compared to others. This becomes more evident as the 
networks become sparser. Individual degree distributions reflect this pattern as well (Fig. S3). The aver-
aged degree distribution follows an exponentially truncated power law, p(k) =  kα−1ek/kc, as opposed to 
a power law, p(k) ~ k−α, or an exponential, p(k) =  e−(α)(k). The best model was selected using Akaike’s 
information criterion (AIC; see Table S2 for AIC values).

Degree and betweenness hubs in the neonate brain.  Examining the degree distribution of new-
born RSNs show nodes in the right-tail of the degree distribution that are more richly connected com-
pared to other nodes. These are hubs based on degree centrality; we defined degree centrality-based hubs 
or degree hubs as nodes with degree ≥ mean degree ±  1SD. To identify these hubs, we thresholded the 
averaged functional connectivity matrix at R =  0.3159 when the edge density is ~10%, and thus sparse32. 
Degree hubs included (bilateral unless noted): insula, postcentral gyrus, hippocampus, rolandic opercu-
lum, amygdala, putamen, pallidum, paracentral lobule, and right thalamus (Fig. 4A; see Table S3 for ROI 
abbreviations). We also identified hubs based on betweenness centrality or betweenness hubs (between-
ness ≥ mean betweenness ±  1SD). Betweenness hubs included: bilateral olfactory, left parahippocampal 
gyrus, left fusiform gyrus, left insula, left rolandic operculum, left inferior frontal gyrus (opercular), left 
precuneus, right postcentral gyrus, right middle cingulate gyrus, right supplementary motor area, right 
superior parietal gyrus, right anterior cingulate gyrus, and right inferior orbital gyrus (Fig.  4B). These 
two centrality measures capture different facets of functional connectivity. Table 1 and 2 lists hubs and 
their locations. Figure S4 show all 90 nodes arranged by degree and betweenness values.

Figure 3.  Heavy tailed degree distribution of neonate brains. Right-tailed degree distribution, p(k), 
of group-averaged neonate networks thresholded at R 0.25 (A), 0.35 (B) and 0.45 (C) is shown. This 
pattern becomes more apparent as the threshold increases and the network gets sparser. (A–C), left, 
shows histograms of degree distributions; right panels show log-log plots of cumulative distribution versus 
degree. Best fit for data (+ ) is an exponentially truncated power law (··), compared to power law (––) and 
exponential law (--).
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Modular organization of the neonate brain.  Analysis of community structure of neonate RSNs 
in our sample revealed a highly modular brain (Figs  4 and 5) with modularity Q =  0.6447. A module 
refers to a group of densely interconnected nodes; these nodes share a higher number of edges among 
them than nodes outside their module. Using the Louvain algorithm, we identified four modules in the 
neonate brain. Module 1 (# of ROIs =  26) comprised primarily of primary, association and paralimbic 
structures. This included frontoparietal regions such as the somatosensory and primary motor cortices 
as well as the rest of the somatomotor regions. Middle and posterior cingulate cortices are also Module 

Figure 4.  Degree and betweenness hubs. Axial plane shows hubs based on degree (A) and betweenness 
(B) as big circles with bold black outlines. Broken lines divide the brain into left and right hemispheres; 
colors designate modules. Black lines between nodes indicate inter-module connections; intra-module 
connections have the same color as the nodes they connect. Majority of degree hubs belong to the limbic-
paralimbic-subcortical region. Betweenness hubs mostly belong to Module 1 but are relatively more 
distributed in the brain.

Degree hub x y z

INS-L 22 1 5

INS-R − 23 2 3

PoCG-L 30 16 32

PoCG-R − 26 18 34

HIP-L 16 16 − 5

ROL-R − 33 9 11

HIP-R − 17 17 − 5

AMYG-L 16 5 − 9

AMYG-R − 16 6 − 10

PUT-L 16 3 4

ROL-L 31 9 12

PAL-L 12 6 4

PCL-L 5 20 43

PCL-R − 5 24 42

PUT-R − 17 3 4

PAL-R − 13 7 2

THA-R − 9 16 7

Table 1.   Degree hubs and their location. Coordinates are in the space of the neonate atlas.
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Betweenness hub x y z

OLF-L 6 − 4 − 6

PHG-L 13 12 − 13

FFG-L 21 26 − 14

INS-L 22 1 5

ROL-L 31 9 12

IFGoperc-L 31 − 6 13

PCUN-L 6 40 31

PoCG-R − 26 18 34

MCG-R − 6 11 25

SMA-R − 5 5 39

SPG-R − 14 42 41

ACG-R − 6 − 18 10

ORBinf-R − 24 − 16 − 7

OLF-R − 6 − 4 − 6

Table 2.  Betweenness hubs and their location. Coordinates are in the space of the neonate atlas.

Figure 5.  Modular organization of the neonate brain. The Louvain algorithm was used to identify 
modules. (A) shows the unthresholded, averaged connectivity matrix for 60 neonates and (B) shows 
the nodes arranged by module, and by decreasing degree within each module. (C) shows the four 
functional modules identified in the neonate brain. The network is shown using a Kamada-Kawai layout as 
implemented in the R package igraph; the graph distance between two nodes determines their location in 
the layout. Node sizes reflect the degree, k, of each node. Colors reflect module membership. Classification 
of node in the modules following Mesulam60 is shown in (D).
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1. Module 2 (# of ROIs =  26) comprised paralimbic and association cortices. These included the frontal 
cortices, temporal poles and anterior cingulate. Module 3 (# of ROIs =  18) comprised mostly limbic, 
paralimbic, and subcortical structures. The fourth module (# of ROIs =  20) comprised the occipitotem-
poral cortices; all ROIs in this module are association areas except for the primary visual cortex (calcar-
ine regions). See Table S4 for a list of ROIs per module. The majority of degree hubs belonged to Modules 
3 while most betweenness hubs belonged to Module 1.

Resilience of neonate networks to targeted attacks and random node failure.  Our data 
demonstrated that the neonate brain was equally resilient to random failure of nodes as random and 
scale free networks, but was more resilient to targeted attack of degree or betweenness hubs compared to 
a scale free network (Fig. 6). In the latter, after 20% of nodes were removed, only 13% of nodes remain 
connected. A rapid decline in global efficiency was also observed suggesting that information transfer is 
markedly compromised with removal of hubs in scale-free networks: the remaining network was only 
1.75% as efficient as the complete network. In the neonate brain, the majority of nodes remained in the 
largest connected group – 80% and 74% when degree and betweenness hubs were targeted, respectively – 
after removal of 20% of nodes. Global efficiency declined, but not to the extent as the scale free network, 
retaining between 48.1%–56.7% of the original network’s efficiency.

To further explore the influence of betweenness and degree hubs in the network, we removed indi-
vidual nodes and recalculated global efficiency of the remaining graph after removal. Isolated removal 
of hubs (either degree or betweenness) decreased the global efficiency of the network (Fig. 7, Table 3). 
Elimination of 17 degree and 14 betweenness hubs resulted in an − 0.6024 ±  0.3976% (mean ±  STD) 
and − 1.0750 ±  0.4380% decrease, respectively, in global efficiency. Isolated removal of betweenness hubs 
causes a greater drop in efficiency (t-test, p <  0.01). We performed a similar analysis for equal-sized group 
selecting the top 20% (n =  18) of nodes based on degree and betweenness. Since the 18th degree hub is 
tied among 9 regions (k =  12), we used the averaged global efficiency decrease for these nodes. There was 
significantly greater loss of global efficiency with removal of betweenness hubs (t-test, p <  0.01). These 
findings show that neonate functional brain networks are relatively resilient to targeted node attacks. 
Moreover, neonate brains withstand removal of degree better than betweenness hubs suggesting a more 
central role within the network for the latter.

Figure 6.  Resilience of resting state networks. Response to targeted removal of degree (red) and 
betweenness (green) hubs and random removal of nodes (black) are shown for neonate and comparable 
random and scale-free networks. The effects of node removal to the largest connected cluster (A) and 
global efficiency (B) of the network are shown. The neonate brain is more resilient to targeted attack of 
hubs compared to a scale-free network. Attack on betweenness hubs in the neonate brain decreases global 
efficiency and the size of the largest cluster faster than attack on degree hubs.
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Discussion
Using fMRI and graph theoretic analyses techniques, we described important features of resting state 
functional networks in a large sample of healthy, full-term neonates. The following findings were reported, 
for the first time, in this normative cohort. First, full-term, healthy neonate RSNs met ‘small-worldness’ 
criteria defined by the small-world index. Related to this, we showed that neonate RSNs are economi-
cal: network efficiency is achieved at low cost. Second, these functional networks showed a right-tailed 
degree distribution, suggesting the presence of highly-connected hubs. Third, we described a slightly 
more mature pattern of hubs than previously reported. Lastly, we demonstrated that targeted attacks on 
betweenness hubs, as opposed to degree hubs, resulted in a faster decline in global efficiency and more 
rapid degeneration of the network.

Neonate brain functional networks in our cohort demonstrated high clustering coefficient (γ  >> 1) 
and average path lengths of ~1 (λ  ≥  1) consistent with a small world topology. Values of γ  and λ  were 
comparable to those obtained in neonate structural and functional connectomes reported in previous 
studies22–25. We also quantified small-world property using the small world index (σ =  γ/ λ); here, σ >  1 
suggesting an optimal balance between functional brain integration and segregation that is critical for 
efficient transfer of local and global information. The index we obtained was consistent with previous 
reports using DTI in neonates25,33 and in rs-fcMRI studies in adults25. These findings are also consistent 
with SWI measured in younger preterm and full-term infants (35–42 weeks gestational age)16. The ability 
to quantify the small world index in healthy, term neonates provides a quantitative baseline from which 
to compare network efficiency in high-risk neonatal populations.

Noteworthy, the neonate brain network’s efficiency does not come at the expense of high cost. At all 
thresholds evaluated, the functional network was found to be cost efficient, where global and local effi-
ciency were greater than network cost. First reported in healthy adults29, here we show for the first time 
that the neonate small world network is economical as well. We reported maximal cost efficiency at edge 
density of 22%; this is similar to Achard and Bullmore’s report of 21%. They posited that brain networks 
arose from evolutionary constraints that optimized parallel information processing. If cost-efficiency 
is an evolutionary adaptation, then it should emerge at the appropriate time of an organism’s life34. 
Throughout gestation and during the first years of life synapses are actively forming and brain volume 
is growing exponentially1. As such, there is likely a compelling need for economy and proper allocation 
of metabolic resources. Hence, it is not surprising that brain economy is observed in the early postnatal 
period.

Our neonate functional brain networks showed a right-tailed degree distribution best modeled by 
an exponentially truncated power law function, unlike a scale-free network, which follows a power law 
distribution. This is consistent with previous rs-fcMRI studies in adults that used a similar spatial scale 
of 90 nodes24,35 and a diffusion temporal imaging or DTI study in neonates using ~500 nodes36. Further 
evidence that neonate RSNs is not scale-free is its better response to targeted removal of nodes. The 
neonate brain remained more efficient and less fragmented compared to a simulated scale-free network 
at corresponding removal thresholds. Moreover, as previously pointed out by Achard et al.24, given that 
scale-free networks follow a ‘rich get richer’ or ‘preferential attachment’ growth pattern37,38, we would 
expect that brain hubs that exist in early infancy would persist until adulthood.

Figure 7.  Isolated removal of betweenness and degree hubs. Isolated removal of betweenness hubs cause 
greater decreases in global efficiency compared to degree hubs (p <  0.01). (A) shows comparison of hubs 
(mean ±  1SD) and (B) show the top 20% of nodes (n =  18 for both groups).
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Brain hubs, however, are not static throughout neurodevelopment39. Hub configuration changes, grad-
ually transitioning to an adult-like pattern. Previous studies showed that neonatal hubs are mostly pri-
mary sensory, motor and limbic regions while heteromodal association areas dominate in adults16,22,39,40. 
Regions we identified as hubs using degree and betweenness centrality measures, and thus central both 
within and outside their own modules, included the right somatosensory cortex (posterior central gyrus), 
the left insula, and the left rolandic operculum.

The pattern of our high-degree centrality hubs somewhat varied from what has been previously 
observed in neonates. We identified unimodal areas such as the somatosensory cortices, similar to previ-
ous reports22. However, the majority of functional degree hubs were in the subcortical-limbic-paralimbic 
areas (Table 1 and 2). These regions, while not previously reported as degree hubs in neonates, have been 
consistently reported in DTI studies in adults. DTI studies in adults characterizing weighted networks 
identified densely connected structures in the subcortical areas-bilateral putamen, bilateral hippocampus 
and left thalamus-as high strength nodes (akin to hubs in weighted networks)33. A recent structural study 
in neonates also identified the hippocampus and insula, as well as association areas such as the paracen-
tral lobules, as hubs, which is consistent with our findings in functional networks36. These data suggest a 
structural foundation (i.e. axonal connections) for our rs-fcMRI findings in neonates.

The hubs we identified based on betweenness centrality are in line with previous work in neonates 
using rs-fcMRI. Similar to the findings of Fransson et al.22, we also identified SMA, left insula, and right 
somatosensory cortex. Moreover, Gao et al.16 also reported the left insula, right inferior frontal (orbital), 
and left fusiform among the top nodes (top 20 nodes) in neonates. Interestingly, the hubs we identified 

Brain regions Δ Eglob (%) Brain regions Δ Eglob (%) Brain regions Δ Eglob (%)

1 PHG-L − 2.00 31 SPG-L − 0.37 61 ORBsupb-R 0.03

2 OLF-L − 1.73 32 AMYG-L − 0.35 62 SFGdor-L 0.06

3 INS-L − 1.53 33 HES-R − 0.33 63 CUN-L 0.10

4 FFG-L − 1.39 34 SMA-L − 0.32 64 ORBsupb-L 0.17

5 ROL-L − 1.17 35 PreCG-L − 0.31 65 IFGoperc-R 0.17

6 PoCG-R − 1.11 36 SOG-R − 0.30 66 FFG-R 0.17

7 SPG-R − 0.97 37 HIP-R − 0.30 67 CAL-L 0.21

8 INS-R − 0.93 38 PUT-L − 0.30 68 MTG-R 0.22

9 SMA-R − 0.84 39 PreCG-R − 0.29 69 MOG-R 0.22

10 IFGoperc-L − 0.84 40 SMG-R − 0.28 70 MOG-L 0.23

11 MCG-R − 0.81 41 PHG-R − 0.26 71 LING-R 0.25

12 PoCG-L − 0.80 42 SMG-L − 0.24 72 MTG-L 0.25

13 ROL-R − 0.78 43 PAL-L − 0.23 73 MFG-L 0.28

14 OLF-R − 0.75 44 LING-L − 0.22 74 IOG-L 0.28

15 ORBinf-R − 0.75 45 SOG-L − 0.19 75 CAL-R 0.29

16 STG-R − 0.74 46 SFGdor-R − 0.17 76 ANG-R 0.30

17 STG-L − 0.73 47 SFGmed-L − 0.15 77 IOG-R 0.33

18 THA-R − 0.63 48 THA-L − 0.14 78 ORBmid-L 0.35

19 PCUN-L − 0.59 49 PUT-R − 0.14 79 ORBmid-R 0.36

20 ACG-R − 0.57 50 PAL-R − 0.14 80 IFGtriang-R 0.39

21 PCL-L − 0.55 51 CAU-R − 0.12 81 TPOsup-R 0.39

22 TPOsup-L − 0.51 52 MCG-L − 0.11 82 ITG-L 0.43

23 IPL-R − 0.49 53 SFGmed-R − 0.07 83 ITG-R 0.50

24 HES-L − 0.48 54 IFGtriang-L − 0.06 84 PCG-L 0.50

25 PCL-R − 0.46 55 IPL-L − 0.03 85 REC-L 0.53

26 HIP-L − 0.43 56 CAU-L − 0.01 86 REC-R 0.53

27 ACG-L − 0.43 57 MFG-R 0.00 87 PCG-R 0.59

28 ORBinf-L − 0.42 58 ORBmed-R 0.01 88 TPOmid-L 0.68

29 PCUN-R − 0.40 59 CUN-R 0.01 89 ANG-L 0.72

30 AMYG-R − 0.39 60 ORBmed-L 0.03 90 TPOmid-R 0.88

Table 3.  Change in global efficiency after isolated removal of nodes. Nodes are arranged from nodes that 
caused the greatest reduction in global efficiency.
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corresponded better to hubs identified in their 1 year-old cohort. Similarities included bilateral insula, 
right SMA, bilateral rolandic operculum, left fusiform, bilateral olfactory and bilateral inferior frontal 
orbital cortices. Gestational age at scan likely contributed to some of the differences in hubs during the 
neonate period and better concordance with the 1 year old group. We scanned term neonates (GA at 
birth, range: 37.57–41.86 weeks; GA at scan: 41.50 weeks) whereas previous studies16,22 included younger 
neonates (Gao et al., GA at birth, range: 35–42 weeks; Fransson et al., GA at scan: 39 ±   2 weeks GA). In 
the case of late pre-term neonates, early exposure to the environment may have led to further changes 
in hub organization, especially given that this is a period of rapid neural change and reorganization. 
Additional betweenness hubs we identified have also been consistently reported in adults (using varying 
centrality measures to identify hubs): left precuneus, right superior parietal gyrus, fusiform gyrus, right 
middle cingulate cortex, parahippocampal gyrus and right anterior cingulate cortex24,35,40,41. Our findings 
suggest that hub pattern in neonates, while not fully mature – are transitioning to an adult configuration.

Our results also demonstrated that the majority of the high-degree hubs in the neonate brain are 
localized in the subcortical-limbic-paralimbic region. High-betweenness hubs are mostly in the sensori-
motor regions. Our analyses of community structure of neonate networks showed that these regions tend 
to organize themselves into modules. Modules are nodes that share dense connections with nodes within 
their group and sparse connections outside their group. We identified four functionally meaningful mod-
ules consistent with the findings of van den Heuvel et al. 23. This resembles community structure in adults 
where four to five distinct modules are typically revealed. We observed somatosensory/motor, occipital, 
fronto-temporal, and limbic-paralimbic-subcortical subsystems. In adults, default mode network such 
as anterior cingulate, posterior cingulate, precuneus, and temporal cortex are reported to be organized 
together. We did not observe this in our cohort, suggesting that the while regions implicated in the DMN 
are beginning to richly connect with other areas (as revealed by their high betweenness values in the hub 
analyses), the full DMN circuit is still not fully mature.

The response of neonate small world networks to targeted attacks on hubs and random node fail-
ure were consistent with previous studies in adults and infants16,24. Qualitative comparison to adults 
shows that neonate network disintegrates at a fairly similar rate as adults. Targeted removal of ~45% of 
degree-hubs and ~35% of betweenness-hubs reduced the largest connected component by 50%; whereas 
removal of ~40 of nodes caused the network to disintegrate by as much in mature brains24. A decrease 
in global efficiency with targeted node removal was likewise consistent with previous reports42. Of note, 
while the largest connected cluster is noticeably reduced, the effect on global efficiency curves for targeted 
attacks were slightly less pronounced. Moreover, while network size is decreasing, the global efficiency 
of the network is somewhat preserved. Conversely, the separation of largest connected cluster plots for 
betweenness and degree, though, is greater than what is observed in adults. Taken together, these data 
suggests that hubs identified based on betweenness centrality measures are possibly more influential in 
the neonate network compared to high degree hubs. The high-degree hubs tended to connect nodes 
within the same module while the betweenness hubs connected regions that are farther apart. When 
betweenness hubs are removed, especially in the neonate brain where not all long range connections 
are fully developed, the brain would be expected to disintegrate faster with removal of the few nodes 
that traverse modules. In adults, the network can better compensate for removal of betweenness hubs 
as long range connections are fully developed. This also likely explains why the loss in global efficiency 
as a result of isolated removal of hubs is greater for the top 20% of betweenness hubs compared to the 
same number of degree hubs.

This paper attempted to comprehensively describe functional network properties of normal neonate 
brains relying on BOLD signals. As such, the study shares the same general limitations as other studies 
based on BOLD functional connectivity. Resting state functional networks reflect temporal coherence 
between regional signals rather than physical links (i.e. white matter). Studies in adults, however, demon-
strated that functional connectivity is constrained by anatomical connectivity43. Our study also showed 
very good consistency with results of previous structural DTI studies, suggesting that rs-fcMRI is a useful 
technique to map network topology. Nonetheless, ongoing empirical studies that intricately examine 
the interaction between structural and functional connectivity within this critical period of rapid brain 
growth and development are needed. In this study, observations were made using a coarse brain par-
cellation (~90 nodes). Other studies utilized finer spatial scales such as a voxel-based approach. There 
is no optimal resolution but the efficient small world topology observed in our study is consistent with 
neonate studies done at different scales.

Here, we described key features of resting state networks in newborns. However, our study limitations 
deserve mention. First, we were not able to evaluate potential sources of individual differences (i.e. gen-
der, socio-economic status, and mode of delivery) in the measured graph metrics. Gender differences in 
small-world properties, specifically, have been reported in adults44; whether it is evident in newborns is 
an open question. We hope that our current findings provide a starting point for other studies that exam-
ine the relationship between individual factors and network measures. Second, we described representa-
tive measures for the properties we described. For instance, we used degree and betweenness centrality to 
identify hubs. It would also be informative to identify critical brain regions based on other metrics, such 
as eigenvector centrality45, closeness centrality21, leverage centrality45, and participation coefficient46. This 
is especially important given recent work that suggests that hubs identified using degree-centrality may 
be confounded by community size47. A comparison that includes these other measures, while outside the 
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scope of the current paper, would most certainly be beneficial to our understanding of critical regions 
in the newborn brains. We hope that our findings motivate future research in neonates that exhaustively 
examines each of these properties.

In summary, we reported important features of resting state functional networks in a large sample of 
unsedated healthy, full-term neonates. We demonstrated that neonate resting state functional networks 
are economical, resilient, and efficient. These networks exhibited small world topology and we quanti-
fied this property, for the first time in this neurodevelopmental period in healthy, term neonates, using 
the small world index. Likewise, we demonstrated the cost-efficiency (‘economy’) of the brain observed 
in this period. The neonate network organizes itself into functionally meaningful modules. Influential 
hubs were mostly localized in the sensorimotor and the limbic-paralimbic-subcortical modules. While 
primary sensory regions were critical hubs in the neonate brain, paralimbic structures (e.g. insula and 
middle cingulate cortex) and association areas (i.e. precuneus) were already beginning to assume their 
adult roles as hubs. Moreover, we showed consistency of functional hubs with structural brain hubs. 
Finally, through random and targeted attacks of these hubs, we showed that the neonate brain is resilient 
and that betweenness hubs may be more critical than degree hubs at this stage.

Materials and Methods
Participants.  Seventy two full-term, healthy neonates were recruited from the Children’s National 
Medical Center as controls in an ongoing prospective study examining brain development in fetuses 
and infants with congenital heart disease. Sixty neonates (n =  60; median age ±  MAD: 12.5 ±  6 days; 35 
males) were included in the final analyses; 12 failed to meet motion criteria (described below) and were 
excluded. All brain MRI studies were reviewed by an experienced pediatric neuroradiologist (GV) and 
were reported to have structurally normal brains. Table S1 lists subjects’ demographic data. Refer to Table 
S5 for complete list of exclusion criteria for this study. Parental informed consent was obtained from all 
participants prior to the study. This study was approved by the Institutional Review Board (IRB) of the 
Children’s National Health System and the IRB-approved protocol was strictly followed. All experiments 
were performed in accordance with the regulations and guidelines of the Children’s National Health 
System IRB.

Data acquisition.  Images were collected on a 3T scanner (Discovery MR750, GE Healthcare, 
Milwaukee, WI) utilizing an 8 channel infant head coil. T2-weighted fast spin echo MRI was acquired 
using the following parameters: TR, 2500 ms; TE, 64.49 ms; and voxel size, 0.625 ×  1 x 0.625 mm. The 
acquisition parameters for the gradient-echo planar images (functional images) were: TR, 2000 ms; TE, 
35 ms; voxel size, 3.125 ×  3.125 ×  3 mm ; flip angle, 60˚; field of view, 100 mm; and matrix size: 64 ×  64. 
A total of 200 volumes were collected for approximately seven minutes. To achieve whole brain coverage, 
around 34 slices (range: 31–36) were obtained per subject.

Infants were scanned while sleeping; none of the neonates were sedated. The infants were fed, swad-
dled in a warm blanket and immobilized using an infant vacuum pillow. Ear protection for resulting MRI 
noise was provided using silicone ear plugs and adhesive ear muffs. Physiologic state of subjects (heart 
rate and oxygen saturation) was monitored by a nurse for the duration of the study.

Preprocessing of functional images.  Images were preprocessed using the AFNI software pack-
age48 unless otherwise noted. After exclusion of the first four echo-planar images to allow for signal 
stabilization and removal of large spikes in the data49, slice-dependent temporal offsets and image inho-
mogeneities (using ANTS N4 tool50) were corrected. Functional volumes were rigidly registered to a 
base EPI volume, normalized to a global mode of 100051, aligned to the T2-weighted structural image, 
normalized – along with the structural image – to a neonate anatomical template52, and smoothed 
(full-width-at-half-maximum =  4 mm).

To minimize the influence of extraneous signals on the spontaneous BOLD fluctuations, nuisance sig-
nals from white matter and ventricles, along with motion parameters and their derivatives were regressed 
out of the voxel-wise time series.

To reduce the possible effects of spurious head motion on the BOLD signal, volumes with high 
motion – those with frame-wise displacement >0.3 mm – were excluded (‘censored’ or ‘scrubbed’)49,53. 
Volumes with a high fraction of BOLD signal outliers (greater than 10% voxels; implemented using 
AFNI’s 3dToutcount) were also removed. Subjects who failed to meet these criteria were removed from 
the analyses. The time series were then band-pass filtered selecting signals in the range 0.01 <  f <  0.1. 
Censoring, nuisance regression and band-pass filtering were simultaneously performed. Residual time 
series for all voxels within the 90 cortical and subcortical regions of interest (ROIs) were averaged to rep-
resent the BOLD signal for that particular region. These ROIs are based on the Automated Anatomical 
Labeling (AAL)54 parcellation and mapped to neonates and infants by Shi et al.52.

The average number of volumes per subjects was 173 ±  15 frames (range: 148–196) corresponding 
to ~5.8 minutes of data. There were, on average, 23 ±  15 volumes (~11.73% of collected data) of data 
removed.



www.nature.com/scientificreports/

1 2Scientific Reports | 5:17755 | DOI: 10.1038/srep17755

Graph analysis.  See Figure S5 for summary of graph analysis.

Graph formation.  Each subject’s graph, Gneo, was composed of 90 vertices or nodes derived from the 90 
ROIs. The correlation between all pairs of nodes (edges or links) were computed giving rise to a 90 ×  90 
resting state functional connectivity matrix, Mneo, for each subject. Mneo was thresholded and then bina-
rized such that all cells that met the threshold were set to 1 and the rest to 0. For each subject, this 
yielded an undirected binary graph, Gneo, per threshold. For analyzing small-world properties, we used 
correlation (R) and degree (K) threshold values. Correlation, R, values ranged from 0 to 0.45 (intervals 
of 0.025). The choice of threshold affects computed graph metrics55. It is thus useful to evaluate brain 
networks at different correlation values. As the threshold R is increased, connections between nodes are 
reduced or the graphs become increasingly sparse. The graph eventually fragments: nodes disconnect 
from the rest of the graph. We empirically set the upper limit of R values to 0.45 such that there will 
be one largest connected component for each individual graph, rather than multiple clusters. At 0.45, 
individual subjects’ Mneo remained at least 90% connected25. The upper limit of evaluated thresholds was 
also constrained by the average degree (Kave, average number of connections nodes have) of the group 
averaged connectivity matrix. The group-averaged matrix was obtained by averaging individual correla-
tion matrices (60 ×  Mneo), thresholding the resulting 90 ×  90 average graph, and binarizing the network 
to yield Gave. At Kave <  log(number of nodes) ~4.5, estimated small world properties become unreliable24. 
At R =  0.45, Kave for the group-averaged graph is 4.5. At a particular threshold, the number of edges per 
graph for each subject will not be consistent. To determine the influence of variable number of edges on 
our results, we also evaluated subjects’ graphs at different degree (K) thresholds. We evaluated networks 
at the range 6 <  K <  42. Beginning K =  12, the largest connected cluster is always at least 90% for each 
subject.

Each subject will have 19 R and 13 K thresholded graphs. Small-world properties are typically evalu-
ated relative to a random network. Here, we generated 100 random networks for each subject network, 
each one preserving the degree distribution of the original network. Thus, each subject will have 101 
networks per threshold.

To determine economy of neonate networks, we evaluated the relationship between network effi-
ciency and cost. Thus, in this analyses, we thresholded individual networks based on their cost (Costneo). 
Network cost is the ratio of actual edges in the network to the number of possible edges. We evalu-
ated networks at costs in the range of 0.02 to 0.60 (intervals of 0.04)29. We compared neonate network 
efficiency to efficiency of random and regular (or lattice) networks. For this analysis, we generated 20 
random and 20 lattice networks for each subject at each cost threshold such that each subject will have 
41 networks per threshold.

Small-world efficiency and economy analyses.  Graph metrics were computed using the publicly available 
Brain Connectivity Toolbox found here: https://sites.google.com/site/bctnet/21. The following topological 
properties of neonate resting state functional brain networks were assessed: clustering coefficient 
(C), path length (L), small world index (SWI), global efficiency (Eglob) and local efficiency (Eloc). These 
measures were computed for each subject and then averaged.

1.	 Clustering coefficient, C, describes the tendency of neighbors of a node to cluster together. Small 
world networks have high clustering coefficient relative to a random graph, Cneo >> Crandom, and 
normalized clustering coefficient, γ >> 1, where γ =  Cneo/Crandom.

2.	 Characteristic path length, L, is the average shortest distance between any two nodes in a graph. 
Normalized path length, λ , is the ratio between a subject’s average path length, Lneo, and that of a 
random network, Lrandom. In small world networks, path length Lneo ≥  Lrandom. Both C and L were 
computed from the largest connected component of the graph similar to van den Heuvel (18).

3.	 Small world index, SWI (σ), is a scalar value that quantifies the ‘small-world-ness’ of a network28; 
σ  >  1, where σ  =  γ/λ , indicates a small world network.

4.	 Global efficiency, Eglob, reflects how well information is transferred in a network; it is inversely 
related to path length (1/L)56. Global efficiency of small world networks is intermediate that of 
random and regular networks (EglobR > Eglob > EglobL). Cost efficiency is the difference between glob-
al efficiency and network cost, Eglob–Costneo; this value is positive in an economical network29,57.

5.	 Local efficiency, Eloc, is related to clustering coefficient56. Eloc measures how well neighbors of a 
node communicate with each other after the node is removed. Small world network local efficien-
cy lies between random and lattice networks, ElocR > Eloc > ElocL.

Hub and modularity analyses.  We evaluated the degree distribution, p(k), of individual and 
group-averaged functional networks. p(k) refers to the probability of a node i to have degree k. Real-world 
complex networks typically show a heavy-tailed degree distribution with hubs, or influential nodes, occu-
pying the right side of the distribution. The best fit for the distribution was selected using Akaike’s 
information criterion implemented using the R package brainwaver here: http://cran.r-project.org/web/
packages/brainwaver/index.html24. We identified hubs in the group-averaged networks, Gave. We used 
two centrality measures to define hubs: degree and betweenness. We defined degree hubs as nodes with 

https://sites.google.com/site/bctnet/
http://cran.r-project.org/web/packages/brainwaver/index.html
http://cran.r-project.org/web/packages/brainwaver/index.html
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degree ≥  mean degree ±  1SD. Betweenness refers to the number of shortest paths that pass through a 
node. Nodes with betweenness values ≥  mean betweenness ±  1SD were identified as betweenness hubs. 
Results were shown for the Gave thresholded at R =  0.3159; at this threshold the group averaged connec-
tomes is sparse (edge density =  10%) and fully connected. To visualize hubs in space, we identified the 
centers of mass of the 90 ROIs using AFNI’s 3dCM and plotted the x-y coordinates of the nodes (axial 
view).

To assess the modular organization of Gave, we used the Louvain method58 for community detection. 
The algorithm was iterated 10,000 times and fine-tuned thereafter. Results are shown at the same thresh-
old as above but module partitions were fairly consistent across thresholds 0.15 ≤  R ≤  0.35.

Resilience analyses.  To determine resilience of neonate brain networks, we compared its response to 
random and targeted node attacks to comparable random and scale-free networks. For random failure of 
nodes, a node was randomly removed and the largest connected component24,59 and global efficiency16,42 
were recalculated. For targeted attacks, nodes were removed one by one starting from the node with the 
highest degree or betweenness.

We also computed global efficiency after isolated removal of nodes and compared the impact of 
removal of degree versus betweenness hubs. One node and all its connections were removed and then 
global efficiency is recalculated for the remaining graph.
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