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Abstract
AIM: To investigate whether dermal lymphatic function 
and architecture are systemically altered in dextran 
sulfate sodium (DSS)-induced acute colitis.

METHODS: Balb/c mice were administered 4% 
DSS in lieu of drinking water ad libitum  for 7 d and 
monitored to assess disease activity including body 
weight, diarrhea severity, and fecal bleeding. Control 
mice received standard drinking water with no DSS. 
Changes in mesenteric lymphatics were assessed 
following oral administration of a fluorescently-labelled 
fatty acid analogue, while dermal lymphatic function 
and architecture was longitudinally characterized 
using dynamic near-infrared fluorescence (NIRF) 
imaging following intradermal injection of indocyanine 
green (ICG) at the base of the tail or to the dorsal 
aspect of the left paw prior to, 4, and 7 d after DSS 
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administration. We also measured dye clearance 
rate after injection of Alexa680-bovine serum al-
bumin (BSA). NIRF imaging data was analyzed to 
reveal lymphatic contractile activity after selecting 
fixed regions of interest (ROIs) of the same size in 
fluorescent lymphatic vessels on fluorescence images. 
The averaged fluorescence intensity within the ROI of 
each fluorescence image was plotted as a function of 
imaging time and the lymphatic contraction frequency 
was computed by assessing the number of fluorescent 
pulses arriving at a ROI.  

RESULTS: Mice treated with DSS developed acute 
inflammation with clinical symptoms of loss of body 
weight, loose feces/watery diarrhea, and fecal blood, 
all of which were aggravated as disease progressed to 
7 d. Histological examination of colons of DSS-treated 
mice confirmed acute inflammation, characterized by 
segmental to complete loss of colonic mucosa with 
an associated chronic inflammatory cell infiltrate that 
extended into the deeper layers of the wall of the 
colon, compared to control mice. In situ  intravital 
imaging revealed that mice with acute colitis showed 
significantly fewer fluorescent mesenteric lymphatic 
vessels, indicating impaired uptake of a lipid tracer 
within mesenteric lymphatics. Our in vivo  NIRF imaging 
data demonstrated dilated dermal lymphatic vessels, 
which were confirmed by immunohistochemical 
staining of lymphatic vessels, and significantly reduced 
lymphatic contractile function in the skin of mice 
with DSS-induced acute colitis. Quantification of the 
fluorescent intensity remaining in the depot as a 
function of time showed that there was significantly 
higher Alexa680-BSA fluorescence in mice with DSS-
induced acute colitis compared to pre-treatment with 
DSS, indicative of impaired lymphatic drainage.

CONCLUSION: The lymphatics are locally and sys-
temically altered in acute colitis, and functional NIRF 
imaging is useful for noninvasively monitoring systemic 
lymphatic changes during inflammation.

Key words: Dextran sulfate sodium; Colitis; Lymphatic 
system; Inflammation; Near-infrared fluorescence 
imaging

© The Author(s) 2015. Published by Baishideng Publishing 
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Core tip: Inflammatory bowel disease (IBD) is a 
systemic disease, as it is often associated with extra-
intestinal manifestations, complications, and other 
autoimmune disorders. However, it is unknown whether 
dermal lymphatic function changes systemically in 
response to IBD. In this study, we employed near-
infrared fluorescence imaging to characterize dermal 
lymphatic function and architecture in mice with 
dextran sulfate sodium (DSS)-induced acute colitis. 
Our results demonstrated impaired lymphatic function 
in mesenteric lymphatics accompanied by dilated 
lymphatic vessels and reduced lymphatic contractility 

in the skin of mice with DSS-induced acute colitis, 
indicating that DSS-induced acute colitis results in 
systemic lymphatic dysfunction.
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INTRODUCTION
Inflammatory bowel disease (IBD), such as ulcera
tive colitis (UC) and Crohn’s disease (CD), involves 
progressive and destructive inflammation of the 
small and large intestines. Recent evidence suggests 
that IBD pathogenesis may result from an abnormal 
immune response to normal gut microbial antigens 
within the intestinal flora of geneticallysusceptible 
individuals[1]. However, the precise mechanisms of 
immune and genetic involvement in IBD remain poorly 
understood. 

IBD is a systemic disease, as it is often associated 
with extraintestinal manifestations (EIMs), complications, 
and other autoimmune disorders including psoriasis and 
rheumatoid arthritis[2]. Cutaneous complications, such as 
erythema nodosum and pyoderma gangrenosum, are 
relatively common manifestations of IBD[3,4]. Although 
dependent on different mechanisms, both IBD and 
its extraintestinal complications are characterized by 
an influx of destructive inflammatory cells with the 
subsequent secretion of pro-inflammatory cytokines and 
mediators, which may affect lymphatic function, both 
locally and systemically. A previous study demonstrated 
increased lymphatic vessel diameters, reduced number 
of spontaneouslypumping lymphatic vessels, and 
lower contraction frequency in vitro and in situ in the 
mesenteric lymphatic vessels in the 2,4,6trinitrobenzene 
sulfonic acid (TNBS) model of guinea pig ileitis[5]. 
Impaired lymphatic function during intestinal inflam
mation may delay immunological responses and thus 
hinder the resolution of inflammationassociated 
edema[6], a common condition associated with IBD[7,8]. 
However, it is unknown whether the lymphatic system 
changes systemically in response to gut inflammation.

The lymphatic system plays important roles 
in: (1) removing excess fluid from the tissues and 
thus maintaining tissuefluid homeostasis; and (2) 
transporting activated immune cells into draining 
lymph nodes (DLNs) via afferent lymphatic vessels, 
thus evoking inflammatory immune response and 
subsequently resolving inflammation[9,10]. Impaired 
lymphatic function has been implicated in many 
pathological conditions, including inflammation[10]. 
Given the essential role played by the lymphatics in the 
initiation, progression, and resolution of inflammation, 
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lymphatic function may be systemically altered during 
gut inflammation. Additionally, intestinal lymphatic 
vessels, known as lacteals, within intestinal villi take 
up dietary lipids for transportation back to the blood 
vasculature. Thus, it is likely that lymphatics play an 
important role in the complex etiology of IBD and its 
EIMs[6]. Herein, we describe lymphatic function in the 
skin of mice with DSS-induced acute colitis using near-
infrared fluorescence (NIRF) lymphatic imaging[11]. Our 
data demonstrates for the first time, systemically-altered 
dermal lymphatic function in mice with acute colitis. 

MATERIALS AND METHODS
Animals
Six to eight week-old female Balb/c mice (Charles 
River) were housed and fed sterilized pelleted food 
and sterilized drinking water. Animals were maintained 
in a pathogenfree mouse facility accredited by 
the American Association for Laboratory Animal 
Care (AALAC). All experiments were performed in 
accordance with the guidelines of the Institutional 
Animal Care and Use Committee (IACUC). Animal 
experiments were approved by University of Texas 
Health Science Center Institutional Animal Welfare 
Committee (AWC140034).

Induction of colitis and assessment of disease severity 
Experimental colitis was induced by administering 
4% (wt/vol) DSS (molecular weight 36-50 kDa, MP 
Biomedicals)[12] solution to replace drinking water ad 
libitum for 7 d. Control mice received standard drinking 
water. On day 7, mice were euthanized and tissues 
harvested for ex vivo studies. In all mice, body weight 
and diarrhea severity (diarrhea score: 0, normal; 1, 
slightly loose feces; 2, loose feces; 3, watery diarrhea) 
were monitored[13]. Body weight at day 4 and 7 
were normalized to day 0, and body weight change 
expressed as a percentage. In addition, fecal bleeding 
(visible fecal blood score: 0, normal; 1, slightly bloody; 
2, bloody; 3, blood in whole feces) was scored[13]. Colon 
length was measured to determine severity of colitis. 

In situ Mesenteric lymphangiography imaging 
For imaging mesenteric lymphatic vessels, 1 mL of a 
longchain fatty acid, BodipyFLC16 (Life Technologies) 
was orally administered to control mice and 7d DSS
treated mice. At 30 min after oral administration, 
mice were euthanized and fluorescence imaging was 
performed to visualize fluorescent lymphatic vessels 
in the mesentery using a stereomicroscope (MZ16 
A, Leica Microsystems, Inc.) with excitation light at 
493 nm and emission light at 503 nm. The number of 
fluorescent mesenteric lymphatic vessels was counted. 

In vivo functional NIRF lymphatic imaging 
Mice were imaged for baseline lymphatic parameters 
prior to beginning DSS treatment, at 4, and 7 d 

after administration. Mice were anesthetized with 
isoflurane and maintained at 37 ℃ on a warming pad. 
A volume of either 10 μL or 2 μL of 645 μmol/L ICG 
(Akorn, Inc.) dissolved in mixture of distilled water 
and 0.9% sodium chloride in a volume ratio of 1:9 
was injected intradermally at either the base of the tail 
or to the dorsal aspect of left hind paw, respectively, 
using 31 gauge needles (BD UltraFineTM Ⅱ Short 
Needle, Becton and Dickinson Medical) or 34 gauge 
needles (Nanofil, World Precision Instruments, Inc.). 
Fluorescence images were acquired immediately 
before and for up to 20 min after id injection using 
a custombuilt NIRF imaging system as described 
previously[14]. The number of fluorescent lymphatics in 
the dorsum of the foot or the base of the tail near the 
injection site was counted.

Quantification of dye clearance
In order to measure dye clearance, 2 μL of Alexa680
BSA was injected intradermally at the dorsal aspect 
of the left hind paw in an anesthetized mouse prior 
to DSS treatment for baseline, and 7 d after DSS 
treatment using 34 gauge needles (Nanofil, World 
Precision Instruments, Inc.). The injection area in a 
mouse was imaged every 1 h for up to 6.5 h after 
injection. Mice regained consciousness between 
measurements. The region of interest (ROI) was 
defined as the entire paw and fluorescent intensities 
within the ROI were measured.

Immunohistochemical analysis 
For histological analysis, tissue samples were fixed 
in 10% formalin overnight before transfer into 70% 
ethanol. Tissue samples were embedded in paraffin 
and 4 μm sections used in all staining procedures. 
The tissue sections stained with hematoxylineosin 
(HE) were analyzed by Dr. Roger Price at Center 
for Comparative Medicine Pathology Core at Baylor 
College of Medicine (BCM). Paraffin-embedded sec-
tions were stained for LYVE1 as follows. Following 
paraffin removal and antigen retrieval using citrate 
buffer, tissues were blocked with 5% bovine serum 
albumin (BSA) and stained with rabbit antimouse 
LYVE1 antibody (AngioBio) and biotinanti rabbit 
secondary antibody (Vector Labs). Vectastain Elite ABC 
system for peroxidase and DAB or ImmPACT Novared 
chromagen reagents were used before tissues were 
counterstained with hematoxylin (Vector Labs). 
LYVE1 expression in three different fields in each 
section was examined at magnification × 400 (Leica 
Microsystems Inc.). Lymphatic vessel number and 
relative lymphatic vessel area, which was defined as 
the percentage of positively stained lymphatic vessel 
area were determined as described previously[15] using 
Image-Pro Plus software (Media Cybernetics, Inc.).  

Lymphatic function analysis 
The data was analyzed with Matlab (The MathWorks, 
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vessels in mice treated with DSS for 7 d than those 
in control mice (Figure 2E). To examine differences 
in lymphatic vessel architecture within the colons, we 
performed immunohistochemical (IHC) staining for 
lymphatic vessel endothelial hyaluronan receptor 1 
(LYVE1). Colons of DSStreated mice exhibited dilated 
lymphatic vessels (Figure 2D and G) and increased 
number of vessels (Figure 2F), compared to control 
mice (Figure 2C). 

Given the changes within the mesenteric lym
phatics, we next assessed whether DSSinduced colitis 
affected peripheral lymphatic architecture and function 
as well. We performed NIRF imaging after id injection 
of ICG in the dorsal aspect of the hind paw. In vivo 
fluorescence imaging data demonstrated that mice 
with acute colitis after 7 d of DSS treatment (Figure 
3B) showed similar peripheral lymphatic drainage 
patterns in the paw as compared to control animals 
(Figure 3A), although dilated lymphatic vessels were 
observed in mice with DSSinduced colitis. However, 
the number of fluorescent lymphatic vessels in the 
foot between baseline (2.2 ± 0.4) and 7 d after DSS 
treatment (1.8 ± 0.4) was not statistically different. 
We also assessed the depot clearance of Alexa680
BSA. Fluorescent images from one representative 
mouse showing clearance of Alexa680BSA from the 
depot (dorsal aspect of the left hind paw) over about 
6 h are shown in Figure 3C. We found that while the 
fluorescence rapidly decreased in mice prior to DSS 
treatment, 7 d DSS treatment delayed the clearance. 
Quantification of the fluorescent intensity remaining in 
the depot as a function of time as shown in Figure 3D, 
showed that there was significantly higher fluorescence 
in mice with DSSinduced acute colitis than that in 
mice prior to DSS treatment, indicative of impaired 
lymphatic drainage. 

Next, to examine whether dermal lymphatics were 
altered in response to DSS-treatment, skin and ear 
tissues were immunostained with antibody to LYVE1.
We observed no significant differences in the number 
of lymphatic vessels between control (Figure 4A and 
E) and mice with DSSinduced colitis (Figure 4B and 
F) in either skin or ears, whereas a significant increase 
of the relative area occupied by peripheral lymphatic 
vessels in mice with DSSinduced colitis was observed 
as compared to that in control, indicative of dilated 
dermal lymphatic vessels in response to DSSinduced 
acute colitis (Figure 4C, D, G and H). However, we did 
not observe any clinically apparent manifestations in 
the skin of DSS-treated mice. 

DSS-induced colitis impairs dermal lymphatic contractile 
function
We examined lymphatic contractile function in the skin 
of mice with DSSinduced acute colitis to investigate 
whether lymphatic function was systemically impaired 
in response to intestinal inflammation. Quantitative 
analysis of lymphatic contractile function demonstrated 

Inc.) and ImageJ (National Institutes of Health). To 
reveal contractile activity resulting in propulsive lymph 
flow, fixed regions of interest (ROIs) of equal size 
in the fluorescent lymphatic vessels were defined 
on fluorescence images. The averaged fluorescence 
intensity within each ROI in each fluorescence image 
was plotted as a function of imaging time. The number 
of “pulses” of ICGladen lymph was an indication 
of lymphatic contractile activity and termed as 
“contractions”.  

Statistical analysis
Data were presented as average values ± standard 
error. The statistical analysis was performed by Ho
Lan Peng from School of Public Health, The University 
of Texas Health Science Center at Houston, using SAS 
Enterprise Guide 5.1 and SigmaPlot 11.0. For the 
pairwise comparisons, the paired t test or Wilcoxon 
signed rank test were used depending on the type 
and the normality of the data. For between group 
comparisons, the twosample t test or Wilcoxon rank 
sum test were used depending on the normality of the 
data. The significance level was defined as P < 0.05.

RESULTS
Characteristics of DSS-induced acute colitis
Mice treated for 7 d with DSS developed acute 
inflammation. As shown in Figure 1, clinical symptoms 
in mice with DSSinduced acute colitis included 
loss of body weight (Figure 1A), loose feces/watery 
diarrhea (Figure 1B), and fecal blood (Figure 1C), all 
of which were aggravated as disease progressed to 
7 d. In addition, the length of the colon decreased 
as disease severity increased and was significantly 
shorter in mice at day 7 (Figure 1D). Histopathological 
examination of colons of DSS-treated mice confirmed 
acute inflammation (Figure 1F), characterized by 
segmental to complete loss of the colonic mucosa 
with an associated chronic inflammatory cell infiltrate 
that extended into the deeper layers of the wall of 
the colon, compared to control mice (Figure 1E). 
Ulceration of the colon was typically associated with 
hyperplasia of the colonic mucosa adjacent to the 
areas of ulceration. Thus, mice treated with DSS for 7 
d exhibited acute inflammation as assessed by clinical 
symptoms. 

DSS treatment induces mesenteric and dermal 
lymphatic vessel remodeling
To assess whether DSSinduced colitis affected 
mesenteric lymphatic drainage, we performed 
intravital fluorescent lymphangiography 30 min after 
oral gavage administration of BodipyFLC16. Mice 
with acute colitis (Figure 2B) showed impaired uptake 
of BodipyFLC16 within mesenteric lymphatics as 
compared to controls (Figure 2A). We observed 
significantly fewer fluorescent mesenteric lymphatic 
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significant reduction of lymphatic contraction fre
quency at day 4 in the popliteal afferent prenodal 
lymphatic vessels (Figure 5B) in DSStreated mice, 
which further decreased at day 7, which correlated to 
increased disease severity (Figure 1). In addition, there 
were significantly decreased lymphatic contraction 
frequencies at day 4 and 7 in the popliteal post
nodal efferent lymphatic vessel of DSStreated mice 
as compared to the baseline data (Figure 5C). On 
the other hand, both afferent and efferent lymphatic 
contractility in control mice remained unchanged from 
baseline to day 7.

DISCUSSION
The purpose of this study was to characterize changes 
in lymphatic function and architecture in a chemically
induced murine model of colitis. We utilized in situ 
lymphangiography and noninvasive NIRF imaging 
techniques to investigate dermal lymphatic response 
during gut inflammation. As DSSinduced colitis 
progressed (Figure 1), we observed alterations in 
mesenteric lymphatics (Figure 2), peripheral lymphatic 
flow (Figure 3), and dermal lymphatic architecture 
(Figure 4). Additionally, there was a gradual reduction 
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in lymphatic contractility in the skin of DSS-treated 
mice (Figure 5), suggesting that DSSinduced acute 
colitis has a significant impact on both local and 
systemic lymphatic function. 

IBD, including UC and CD, is an autoimmune 
disorder of unknown etiology that mainly involves the 
intestines[16]. Previous studies showed functional and 
structural changes in the blood vasculature, such as 
dilated and tortuous vessels with increased vascularity 
and changes in intestinal blood flow, in patients with IBD 
and chemicallyinduced murine models of colitis[17,18]. 
In addition to vascular alterations, submucosal edema, 
possibly due to impaired lymphatic function, has 
previously been observed in intestinal lymphatics in 

IBD[68]. Increased lymphangiogenesis has also been 
observed in patients with and experimental models of 
IBD[6,19] as observed in our study (Figure 1). Previous 
data demonstrated that mice lacking angiopoietin-2, 
which exhibit disorganized and hyperplastic lymphatic 
vasculature, have exaggerated disease activity in the 
DSS colitis model, indicating that the lymphatic system 
plays an important role in IBD[20]. Recent studies have 
also demonstrated that vascular endothelial growth 
factor receptor (VEGFR)-3 blockade caused inhibition 
of disease resolution in animal models of colitis and 
adenoviral induction of VEGFC provided increased 
protection against the development of DSSinduced 
acute and chronic colitis as a result of increased 
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lymphatic drainage in control (A, n = 4) and mice with dextran sulfate sodium (DSS)-induced colitis (B, n = 5) after oral gavage of 1 mL of Bodipy-FL-C16. Significantly 
reduced number of fluorescent mesenteric lymphatic vessels was observed in mice with DSS-induced colitis as compared to control mice (E). Scale bar = 2 mm. IHC 
assessment of lymphatic vessels using antibody against LYVE-1 in the colon of control (C) and mice with DSS-induced colitis (D) and quantification of number of 
lymphatic vessels (F) and vessel area (G) in colons. Data presented as mean ± SE. aP < 0.05 control vs DSS day 7. 
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lymphangiogenesis and lymph flow[21,22], suggesting 
that stimulation of functional lymphangiogenesis using 
VEGFC can provide a novel therapeutic strategy 
for IBD. It is known that DSS causes damage to the 
intestinal mucosal barrier, allowing permeability of 
bacteria and other luminal antigens into the mucosa, 
thus resulting in gut inflammation[23]. The distal colon 
is severely damaged with histopathological features 
including loss of crypts, ulceration/erosion, and edema 
as well as increased immune cell infiltration in the 
DSS model[23]. It has also been shown that the small 
intestine was also damaged in response to DSS[24,25]. 
Our in situ data after oral gavage of BodipyFLC16 
showed significantly fewer functional lymphatic 
vessels were observed in the mesentery of mice with 
DSSinduced acute colitis (Figure 2B), as detected 
by fluorescence, when compared to control (Figure 
2A), due to DSSinduced disruption of intestinal and 
lymphatic integrity. A previous study also showed 
fewer functional lymphatics in TNBStreated mice 
than sham animals[5]. Bodipy-FL-C16, a fluorescently-
labeled 16carbon chain fatty acid, has been used as 
a lipid tracer to invasively study lymphatic architecture 
and function in mesenteric lymphatics[2629]. Previous 
data has demonstrated that mice with DSSinduced 
colitis had decreased food and water intake and 
body fat content as well as a disturbance of lipid 

and energy metabolism as compared to control[30,31]. 
Therefore, it is likely that normal fat absorption could 
be impaired as well. Thus, our observed impaired 
uptake of Bodipy-FL-C16 by mesenteric lymphatics 
in mice with DSSinduced colitis may also be due 
to metabolic alterations. A recent report showed 
significantly increased lymph flow in the acute phase 
of colitis (i.e., C57BL/6 mice treated with 2.5% 
DSS for 7 d) as compared to control, by indirectly 
measuring remaining blue dye in the colon 16 h after 
an injection of the dye into the colonic mucosa[32]. In 
our study, we did not measure the extent of lymph 
flow in the mesenteric lymphatic vessels. Therefore, 
further studies are needed to assess whether fewer 
mesenteric lymphatic vessels observed in our study 
show an increase in lymph flow during DSSinduced 
acute colitis. Since acute DSSinduced mucosal injury 
is dependent on not only DSS concentration, but also 
strain of mouse[23], it is possible that the extent of 
acute injury due to different DSS concentrations and/
or mouse strain may affect uptake of a lipid tracer.

Although the association of EIMs with IBD has 
been recognized, the pathologic mechanisms of EIMs 
are largely unknown. Adams et al[33] proposed the 
mechanism by which mucosal T cells are recruited 
to the liver in response to abnormally expressed 
endothelial-cell adhesion molecules and chemokines. 

Figure 3  Near-infrared fluorescence imaging after id injection of indocyanine green in the dorsal aspect of the hind paw. NIR fluorescent images of the foot 
in control mice (A) and mice treated with dextran sulfate sodium (DSS) for 7 d (B) after id injection of 2 μL of indocyanine green (ICG) in the dorsal aspect of the 
foot. A red dotted line delineates the ICG injection area. Representative fluorescent images in the foot of a mouse 1, 2, 3.5, 4.5, and 5.5 h after id injection of 2 μL of 
Alexa680-BSA prior to (baseline), and 7 d after DSS treatment displayed the clearance of Alexa680-BSA from the depot over time (C). Quantification of the fluorescent 
intensities (D) remaining in the depot of Alexa680-BSA in the skin of mice treated with DSS for 7 d (n = 7; grey open circle) showed higher fluorescent intensity over 
time as compared to baseline (filled black square), which was statistically significant at 5.5 h (P = 0.01) in comparison to control mice. aP <  0.05. Scale bar = 1 mm.
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Therefore, T cells are exposed to hepatic antigens, and 
thus liver damage occurs. Aberrant homing of mucosal 
T cells and excessive secretion of inflammatory 
cytokines have also been suggested to be responsible 
for skin and other EIMs of IBD[33]. Inflammatory 
cytokines, including TNF-α, have an important role 
in the recruitment of immune cells to the sites of 
tissue damage[34]. TNFα has been shown to play an 
important role in the pathogenesis of IBD[34]. Thus, 
antiTNFα antibodies, such as infliximab, are used 
to treat IBD as well as skin EIMs, such as erythema 
nodosum. However, recent studies showed that anti
TNF antibodies, which are also used for the treatment 
of psoriasis, can cause psoriasiform skin lesions in 
patients with IBD[35]. It has been demonstrated that IL
17A/IL-22-secreting Th17 cells and interferon (IFN)-
γsecreting Th1 cells are responsible for these lesions 

and anti-IL-12/IL-23 antibody treatment is an effective 
therapy for antiTNF antibodyinduced psoriasis[35] 
IL-23 is known to be one of the major players in the 
pathogenesis of IBD[34]. IL23 is highly expressed 
in pyoderma gangrenosum and treatment with a 
monoclonal antibody ustekinumab (IL-12/23 IgG1) 
resulted in clinical resolution of the lesions[36]. 

Studies have shown that DSStreatment results 
in extraintestinal inflammation[37], thus stimulating 
inflammation by inducing the secretion of cytokines 
and inflammatory mediators that are transported to 
the lymphatic and/or blood circulation[38]. Elevated 
levels of IL6, IL17, TNFα, and keratinocyte-derived 
chemokine (KC) have been observed in mice with 
acute DSScolitis; however, in chronic DSS colitis after 
4 cycles of DSS (3%) for 7 d/cycle and 10 d of normal 
drinking water in between each cycle, significantly 

Figure 4  Immunohistochemical assessment of lymphatic vessels using antibodies to LYVE-1. In the skin (A) and ears (E, arrows) of control (n = 5 skin; n = 7 
ear) and mice with dextran sulfate sodium (DSS)-induced acute colitis (B, F; n = 6 skin; n = 9 ears). Computer-assisted image analysis showed no difference in the 
number of lymphatic vessels per field (C, G) but increased lymphatic vessel area in both skin and ears (D, H) compared to control mice. Data presented as mean ± 
SE. aP < 0.05, bP <  0.01 vs control. Scale bar = 100 μm (C, D). 

Figure 5  Lymphatic contractile function in the skin of mice with dextran sulfate sodium-induced acute colitis. Overlay of fluorescent and white light images 
showing lymphatic drainage of indocyanine green (ICG) from the foot, where ICG was injected (arrowhead), to the popliteal LN (broken arrow) via the popliteal afferent 
lymphatic vessel (A). The quantification of lymphatic contractility in the popliteal afferent (B) and efferent (C) lymphatic vessels in the foot of mice prior to 4, and 7 d 
after DSS alone (n = 21). Data represent mean ± SE. bP < 0.01, dP <  0.001 vs baseline; fP < 0.001 vs day 4.
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elevated levels of IL6, IFNγ, IL4, and IL10 were 
observed as compared to control mice[38]. We found 
significantly increased levels of both IL6 (control vs 
DSS, 12.37 ± 8.73 vs 34.77 ± 9.25 in arbitrary unit, 
P = 0.035) and TNFα (control vs DSS, 0.87 ± 0.61 vs 
24.92 ± 5.71, P = 0.006) in skin of DSS-treated mice 
compared to control mice. We have previously shown 
that locally administered pro-inflammatory cytokines 
such as TNFα, IL1β, and IL6 inhibit systemic 
lymphatic function[39]. 

Preclinical and clinical studies showed that NO 
may be involved in GI inflammation and play a 
pathologic role in IBD[40]. NO has been implicated as 
a mediator of tissue injury in the DSSinduced colitis 
model[40,41]. Significantly increased NO production 
from inducible NO synthase (iNOS) was observed 
in the circulation and other systemic organs in mice 
with DSSinduced acute inflammation[4043]. We 
observed a significant increase in serum NOx levels 
in mice (19 ± 1.9 μmol/L) with DSS-induced colitis 
as compared to control mice (12.8 ± 1.2 μmol/L, P < 
0.05). However, it has also been reported that serum 
NOx concentration was significantly increased in iNOS 
knockout (iNOS-/-) mice over a 7 d DSS exposure as 
compared to untreated iNOS-/- mice, suggesting that 
other NOS isoforms can also generate NOx

[44]. NO 
has an inhibitory effect on lymphatic pump function 
under physiological or pathological conditions[29,45,46], 
although lymphatic responses to NOS inhibition 
using pharmacological agents differ depending on 
experimental conditions[4751]. Liao et al[46] showed 
that under normal conditions endothelial NOS 
(eNOS) produces NO in lymphatic endothelial cells 
that maintains lymphatic contractions; however, at 
the peak of oxazolone-induced skin inflammation on 
day 4, increased NO production by iNOS expressing 
CD11b+Gr1+ cells overwhelms the eNOSproduced NO 
to inhibit lymphatic contractility. They also found that 
iNOS-/- mice with oxazolone-induced skin inflammation 
did not change lymphatic contractility at 4 d after 
inflammation[46]. Therefore, NO, together with pro
inflammatory cytokines, may affect dermal lymphatic 
vessel function in DSSinduced acute colitis. 

Previous studies demonstrated that Balb/c mice 
treated with DSS for 57 d developed acute colitis 
as observed in our studies; however, Balb/c mice 
completely recovered 4 weeks after DSS removal as 
evidenced by histopathology and cytokine levels[52]. 
Our preliminary data in mice treated with 2% DSS 
for 7 d, followed by 7 d of water, showed significantly 
decreased lymphatic contractility 7 d after DSS 
treatment as compared to baseline (Baseline vs Day 
7, 4.2 ± 1.5 vs 1.6 ± 0.4, P < 0.001); however, we 
observed recovery of lymphatic contractile function 
in the popliteal afferent lymphatic vessels at day 14, 
although it was not significantly different from that on 
Day 7 (Day 7 vs Day 14, 1.6 ± 0.4 vs 2.6 ± 0.5, P = 
0.154). Mice regained their body weight 7 d after DSS 

removal (changes in body weight; baseline vs day 7 vs 
day 14, 100% vs 95% ± 1.5% vs 100.4% ± 1.3%), 
indicating that the process of recovery of lymphatic 
function from acute colitis was underway. Additional 
work is required to determine whether chronic gut 
inflammation or other chemically-induced acute models 
of intestinal inflammation such as TNBS-, oxazolone-
mediated colitis, or geneticallymodified models 
of colitis, lead to systemically impaired lymphatic 
function and/or architecture as assessed by NIRF 
imaging, and to investigate the effects of dissimilar 
cytokine/chemokine profiles that have been observed 
in different animal models[38]. Indeed, a previous 
study demonstrated distinct cytokine profiles even 
between acute and chronic DSS colitis[38]. Therefore, 
this information would provide additional insights in 
understanding the complex nature of IBD and its EIMs 
and how alterations to the lymphatics play a role in 
the pathogenesis of this disease, thus leading toward 
better disease management. 

In conclusion, we have shown that acute inflam
mation induced by DSS in mice is associated with 
changes of dermal lymphatic architecture and function. 
The NIRF imaging technique employed in this study 
can be used to image altered lymphatic function and 
architecture in response to other types of systemic 
diseases with cutaneous involvement and likely assess 
lymphatic responses during therapy.
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intestinal manifestations in IBD. They demonstrate that DSS-induced colitis 
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intervention with the appropriate therapy.
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