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Abstract

In metazoans, members of the insulin-like peptide (ILP) family play a role in multiple 

physiological functions in response to the nutritional status. ILPs have been identified and 

characterized in a wide variety of insect species. Insect ILPs that are mainly produced by several 

pairs of medial neurosecretory cells in the brain circulate in the hemolymph and act systemically 

on target tissues. Physiological and biochemical studies in Lepidoptera and genetic studies in the 

fruit fly have greatly expanded our knowledge of the physiological functions of ILPs. Here, we 

outline the recent progress of the structural classification of insect ILPs and overview recent 

studies that have elucidated the physiological functions of insect ILPs involved in nutrient-

dependent growth during development.

Introduction

Nutrients are critical environmental signals influencing growth and development in animals. 

Although each cell in a multicellular organism responds directly to nutrition, the growth and 

development of the entire organism needs to be coordinated by adjusting growth between 

tissues and controlling the consumption of stored nutrients. The coordination of systemic 

organismal growth in response to the nutritional status is primarily mediated by the insulin-

like peptide (ILP) family, which includes insulin and insulin-like growth factors (IGFs) in 

vertebrates, as well as multiple ILPs in invertebrates.

In vertebrates, insulin and IGFs regulate metabolism, growth and development in response 

to nutritional availability. Although insulin and IGFs have similar amino acid sequences, 

they have different physiological functions that are meditated by distinct receptor tyrosine 

kinases (RTKs), the insulin receptor and IGF-I receptor, respectively [1]. The major function 

of insulin is to control carbohydrate and lipid metabolism [2], whereas that of IGFs is to 

promote tissue and body growth during development [3]. Numerous studies have shown that 

the key regulator of the activities of insulin and IGFs is the nutritional status [4]. The 

production and secretion of insulin by pancreatic β -cells are tightly regulated by the nutrient 
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status [5]. Nutritional availability also influences the production, serum concentration, and 

action of IGF-I in regulating appropriate tissue and body size [6]. Another class of ILP 

family peptides in vertebrates, relaxins and relaxin-like peptides, function through leucine-

rich repeat-containing G protein-coupled receptors (GPCRs) and have multiple functions, 

especially associated with reproduction [7].

ILPs have been identified and characterized in a wide variety of invertebrate phyla and in 

arthropods, including insects [8]. In insects, ILPs are involved in multiple biological 

processes, including growth, metabolism, reproduction, immunity, behavior, stress 

resistance, diapause, and lifespan [8-15]. Recently, powerful genetic studies using the fruit 

fly Drosophila melanogaster have greatly enhanced our understanding of the conserved 

functions of ILPs, as well as their downstream signaling pathways called the insulin/IGF 

signaling (IIS) pathways [9-15]. In this review, we will first focus on the structural 

classification of ILPs in insects. We will then overview the recent progress in our 

understanding of the physiological functions of insect ILPs, especially as it relates to 

nutrient-dependent growth during development. Through this review, we aim to provide 

insights into the diverse yet conserved roles of insect ILPs in the coordination of systemic 

organismal growth, as well as tissue-specific growth, in response to the nutritional status 

during development.

Structural classification of insulin-like peptides in insects

ILP family members have been identified in multiple insect species, with their numbers 

varying significantly between only one in some orthopteran species and more than 40 in the 

silkworm Bombyx mori [8, 16]. The amino acid sequences of insect ILPs are highly 

divergent between insect orders, except for some critical residues (such as cysteines) that are 

necessary for tertiary structure formation. However, they can be classified into at least three 

groups based mainly on the sequence features of their precursors: insulin-like peptides, IGF-

like peptides, and DILP7-like peptides (Figure 1) [17, 18]. The first group, insulin-like 

peptides, shares the most common structural feature of the ILP family, and most insect ILPs 

are classified into this group (Figure 1A). The common feature of insulin-like peptides is a 

conserved domain organization of their precursors, consisting of a signal peptide, with a B-

chain, C-peptide, and A-chain, similar to the vertebrate ILP family. After cleavage of the 

signal peptide, the C-peptide is most likely removed to generate a mature heterodimeric 

peptide consisting of the A- and B-chains, such as in vertebrate insulin or relaxins. The 

second group is the putative IGF-like peptides. The recently identified Bombyx IGF-like 

peptide (BIGFLP) retains the C-peptide, resulting in a single-chain polypeptide, which is 

similar to vertebrate IGFs [19]. One of the characteristic features of IGF-like peptides is that 

they have a relatively shortened C-peptide compared with other insect ILPs. The third group, 

DILP7-like peptides, is characterized by an unusually conserved sequence shared by several 

insects and even some molluscan species. Precursor polypeptides with long conserved 

sequences are found in Drosophila (DILP7), the African malaria mosquito Anopheles 

gambiae (AgamILP5), the yellow fever mosquito Aedes aegypti (AaegILP5), the red flour 

beetle Tribolium castaneum (TcILP4), and molluscs such as the owl limpet Lottia gigantea 

(MIP4) and the California sea hare Aplysia californica (MIP1) [20, 8]. To date, the 

conserved biological function of these unique ILPs has not yet been clarified. In Drosophila, 
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DILP8 has recently been identified as a new ILP and has a unique effect on developmental 

timing and systemic body growth [21**, 22**, 23]. Compared with other Drosophila ILPs, 

DILP8 has atypical number of amino acid residues between two cysteine residues in the B 

chain, and between forth and fifth cysteine residues in the A chain. Although direct 

sequence comparisons show no clear DILP8 homologues in non-dipteran insects or 

nematoceran (mosquito) genomes [21**], it is possible that functional orthologs of DILP8 

exist in other insects.

Insect ILPs act on target tissues by activating an RTK named insulin-like receptor (InR), 

which shows high similarity with mammalian insulin and IGF type-I receptors. Although 

multiple ILPs exist in each insect genome, it typically encodes only one or two InRs [8]. 

However, it remains possible that some ILPs act through alternative receptors such as 

GPCRs. Recently, Veenstra hypothesized that the receptors for DILP7 and DILP8 in 

Drosophila are candidate relaxin receptors, LGR4 (CG34411) and LGR3 (CG31096), 

respectively [24]. If this is indeed the case, DILP7 and DILP8 can be classified as relaxin-

like peptides, although they have no relaxin-specific GPCR-binding motif, RxxxRxxI/V, in 

the B-chain [25].

Nutrient-dependent secretion and the transcription of insulin-like peptides 

by medial neurosecretory cells in the brain

The principal ILP-producing cells that are tightly associated with nutrient-dependent 

systemic growth regulation are the several pairs of medial neurosecretory cells (mNSCs), 

also known as insulin-producing cells (IPCs), in the brain. In this section, we will focus on 

the regulatory mechanisms of the secretion and transcription of insect ILPs in brain mNSCs.

In Bombyx, bombyxins produced by mNSCs are axonally transported to and released from 

the neurohemal organ called the corpora allata (CA) [16] (Figure 2). In Drosophila, mNSCs 

extend processes to the dorsal vessel (insect heart) [26], allowing the direct release of DILPs 

into the circulating hemolymph. DILPs produced by brain mNSCs are also axonally 

transported to the corpora cardiaca (CC), a pair of neurohemal organs in the ring gland. A 

recent study shows that the mNSC-derived DILP2 is also released within the brain and 

received by other specific sets of neurons, including several neurosecretory cells [27]. As in 

Bombyx and Drosophila, ILPs are produced in brain mNSCs in other insect species, 

including Aedes [28, 29], the desert locust Schistocerca gregaria [30], and the migratory 

brown planthopper Nilaparvata lugens [31**], suggesting critical and evolutionary 

conserved functions of mNSC-derived ILPs in insects.

In Drosophila, as in mammals, the secretion and transcription of each DILP are regulated 

directly or indirectly by multiple cues, including by several hormones and neurotransmitters 

[32, 15] (Figure 3). The secretion of DILPs from mNSCs highly depends on the nutritional 

condition. During Drosophila larval development, the major nutrient for systemic growth 

and development is amino acids. The availability of amino acids is mainly sensed by the fat 

body [33], a functional equivalent of the vertebrate liver and adipocytes, which in turn 

remotely regulates DILP secretion from brain mNSCs through unknown humoral signals 

called fat body-derived signals (FDSs) [34]. In addition to the amino acid-inducible FDSs, a 
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fat body-derived leptin-like protein called Unpaired 2 (Upd2) acts through GABAergic 

neurons to stimulate the secretion of DILPs in response to high-fat and high-sugar diets 

[35**]. Moreover, a fat body-derived small peptide called CCHamide-2 directly activates 

brain mNSCs to modulate DILP secretion primarily in response to glucose [36]. It has been 

suggested that the secretion of all DILPs is simultaneously induced by the depolarization of 

mNSCs [34]. However, a recent study demonstrated that the secretion of DILP3 is 

selectively stimulated by sugar during larval development [37*]. Although DILP2 and 

DILP5 secretion responds to amino acids [34], sugar stimulates the CC to release 

adipokinetic hormone (AKH), which acts directly on the mNSCs to promote the secretion of 

DILP3 [37*]. In addition to the hormones, dietary lipids derived from yeast can be a 

nutritional signal to regulate the release of DILP2 into hemolymph by modulating the 

activity of specific neurons in the brain [38].

There are additional nutrient-dependent signals that affect mNSCs in adult Drosophila. In 

the adult fly, the CC also produce Limostatin (Lst), a peptide hormone that suppresses the 

secretion of DILPs from mNSCs [39]. Moreover, similar to the insulin release in mammals, 

a recent paper demonstrated that the secretion of DILPs is regulated by the direct sensing of 

glucose by GLUT1, the type-1 glucose transporter, which is expressed in mNSCs in the 

adult fly [40]. In Bombyx, glucose also stimulates the secretion of bombyxin into the 

hemolymph [41], suggesting the possibility that common ancestral mechanisms control the 

secretion of ILPs from insect mNSCs and mammalian, β -cells.

It has been suggested that the secretion and transcription of DILPs in mNSCs are regulated 

by different mechanisms [34, 40]. The transcription of each dilp gene in mNSCs is 

independently regulated [42], although a compensatory expression of dilp genes has also 

been demonstrated [43, 44*]. dilp2 expression in mNSCs is already detectable in the late 

embryonic stage, whereas the expression levels of dilp5 and -3 are upregulated in the 2nd 

and 3rd instar, respectively [42]. Importantly, in both larval and adult stages, dilp5 

transcription is tightly regulated in a nutrient-dependent manner [42, 45, 34]. It has been 

shown that the transcription factors Eyeless (Ey) and Dachshund (Dac) synergistically and 

directly promote dilp5 expression in mNSCs [46, 47]. However, how these two transcription 

factors are involved in the nutrient-dependent expression of dilp5 remains unclear. 

Interestingly, Dach1/2 and Pax6, vertebrate homologs of the Drosophila Dac and Ey, have 

similar combinatorial effects on the activation of insulin expression in a mammalian β -cell-

derived cell line [47].

Regulation of growth by the systemic and local action of insulin-like 

peptides during development

In insects, the larval feeding period is the specialized stage for systemic body growth. 

During this period, ILPs produced in mNSCs function as key signals that couple systemic 

and tissue-specific growth with nutritional availability. In Drosophila, for example, larval 

growth is severely retarded and the adult body size is significantly reduced, as if they are 

starved when mNSCs are genetically ablated [26], all mNSC-derived dilps are knocked out 

[44*], or InR is mutated (Figure 4). This phenotypic similarity clearly indicates that ILPs 

secreted from mNSCs are the major circulating hormones that activate InR to promote body 
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growth during larval feeding period. In addition to the systemic growth-promoting effect, 

systemically-circulating DILPs also affect specific cell/tissue growth, such as tracheal 

branching [48] and stem/progenitor cell maintenance and proliferation in the lymph gland 

[49] during larval development. The requirement of systemic ILPs from mNSCs for 

germline stem cell maintenance and proliferation as well as ovarian development has also 

been reported in adult flies and mosquitoes [50, 29, 8].

In holometabolous insects, many of the developing adult tissues, including the imaginal 

discs and primordia, undergo growth and differentiation during the wandering and pupal 

stages after larvae have stopped feeding [51]. During this period, the insect steroid hormone 

ecdysone plays critical roles in regulating adult tissue growth and differentiation. However, 

ILPs produced from the fat body also function, at least partially, as key systemic signals to 

regulate tissue and body growth. It has been shown in both Bombyx and Drosophila that the 

fat body predominantly produces ILPs called BIGFLP and DILP6, both of which are 

structurally classified as IGF-like peptides, during the post-feeding period in response to 

ecdysone [19, 52, 53] (Figure 3). dilp6 mutants show an approximately 10% reduction in the 

final adult body size and weight [52, 53, 44*], indicating that some additional systemic 

growth occurs during the post-feeding period by utilizing stored nutrients in the fat body that 

were accumulated during the larval feeding period. Therefore, even after larvae stop feeding, 

fat body-derived ILPs play critical roles in regulating growth in a systemic manner.

The sensitivity to ILPs or IIS differs among developmental stages and tissues, and these 

differences can control the relative sizes of the adult tissues [54, 55*]. In the butterfly Precis 

coenia and the tobacco hornworm Manduca sexta, the wing discs change their sensitivity to 

nutrition or IIS with developmental stages [56, 57]. These differences can be explained by 

the changes in ecdysone titer during the final larval stage, since ILPs and ecdysone act 

through separate but synergistic pathways to modulate the growth of their wing discs in vitro 

[58, 59]. In addition, different organs show different sensitivities to IIS during development. 

In Drosophila, the genital disc and the wing disc differ in their sensitivity to IIS [55*]. 

Similarly, in the rhinoceros beetle Trypoxylus dichotomus, knockdown of InR, specifically 

during the post-feeding period, caused a 16% reduction in horn length in the adult, but 

caused only a 2% reduction in wing length and no reduction in the genitalia [60**]. In 

Bombyx, BIGFLP promotes the growth of adult imaginal discs or primordia, but not of 

larval tissues, which are degenerated or reconstructed during metamorphosis in vitro [19]. In 

this way, change in the relative size of adult tissues is caused by developmental stage- and 

tissue-specific modifications in their response to ILPs or IIS.

Recently, DILP8 was identified as a humoral factor that is released from growth-retarded or 

damaged imaginal discs to inhibit ecdysone production and systemic body growth [21**, 

22**]. DILP8 mutation abolishes the developmental delay caused by imaginal disc growth 

perturbation, while DILP8 overexpression delays the pupariation timing. These unique 

functions of DILP8 clearly distinguish this ILP from other ILPs and indicate that this 

peptide may activate a receptor other than InR, as discussed above.

Insect ILPs not only act systemically but also in a local manner [61, 62]. Recent studies have 

demonstrated that DILPs act locally within the central nervous system in a nutrient-
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dependent manner [63**, 64**, 65, 66*]. A subset of glial cells produce DILP6 during the 

larval feeding period, and its expression is inhibited by starvation. This nutrient-dependent 

expression and/or secretion of DILP6 activates the IIS in adjacent neural stem cells called 

neuroblasts, thereby leading to their exit from quiescence [63**, 64**, 66*]. Moreover, 

DILP6 has also been suggested to regulate the proliferation of perineural and cortex glia in 

the larval brain [65]. In the adult fly, midgut DILP3 functions as a local signal to regulate 

intestinal stem cell proliferation and growth in a nutrient-dependent manner [67]. In 

Bombyx, the ovariole sheath, which wraps around an array of follicles, produces BIGFLP 

during pupa-adult development [68] and may regulate early follicular growth in a paracrine 

manner.

Regulatory mechanisms of the activities of insulin-like peptides during 

development

In mammals, six classic IGF-binding proteins (IGFBPs) bind IGFs with high affinity and act 

as modulators of IGF activity. They act either to enhance or to dampen IIS by extending the 

half-life of IGFs, by changing their local and systemic availability, or by preventing them 

from binding to their receptor [69]. IGFBP3 can also interact with a third protein, called the 

acid-labile subunit (ALS), to form a trimeric complex in circulating blood. In addition, an 

IGFBP-related protein IGFBP7 (or IGFBP-rP), which shares approximately 30% similarity 

with IGFBP1 and IGFBP6 in its N-terminal domain, binds IGFs with a comparatively low 

affinity and also binds to the IGF-I receptor to act as a potent tumor suppressor in a wide 

variety of cancers [70, 71].

Insects also possess IGFBP-like proteins, including Neuroparsins [72] and Imp-L2 [73], 

which resemble mammalian IGFBP7. Although Neuroparsins and Imp-L2 show sequence 

homology to IGFBP7, this homology is restricted to different domains (Neuroparsins show 

similarity with the N-terminal domain, whereas Imp-L2 shows similarity with the C-

terminal domain of IGFBP7). Therefore, Neuroparsins and Imp-L2 may have evolved from 

a common ancestral IGFBP7-like protein, although their functions are different. In 

Schistocerca, Neuroparsins directly bind to ILP (Scg-IRP) in vitro [30], suggesting that 

Neuroparsins act as potential modulators of ILP function. However, a recent study has 

shown that the mosquito neuroparsin-like factor called ovary ecdysteroidogenic hormone 

(OEH) promotes egg formation in parallel with ILP(s) by activating an RTK distinct from 

InR in Aedes [74*]. In Drosophila, Imp-L2 binds to circulating DILP2 and 5 and acts as a 

systemic inhibitor of IIS during development [75, 76] (Figure 3). Within the central nervous 

system, however, Imp-L2 functions as a positive regulator of DILP2-mediated IIS in some 

specific neurons [27]. Furthermore, two recent studies have demonstrated that Imp-L2 is 

secreted from tumors and creates insulin resistance in distant tissues, which drives a 

systemic wasting response in the adult fly [77, 78]. In parallel with mammals, the 

Drosophila homolog of ALS forms a trimeric complex with Imp-L2 and DILP2 in the 

circulating hemolymph, which inhibits IIS during larval development [79] (Figure 3).

In addition to IGFBP-like proteins, a secreted decoy of InR (SDR) that is structurally similar 

to the extracellular domain of InR has been identified in Drosophila [80*]. Like Imp-L2 and 

ALS, the secreted protein SDR can directly interact with several circulating DILPs to 
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antagonize their activity during larval development (Figure 3). Phylogenetic analysis has 

shown that SDR is most closely related to InR among all Drosophila RTKs [80*], 

suggesting that SDR is duplicated from InR, but functions as a decoy receptor to negatively 

regulate IIS.

Although most insects including Drosophila only have a single InR gene, some insects have 

two InR genes. A recent study showed that two InR genes (InR1 and InR2) in the 

planthopper Nilaparvata have opposite functions [31**]. In the developing Nilaparvata 

wing, InR1 activates canonical IIS and leads to the development of long-winged adults. 

However, InR2 physically binds to InR1 and inhibits the function of InR1. This inhibition 

shuts down the IIS in the developing wing and leads to the development of short-winged 

adults. It is possible that a similar regulatory mechanism is conserved in insects with two 

InR genes, such as Tribolium (TcInR1 and -2) and the honey bee Apis mellifera (AmInR1 

and -2) [8].

Conclusion

Over the last decade, both genetic and biochemical analyses of the functions of insect ILPs 

have advanced our understanding of how animals coordinate their growth and metabolism, 

as well as how different cells/tissues communicate in response to nutrition. Although only a 

few model insects, such as Drosophila, have been used in such studies, evolutionarily and 

ecologically diversified insects can possess significant differences in the nutritional 

regulation of ILP functions. The recent application of powerful genetics such as RNAi, 

TALEN and CRISPR/Cas9 technologies in non-model insects should offer great 

opportunities for exploring new concepts and principles in the nutrition-dependent control of 

insect development in the future.
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Highlights

- Insulin-like peptides (ILPs) are encoded by multiple genes in insects.

- Insect ILPs are mainly produced by the brain medial neurosecretory cells (mNSCs).

- Transcription and secretion of ILPs are regulated by multiple nutritional signals.

- Insect ILPs regulate body and tissue growth by systemic as well as local actions.

- Activities of secreted ILPs are regulated by several binding proteins in hemolymph.
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Figure 1. 
Predicted insulin-like, IGF-like and DILP7-like peptides in insects. (A) Amino acid 

sequences of the representatives of predicted insulin-like peptides from Bombyx (bombyxin-

II), Drosophila (DILP2), Anopheles (AgamILP3), Aedes (AaegILP3), Apis (AmILP2), 

Tribolium (TcILP2), and Schistocerca (ScgIRP) are aligned. (B) Amino acid sequences of 

the representatives of predicted IGF-like peptides from B. mori (BIGFLP), Drosophila 

(DILP6), Aedes (AaegILP6), Apis (AmILP1), and Tribolium (TcILP3) are aligned. (C) 

Amino acid sequences of the representatives of predicted highly conserved ILP group 

(DILP7-like peptides) from Drosophila (DILP7), Anopheles (AgamILP5), Aedes 

(AaegILP5), Tribolium (TcILP4), and Lottia (molluscan insulin-related peptide 4, MIP4) are 

aligned. Highly conserved amino acid residues are shown in red. Color bars indicate the 

predicted domains in the precursor peptides: green, signal peptide; red, B-chain; yellow, C-
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peptide; blue, A-chain. Asterisks on the color bars below the alignment denote Cys residues, 

and paired triangles denote potential cleavage sites (dibasic amino acids).
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Figure 2. 
Insulin-like peptides are mainly produced by brain mNSCs in insects. (A) Detection of 

bombyxin-II and dilp2 mRNA in the larval brain by in situ hybridization. bombyxin-II and 

dilp2 expression is observed in four and seven pairs of mNSCs in Bombyx and Drosophila, 

respectively. (B) Detection of Bombyxin-II and DILP2 localization in the larval brain by 

immunostaining. Bombyxin-II produced by mNSCs (white arrows) are axonally transported 

to the CA. DILP2 produced by mNSCs (white arrows) are axonally transported to the CC 

(yellow arrow) on the ring gland, and further transported to the dorsal vessel (yellow 

arrowhead). DILP2 signal can also be detected in specific sets of neurons within the brain 

(white arrowhead). CA, corpora allata; CC, corpora cardiaca; RG, ring gland.
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Figure 3. 
Systemic function of DILPs during larval development and its regulation by multiple factors 

(see text for details).

DILP, Drosophila insulin-like peptide; E, ecdysone; 20E, 20-hydroxyecdysone (active form 

of ecdysone); FDS, fat body-derived signal; SDR, secreted decoy of insulin receptor; Imp-

L2, ecdysone-inducible gene L2; ALS, acid-labile subunit; mNSCs, median neurosecretory 

cells; BR, brain; GC, glial cells; PG, prothoracic gland; CC, corpora cardiaca; ID, imaginal 

discs; FB, fat body.
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Figure 4. 
Nutrient-restricted or ILP/IIS-deficient flies show severe growth defect. Wild-type flies, 

wild-type adult female flies raised either on a nutrient-rich diet (Well-fed) or low-protein 

diet (Nutrient-restricted). ILP/IIS-deficient flies, a brain mNSC-ablated female fly (DILP-

producing mNSCs in the brain were genetically ablated using a dilp2 promoter to express 

the pro-apoptotic gene, reaper) and an InR hypomorphic mutant female fly.
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