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Abstract

Genes account for a significant proportion of the risk for most common diseases. The genome-

wide association scan (GWAS) era of genetic epidemiology has generated a massive amount of 

data, revolutionized our thinking on the genetic architecture of common diseases and positioned 

the field to realistically consider risk prediction for common polygenic diseases, such as non-

familial cancers, and autoimmune, cardiovascular and psychiatric diseases. Polygenic scoring is an 

approach that shows promise for understanding the polygenic contribution to common human 

diseases. This is an approach typically relying on genome-wide SNP data, where a set of SNPs 

identified in a discovery GWAS are used to construct composite polygenic scores. These scores 

are then used in additional samples for association testing or risk prediction. This review 

summarizes the extant literature on the use, power, and accuracy of polygenic scores in studies of 

the etiology of disease and the promise for disease risk prediction.
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Introduction

Roughly a century ago, RA Fisher proved that familial resemblance could be due to many 

factors inherited in a Mendelian fashion1. Fisher’s publication not only resolved a key 

difference between the Mendelians and biometricians, who believed that discrete genes 

could not underlie quantitative traits, but also led to many core statistical concepts used 

today. In the decades that followed that publication, it became widely accepted that the 

substantial heritability observed for many human traits was likely due to the composite 

influence of many genes of very small effect. Despite this, even among the most ardent 

proponents of Fisher’s work, there was belief that Mendelian analysis (e.g., linkage analysis, 

segregation analysis) was a ‘preferable’ form of scientific inquiry especially where variation 

was not continuous and ‘individually traceable genes’ were available2. The notion that the 
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Mendelian approach, which looks at cosegregation of a single specific measurable genetic 

locus and a discrete trait, was more powerful than a biometric approach or that the biometric 

approach would be “more tedious and cumbersome to use than Mendelian analysis” for 

discrete traits stood for many years2. The advances in the computer implementation of 

Mendelian statistical methods3, 4, the growing availability of polymorphic markers across 

the genome5, and the focus of human genetics on clinically-defined diseases all further 

encouraged the use of single locus methods. These approaches have experienced a recent 

resurgence, again largely due to the availability of novel technology that allows for the 

interrogation of the whole genome6. While linkage analysis was very successful in 

identifying single gene contributions to Mendelian disorders, the approach has been much 

less successful in disentangling the genetic risk for more common genetically complex 

disorders7. Consequently, the history of human disease gene mapping has best been 

characterized as a series of fits and starts largely focused on attempting to identify single 

detectable genetic contributions.

The perceived general lack of success of linkage analysis in identifying complex disease risk 

variants, coupled with the technological advances that allowed for the development of large 

genotyping arrays have made genome-wide association studies (GWAS) commonplace in 

disease gene mapping over the past decade. GWAS have identified thousands of variants for 

hundreds of diseases that while detectible and replicable at stringent multiple test corrected 

levels, explain only a very small amount of the genetic or phenotypic variance8. Initial work 

on genetic risk prediction showed that these loci, even when taken together within a given 

disease, appeared to provide very little improvement in risk prediction over known clinical 

indicators9 and account for a very modest amount of disease or trait heritability. While this 

“lost” heritability has left some puzzled10, a reasonable explanation for this is the very small 

true effect size of each gene contributing to complex disease. The stringent statistical 

significance criterion of GWAS has resulted in relatively few of the modest effect size 

polymorphisms being deemed “significant” and “replicated”. It has been shown that the 

expected rank of realistic effect sizes would not likely be among the top findings in a typical 

GWAS11. Thus, many associated loci will not be deemed ‘significant’ based on a single, 

large genome-wide study. However, there is an expectation that the SNPs in the upper tail of 

the distribution of test statistics from a given GWAS will be enriched with true signals.

Purcell and colleagues12 used an approach in an early GWAS of schizophrenia, a 

moderately rare disease (estimated lifetime prevalence, K, of 1%) of high heritability 

(80%)13, that steps well beyond single locus testing. In this approach, two stage GWAS data 

were used to select a set of “independent” SNPs in linkage equilibrium that generated p-

values below some arbitrary threshold (PT) in one sample as a discovery stage. Those SNPs 

were then used to create polygenic sum scores, with each allele weighted by the logarithm of 

the odds ratio from the discovery sample, to be tested in a second sample. Case-control 

differences in polygenic score were then tested using logistic regression. They found highly 

significant differences in polygenic sum score between schizophrenic cases and controls at 

PT across a range from .05 to .5. In addition, they found that SNPs selected from a stage 1 

schizophrenia sample yielded significant case-control polygenic score differences in a 

bipolar disorder sample, possibly indicating a high degree of genetic overlap between the 

two diseases. This method approaches a true Fisherian approach by attempting to index all 
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possible influential variation across the genome and literally allowing the statistically non-

significant true signals to stand up and be counted.

The terms “polygenic scores” (PGS), “genetic risk scores” (GRS) and “polygenic risk 

scores” (PRS) are used interchangeably to describe metrics comprising a large number of 

SNPs pooled together to represent a measured set of variants underlying a particular trait or 

disease. The discussion herein will make no distinction between application to diseases and 

normally distributed traits (e.g., height), hence the term “polygenic scores” will be used.

The application of PGS can be grouped into two broad categories: (i) exploration of the 

genetic contribution to the etiology and (ii) prediction of individual disease risk or trait 

outcome.

Etiology

Dudbridge14 examined the power and predictive accuracy of polygenic scores for discrete 

and continuous traits, deriving analytic expressions as a function of the total heritability of 

the trait, the proportion of that variance explained by the measured marker panel, the total 

number of markers, the proportion of those markers with no effect on the trait, the total 

sample size, the proportions of the sample used for training and testing, and the p-value 

threshold for selection of markers from the training sample for subsequent association 

testing or risk prediction. The primary finding was that a roughly even split between training 

and testing samples yielded the best power for association testing but the use of a larger 

training set increased the precision of prediction. In addition, fewer null markers at a fixed 

total marker number and heritability led to worse predictive power. While this result seems 

counterintuitive, fewer null markers leads to a decrease in the average effect per true marker 

thus leading to poorer power to discriminate true from null effects in the training sample.

An important point while considering or comparing the findings of investigations of the 

power or precision of PGS is the choice of genetic models. Detailed discussion can be found 

elsewhere15. The generalizability of all theoretical work is limited by the degree to which 

the assumed distribution of effects reflects reality. Most theoretical studies tend to assume 

something close to additivity. The key variables influencing the power and precision of PGS 

are the number and size of effects. That is, the greater the ability to separate true from null 

effects, the greater the power and precision of PGS.

Marker-based heritability

In addition to approaches that create polygenic sum scores, multiple additional approaches 

have been developed to examine multi- or polygenic contributions to disease. These 

methods attempt to index what could accurately be termed “marker-based” or “molecular” 

heritability. The predecessor to this method used genome-wide markers in pedigrees to 

examine deviation from expected genetic similarity and phenotypic similarity16. This 

method was eventually extended to general populations using genome-wide SNP data and 

termed “genome-wide complex trait analysis (GCTA)”17. In this method, a population-

adjusted genetic relationship matrix is derived from all available SNPs and used in a mixed 

linear model to estimate via restricted maximum likelihood (REML), the proportion of 

phenotypic variation accounted for by the relationship matrix. While this method can be 
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applied at the genome, chromosome or regional level to determine the amount of variance 

accounted for, it does not identify specifically which variants account for the heritability nor 

does it specifically facilitate risk prediction. A recent competing method is a generalization 

of Haseman-Elston regression to population samples, termed phenotype correlation-

genotype correlation (PCGC) regression. PCGC generates markedly higher genome-wide 

heritability estimates than REML-based approaches18. Palla and Dudbridge19 also extended 

their previous work14 to jointly estimate the number of variants influencing a trait and the 

variance accounted for by those variants. This eliminates the step of estimating PT and, since 

the method uses only the distribution of test statistics, can be applied to GWAS results, 

without reanalysis of individual-level data.

Recent methods demonstrate that correcting for linkage disequilibrium, as opposed to 

pruning out correlated (but possibly true independent effect) SNPs increases the heritability 

estimates from PGS20. The authors examined the performance in two large, published 

GWAS datasets and found modest increases in heritability for Schizophrenia (20.1% to 

25.3%) and Multiple Sclerosis (9.8% to 12.0%).

An additional recent extension of polygenic scoring relies on HaploSNPs21. HaploSNPs are 

large shared segments disrupted only by recombination. After identification, HaploSNPs are 

recoded to 0,1,2 copies and treated as “SNPs” in PGS assessment via the aforementioned 

PCGC regression approach. HaploSNP heritability estimates jump from 32% to 64% and 

from 20% to 67% versus SNP alone estimates for Schizophrenia and MS respectively.

Risk Prediction

As GWAS initially yielded new genetic signals, Kraft and colleagues discussed 

quantification of genetic risk in terms of clinical utility22. While p-values and odds ratios are 

useful for discovery of novel SNPs influencing disease risk, they are inadequate for 

describing the potential clinical utility of a PGS. Metrics such as the sensitivity, or true 

positive rate, and the specificity, or true negative rate, provide more useful information 

regarding the potential clinical utility of a given measure. Functions of sensitivity and 

specificity are often plotted across the range of a given predictor with the area under that 

curve (AUC) as a common measure of the potential diagnostic utility of that predictor. 

AUC, in the context of polygenic scores, can best be interpreted as the probability that the 

PGS value for a randomly selected case will be higher than that for a randomly selected 

control. An AUC of .5 would indicate a predictor with no better than random predictive 

utility. An AUC > .8 is frequently cited as the standard for a clinically useful diagnostic 

indicator. Wray and colleagues specifically address the meaning and interpretability of AUC 

in the context of specific multi-locus models23.

In early empirical work on genetic risk prediction, Janssens and colleagues9 demonstrated 

that inclusion of a modest number of genetic risk loci in predictive models of Type 2 

diabetes and cardiovascular disease did not improve risk prediction over known 

environmental risk factors and family history. Jakobsdottir and colleagues24 found similar 

results using a handful of replicating GWAS results. These authors conclude that predictive 

modeling for personalized medicine, which would require sensitive and specific measures of 

risk, was not yet realistic for most common disorders and diseases. In retrospect, this 
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conclusion was premature due to the relatively small proportion of the genetic variance 

explained by the SNPs in the predictive models. Using large numbers of loci in simulated 

data, Wray and colleagues25 conclude that large screening samples (>10,000) will provide 

adequate power for selection of loci that account for a significant proportion of the genetic 

variance. Moreover, singling out the segment of the population sample in the upper 5% of 

risk allele count identifies a segment of the sample with 3–7 times the relative risk for a 

disease of modest (10–20%) heritability. One would expect the predictive ability to increase 

with an increase in heritability. Evans and colleagues26 subsequently applied a genome-wide 

approach to the Wellcome Trust Case Control Consortium data sets and found that the 

approach yielded some predictive value beyond chance although the authors concede that 

this result could be due to technical artifact or stratification.

Chatterjee et al27 examined the potential predictive utility of PGS derived from genome-

wide SNP data. Using the predictive correlation coefficient to describe predictive accuracy, 

which has a known relationship with AUC (AUC=Φ(√.5 Rn), where Rn is the predictive 

correlation coefficient), the authors examine the impact of several factors on prediction 

accuracy. Overall, the authors’ findings are similar to previous work14. That is, factors 

allowing for greater resolution of true from null effects (e.g., increased heritability at a fixed 

number of true markers, larger sample sizes) have an impact on the prediction utility of 

derived models. A noteworthy addition was the examination of multiple effect distributions. 

Predictive power was greatest when the underlying true SNP effects followed an exponential 

distribution versus other distributions with more SNPs of smaller effect. An additional 

important conclusion of this work is the discussion of the inherent limitation of building 

predictive models from a host of univariate comparisons when the true underlying genetic 

architecture of most traits or common diseases is likely to be much more complicated. The 

authors argue for development of methods that better capture complex genetic architectures.

Aschard and colleagues28 explored the impact of more complicated architectures in 

simulated models of gene-gene and gene-environment interactions on predictive accuracy of 

polygenic risk scores (although the number of SNPs included in the models ranged from 15–

31). They simulated 2–10 interactions (1–5 gene-gene and gene-envrionment interactions 

respectively) and found that as samples size, and the number and size of interactions 

increased, the predictive power also increased. However, these increases were very modest 

most likely due to the relatively small set of effects (SNPs, environments and interactions) 

accounting for a modest overall heritability.

Kong and colleagues explored real life variants, extracting 161 risk alleles from the NHGRI 

GWAS catalog previously implicated in traits or diseases commonly seen in primary care 

settings or commonly used in indexing disease risk29. Polygenic risk was calculated as: a) 

the simple sum of the risk alleles present, b) product of the odds ratio of the present risk 

present, and c) the total population attributable risk of the alleles present. Under each of the 

three methods, the risk score was normalized against the score distribution in the control 

population. Risk scores were calculated for existing WTCCC data. They found a significant 

positive correlation between the methods, indicating that choice of weighting scheme is 

probably less critical compared to other factors. In addition, the scores were only modestly 

predictive with AUCs in the .5–.7 range. It is important to note the relatively small number 
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of SNPs used in this analysis. An important outcome of these analyses is the examination of 

PGS by decile, with consistent findings of an increase in proportion of cases by increasing 

risk decile, an approach worth further discussion and consideration.

Conclusions – Future Directions

Overall, PGS approaches hold promise for capturing the contribution of genome-wide 

common variation to complex disease. The method is generally most powerful when the 

discovery sample is large. Parameters that influence the number of risk loci, including the 

heritability of the disease, the effect size and distribution of the true loci and their frequency 

have a dramatic impact on the power of the approach. This result is not surprising since the 

empirically-derived sum score is always a mix of true and null SNPs. Thus, the power 

maximizes at PT ranges where the PGS is most enriched with true signals. Consequently, 

any variable that enriches the polygenic score with disease loci will increase the power of 

the approach.

It is also clear that different factors drive discovery versus prediction and frequently 

investigators compromise between the two. While a larger discovery sample and a much 

smaller number of clearly associated SNPs maximize prediction accuracy, an equal sample 

split maximizes power to detect association between PGSs and a trait or disease.

While the PGS approach appears very promising there are a number of unanswered 

questions regarding the method that our review has not explored, most notably, optimal 

effect size or p-value thresholds for discovery, deciling or dichotomizing of PGS, optimal 

weighting strategies, accommodation of variable ancestry and inclusion of environmental 

variables.

A commonly used approach to selecting a SNP during the discovery process for subsequent 

inclusion in PGS simply continues to add SNPs until the proportion of variance plateaus. 

Frequently, in approaches using log(OR) weighting, this happens as the OR approaches 

unity (i.e., a weight = 0) and as the proportion of true effects diminishes. This point in the 

distribution varies with the power of the sample and the genetic architecture of the disease or 

trait. Diseases with thousands of underlying small effects will generate inflated p-values 

leading to the inclusion of tens of thousands of SNPs, certainly a mix of true and null effects 

that will diminish the predictive power of the PGS. While a priori decisions regarding 

optimal PT would be difficult since the genetic architecture of any given disease is largely 

unknown, it may be worth scanning a range of PT values in applied data to get a picture of 

the “shape” of the PGS signal. Alternatively, a PGS could be limited to the relatively small 

number of replicated SNPs, again limiting the predictive power of the PGS. Clearly, more 

work needs to be done.

Another issue is the possibility of dichotomizing or quantiling PGS to identify particular 

high risk groups for prevention/intervention. If we consider a best case scenario (i.e., all true 

and no null SNPs) and use the probit model described by Wray15, assuming a total trait 

heritability of 80%, a per allele effect (a) of .05 and a prevalence of 3%, the number of total 

alleles underlying the trait can be estimated at 762. Given the distribution of PGS under the 
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probit model the consequent risk at several quantiles can be estimated. For example, at the 

90th, 95th and 99th percentiles the risk of disease is 3.73%, 8.1% and 24% respectively. This 

not only gives an idea of the upper limit of PGS risk prediction but also highlights the 

possibility that individuals at 5–10 fold increased risk may be identified using refined PGS.

The usual approach to dealing with population stratification by ancestry is to create ancestry 

principal components from random genome-wide SNP data for adjustment in subsequent 

testing. In the discovery stage, where simple association testing is used to select loci for the 

PGS, usual methods30, 31 of controlling for estimated genome-wide ancestry can be used. In 

the PGS testing or prediction stage, where these loci are summed, measures of ancestry can 

also be included as covariates, where the impact of sum score on case-control status is 

modeled. This approach, while potentially viable, assumes a linear impact of stratification 

on the component parts (the SNPs) of the sum score. This may not be a realistic assumption 

since different polymorphisms may display different signatures of stratification. However, 

we do concede that it is the norm of the field to use composite, or genome-average, 

measures of ancestry to correct for stratification in GWAS. While not an ideal approach, this 

may not be a fatal flaw. Furthermore, population stratification is commingled with genome-

wide true effects. In fact, initial work highlighted the difficulty in disentangling population 

stratification from polygenic signature32. If, as we assume, Fisher’s model is true for 

complex disease, then some degree of average genomic difference will be due to true case-

control differences and not confounding by ancestry. Thus, while correcting for ancestry is a 

vital step to getting valid results it is also important to not overcorrect for it. However, 

recent work has demonstrated that the inflation in test statistics commonly seen even in 

adjusted GWAS results is likely due to polygenicity and not stratification33. This is an area 

of active research and novel methods to assess and address the impact of population 

stratification on PGS are needed.

While the work of Aschard and colleagues showed a limited impact by including gene-gene 

and gene-environment interactions in prediction models, there are clear instances where 

environments of large effect will modify risk calculated using genes alone and ultimately 

increase prediction precision. Using models described by Wray15, we can examine the 

impact of inclusion of a measured environmental variable on the predictive power of a given 

PGS. If we assume a disease with 40% heritability accounted for by 100 loci of equal effect 

with an average minor allele frequency of 20% and disease prevalence of 10%, we can 

estimate the AUC of such a model (including only true loci) of .78. However, under the 

same genetic model but with inclusion of a single main effect environmental variable with a 

case-control difference of 1 or 2 standard deviations the estimated AUC increases to .85 

and .95 respectively. Thus, in diseases or traits with a known environmental component, risk 

prediction will benefit from the joint consideration of genes and environment.

Another issue is the selection of an optimal weighting strategy. Simulations show that 

simple (unweighted) sum scores provide adequate power in situations where the number of 

loci is small. Purcell and colleagues12 used an approach where sum scores were weighted by 

the logOR resulting from the case-control differences in the discovery sample. The 

logarithm of the odds ratio is frequently used since it is normally distributed with a mean of 

0 and variance proportional to the inverse of the sample size. The use of logOR weighting 
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leads to the creation of sum scores where the most extreme results are disproportionately up-

weighted. This approach may provide different results from an approach that uses no 

weights. Kong and colleagues showed a strong correlation between multiple weighting 

approaches29. In addition, the inclusion and weighting of rare variant with relatively large 

effects in PGS is a subject that has not been adequately addressed.

The polygenic score approach will continue to provide some insight into the genetic 

architecture of human complex disease. This approach holds incredible promise for aiding in 

the categorizing of specific phenotypic or risk subgroups, for example, among those with 

PGS in upper and lower quantiles. Recently these methods have been applied to identify 

individuals at high risk for early disease onset34, 35, those likely to suffer from comorbid 

disorders36, 37, those with treatment resistant disease38, those likely to benefit from 

intervention39 and those who are more likely to suffer from more severe chronic disease40. 

PGS methods will continue to be actively used in research settings to identify phenotypically 

interesting or unique case subsets. As PGS methods are further refined, sample sizes 

increase and research continues to demonstrate the clinical utility of the approach, PGS will 

likely become a routine part of clinical risk assessment.
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