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Abstract

In dual energy CT (DECT), noise amplification during signal decomposition significantly limits 

the utility of basis material images. Since clinically relevant objects typically contain a limited 

number of different materials, we propose an Image-domain Decomposition method through 

Entropy Minimization (IDEM) for noise suppression in DECT. Pixels of decomposed images are 

first linearly transformed into 2D clusters of data points, which are highly asymmetric due to 

strong signal correlation. An optimal axis is identified in the 2D space via numerical search such 

that the projection of data clusters onto the axis has minimum entropy. Noise suppression is 

performed on each image pixel by estimating the center-of-mass value of each data cluster along 

the direction perpendicular to the projection axis. The IDEM method is distinct from other noise 

suppression techniques in that it does not suppress pixel noise by reducing spatial variation 

between neighboring pixels. As supported by studies on Catphan©600 and anthropomorphic head 

phantoms, this feature endows our algorithm with a unique capability of reducing noise standard 

deviation on DECT decomposed images by approximately one order of magnitude while 

preserving spatial resolution and image noise power spectra (NPS). Compared with a filtering 

method and recently developed iterative method at the same level of noise suppression, the IDEM 

algorithm obtains high-resolution images with less artifacts. It also maintains accuracy of electron 

density measurements with less than 2% bias error. The IDEM method effectively suppresses 

noise of DECT for quantitative use, with appealing features on preservation of image spatial 

resolution and NPS.

Index Terms

dual-energy CT; noise suppression; entropy minimization

I. Introduction

Dual-Energy Computed Tomography (DECT) has improved capability of differentiating 

between different materials compared to conventional CT [1]. For decades, the clinical 

implementations of DECT have been hindered mainly by inconsistent CT density values and 

long scan time [1]. Recent advances in CT technologies, especially the launch of dual-source 

CT, significantly improve the CT image quality and scan speed. DECT has been 

increasingly used for automatic bone removal [2], [3], iodine quantification [4], [5], material 
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characterization [6]–[8], creating monochromatic images [9], [10], and virtual non-enhanced 

imaging [11]–[13]. The clinical applications have a continuously growing list, including 

diagnosis of aortic pathologies [14], lung perfusion and ventilation imaging [15], 

neurological and cerebral vascular imaging [16], [17], and kidney stone characterization [6]–

[8]. Despite the clinical success, significant noise amplification on decomposed images 

remains as a fundamental limitation of DECT in quantitative applications [18]–[21]. We 

propose to suppress noise in DECT by utilizing the entropy property of decomposed images 

instead of spatial distributions of image pixels, allowing preservation of spatial resolution 

and noise power spectrum (NPS).

The x-ray photon attenuation of a material resulting from one interaction mechanism can be 

described by a universal energy-dependent function. Therefore, the total photon attenuation 

of an object is a weighted summation of several known energy-dependent functions for 

different interactions, with weights determined by the material composition of the object 

[22]. In the diagnostic energy range, x-ray photon interactions with matter are dominated by 

photoelectric absorption and Compton scattering. Thus, we can decompose the contributions 

from the two interaction modes using two CT scans with different x-ray spectra - a 

technique commonly known as DECT. As compared to conventional CT, DECT provides a 

more complete characterization of an object’s attenuation properties and aids material 

differentiation.

In the practical implementation of DECT, signal decomposition is commonly performed 

using two known basis materials in either the projection domain [22]–[25] or image domain 

[9], [26], [27]. Projection domain decomposition has the advantage of effective beam 

hardening correction if a non-linear decomposition is used, but it requires access to raw 

projection data [22], [25]. Image domain decomposition directly operates upon CT images 

[9], [26], [27], and its implementation is more convenient on clinical CT scanners [9], [26]. 

DECT on a dual-source CT scanner is one particular example where image-domain 

decomposition is considered advantageous. Due to the orthogonal direction of the two x-ray 

beams of different energies, it is difficult to accurately obtain two measurements for the 

same projection ray for projection-domain decomposition [1], [9], [28]. In this paper, we 

focus on DECT with image domain decomposition.

The decomposition procedure of DECT is highly sensitive to noise mainly because x-ray 

spectra at different tube voltages and energy distributions of linear attenuation coefficients 

of basis materials both have significant overlap in the diagnostic x-ray energy range. It has 

been shown that if a primitive decomposition method is employed, the signal-to-noise ratios 

(SNR) on decomposed images of basis materials are significantly lower than those on the 

original CT images [29], [30]. Noise amplification, a well-known issue since the invention 

of DECT [18], [19], has become the last hurdle toward quantitative use of DECT in clinical 

applications.

Existing low-dose CT techniques, including both hardware and software improvements, 

reduce noise of DECT. More sophisticated algorithms consider redundant structural 

information and signal statistics of dual-energy scans and embed noise suppression into the 

signal processing chain of DECT. For example, Warp et al. used the low-energy CT image 
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to determine edge locations and then adaptively smoothed the high energy CT image while 

preserving bone edges at the predetermined locations [20]. Kalendar et al. proposed to 

minimize the noise of decomposed images based on its negative correlation [18]. Balda et al. 

developed a joint intensity statistical method on CT images prior to decomposition [21]. 

Recently, we have improved an iterative CT reconstruction algorithm [31] for enhanced 

noise suppression performance in DECT, by combining iterative CT reconstruction with the 

decomposition of DECT [29]. We have developed another iterative algorithm for DECT 

noise suppression, which is applied directly on CT images to avoid the computationally 

intensive reconstruction [30]. The algorithm fully explores the noise statistical properties of 

the decomposition process by combining noise suppression and material decomposition into 

an iterative process.

A common feature of most existing algorithms, including those previously developed in our 

group, is that they aim to reduce noise of one pixel by limiting signal variation compared 

with adjacent pixels. Prior knowledge or estimation of noise statistics and edge constraints 

help to selectively suppress the noise in a small neighborhood to avoid errors on true signals. 

However, in using spatial distributions, these methods inevitably sacrifice spatial resolution 

and alter image NPS by preferentially suppressing high-frequency noise, as shown in the 

results section of this paper. Shifting the NPS towards low-frequency noise leads to different 

image texture with the appearance of coarser noise [32] and potentially degrades object 

detectability [33], [34]. We aim to break the tradeoff between noise suppression and spatial 

resolution in the signal processing of DECT and to substantially reduce DECT noise without 

altering image NPS. Toward this goal, we abandon the design principle of denoising 

algorithms that attempt to reduce signal variations between neighboring pixels. Instead, we 

aim to limit signal variation within the same material. We improve material differentiation 

of DECT on noisy decomposed images via a new technique of entropy minimization. The 

image noise is effectively reduced by exploiting noise correlation properties. The 

performance of the proposed method, henceforth referred to as IDEM (Image-domain 

Decomposition through Entropy Minimization), is assessed using phantom studies. Electron 

density calculations are used to quantify its accuracy. The results are compared to those 

without noise suppression, with a filtering method [35], and with an iterative method 

developed in our group [30].

II. Method

A. Noise Propagation in DECT Decomposition

In this section, we first analyze noise amplification in DECT decomposition. The property of 

strong noise correlation on decomposed images is then investigated.

We study DECT in the diagnostic energy range with image domain decomposition. Each 

DECT dataset contains two CT images at different energy levels, henceforth referred to as 

high and low energy images. We assume that the two CT images are acquired independently 

and therefore have independent noise. Thus, each pixel location has a pair of corresponding 

values, one from the high energy image (μh) and the other from the low energy image (μl). 

We consider a pair of attenuation coefficients (μh, μl) to be a linear combination of two 

known basis materials, yielding the following relationship:

Petrongolo and Zhu Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

where μ⃗ = [μh μl]T, x⃗ = [x1 x2]T, and

(2)

μ1h, μ2h, μ1l, and μ2l represent the high and low energy attenuation coefficients for basis 

materials 1 and 2, and x1 and x2 are the unitless densities of basis materials 1 and 2, 

respectively. Directly solving Eqn. (1) gives the pixel values of the decomposed images as:

(3)

Signal SNR significantly drops on the decomposed images obtained by Eqn. (3). To see this, 

we note that:

(4)

The factor  can be ignored in the SNR calculation. Eqns. (4) and (3) show that the 

noise variance of the decomposed images is the summation of noise variances of CT images 

weighted by the square of linear attenuation coefficients of the basis materials. On the other 

hand, the signals in decomposed images become μhμ2l − μlμ2h or −μhμ1l + μlμ1h. Therefore, 

with clinically relevant values of linear attenuation coefficients, decomposition using Eqn. 

(3) often results in large signal cancellations. A scenario for relatively small signal 

cancellation is when decomposing a pixel onto the basis image of its own material. 

However, even these best-case scenarios lead to large SNR degradation after image 

decomposition.

Besides noise boost, one property of decomposed images is that their noise is highly 

correlated [18]. For analysis simplicity, we assume that the noise of one pixel on the high 

and low energy CT images is Gaussian, i.e. , where  is the mean value and 

the covariance matrix, W, is defined as follows:

(5)

σh and σl are the standard deviations (STDs) of independent noise associated with the high 

and low energy images, respectively. Based on Eqn. (3), we obtain the probability density 

distribution of the decomposed images:  [30]. This shows 

that the decomposed images are jointly Gaussian, with an elliptical and highly asymmetric 

(i.e., highly correlated) distribution as specified by the covariance matrix A−1W (A−1)T.

To see this, we first note that:
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(6)

where,

(7)

Singular value decomposition (SVD) gives:

(8)

where U and V are unitary matrices, and Σ is a diagonal matrix whose entries are 

eigenvalues of A′. Therefore, we can rewrite the covariance matrix as:

(9)

As such, the condition number of the covariance matrix, or the eccentricity of the joint 

Gaussian distribution, is totally determined by Σ.

Exerting SVD on A′, we obtain the eigenvalues of A−1W (A−1)T as:

(10)

where

(11)

Using Taylor’s expansion, we simplify Eqn. (10) via the following approximation:

(12)

where f is positive and Δ is a small value compared to f. The condition number of A−1W 

(A−1)T is finally approximated as:

(13)

For practical values in DECT, the denominator of the first term of Eqn. (13) is close to zero, 

which drives  to be much greater than 1. For example, since σl and σh are typically on the 

same order of magnitude, the above approximation gives  values on the order of 103 if we 

assign the values for epoxy and aluminum (i.e., two basis materials used in the presented 

studies of this paper) at tube potentials of 75 kVp and 125 kVp, i.e., {0.024, 0.084, 0.022, 

0.065} mm−1, to the linear attenuation coefficients used in the material decomposition, {μ1l, 
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μ2l, μ1h, μ2h}. The estimated condition number is consistent with the measured values in our 

experiments.

To better demonstrate the effect that a large condition number has on decomposed image 

noise, Fig. 1 shows low and high energy CT images as well as 2D scatter plots of pixel 

values before and after DECT decomposition. Each pixel pair in Fig. 1a corresponds to one 

data point in the plots of Figs. 1b and 1c. Due to independent noise in CT images, the image 

pixels of one material form an elliptical cluster in a 2D scatter plot of pixel values as seen in 

Fig. 1b. Note, the pixel values of CT images are in Hounsfield Units (HU), which is 

converted from the linear attenuation coefficient μ as:

(14)

where μwater is the linear attenuation coefficient of water in the CT image. As illustrated in 

Fig. 1c, DECT decomposition forces the material clusters into a highly asymmetric shape, 

dramatically prolonging them in the direction of signal correlation. In this paper, we aim to 

suppress noise on decomposed material images by utilizing the eccentric statistical 

distribution.

B. Noise Suppression through Entropy Minimization

Noise suppression is possible when redundant information is explored on the measurements. 

Existing algorithms reduce noise in data of a single measurement by implicitly assuming 

similar noise statistics for neighboring pixels. Novel methods have been developed to 

exclude pixels (e.g., edges) with highly different statistics from noise suppression. However, 

as long as a method relies on the spatial relationship of signals, it is difficult, if not 

impossible, to eliminate all associated errors, including spatial resolution loss and degraded 

NPS [36].

Since the accuracy of CT imaging has been significantly improved by recent advances on 

CT hardware, reconstruction algorithms, and correction algorithms, pixels representing the 

same material have consistent values and noise statistics on CT images and thus on DECT 

decomposed images. We propose using the material, or entropy property, of the imaged 

object for noise reduction on DECT, i.e., the IDEM method. Pixels representing similar 

materials are first estimated and grouped. Noise suppression is then carried out on these 

pixels by utilizing the noise correlation between the decomposed images.

Here we describe the design principle and workflow of the IDEM algorithm. More 

implementation details will be included in the next section. If decomposed images were to 

contain negligible noise, the 2D scatter plot of these decomposed images should reveal tight 

clusters about different centers-of-mass (COM) for different materials. Based on this 

concept, to reduce noise boost during decomposition, we propose an entropy-minimization 

based algorithm, outlined in Fig. 2. We first search for an axis passing through the origin in 

the 2D scatter plot of decomposed images, on which the projection of all data points has 

minimal entropy. This optimized axis specifies the direction that the magnified noise 

minimally increases the image entropy. Next, we implement an empirical noise suppression 
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procedure in the direction perpendicular to the axis of minimum entropy as indicated in 

Steps 2 and 3 of Fig. 2. For each pair of pixels on decomposed images at the same location, 

x⃗, we project the data point in the scatter plot onto the optimized axis. Pixels of similar 

materials are identified if their projections onto the optimized axis are within a small 

neighborhood around the projection of x⃗. We then calculate the COM value, , for this 

pixel group. x⃗ is finally replaced by  for noise suppression. The optimal axis in the 2D 

scatter plot and the direction of noise suppression are indicated in Fig. 1c.

Signal bias appears on the noise-suppressed images if pixels of different materials are 

grouped together for the COM calculation. Generally, including more pixels in the COM 

calculation increases the strength of noise suppression but also the possible bias. This 

tradeoff can be likened to those in other noise suppression techniques, such as filtering or 

gradient-based iterative methods, where stronger noise suppression typically leads to poorer 

image spatial resolution. As discussed in detail in the next section, two strategies are 

proposed to improve the accuracy of material differentiation and thus to reduce image bias. 

We differently weight the contribution of each pixel to the COM calculation such that pixels 

with CT values close to (or far from) the CT values at the location of x⃗ have high (or low) 

influence. A spatial weighting technique is also designed as an option in the IDEM 

algorithm to further alleviate error for pixels that have close CT values but are spatially 

distant.

C. Implementation Details

In this section, we provide a detailed explanation for each step of the IDEM algorithm 

shown in Fig. 2, with examples of pseudo codes for two-dimensional images.

Fig. 3 shows the pseudo code for Step 1 (i.e., finding the optimal axis onto which the 

projection of data clusters has minimum entropy) with parameter values used in our 

implementations. The orientation of the optimal axis is primarily determined by the unitary 

matrix U in Eqn. (9), which depends on both the decomposition matrix A and the covariance 

matrix W. However, W is determined by the unknown noise STDs of the high and low 

energy CT images. To provide an initial estimate of the angle of the optimal axis, we assume 

that noise STDs in the high and low energy images are approximately equal, which changes 

Eqn. (7) to:

(15)

where σ is a scalar and does not affect the unitary matricies determined through SVD. Thus, 

we can estimate the optimal angle via SVD on A−1. We then refine this value using a brute-

force algorithm to search amongst neighboring angles for the value achieving minimum 

entropy (lines 8–14 in Fig. 3). The entropy of a histogram, p⃗, with n bins is calculated as 

shown in line 12. The angle onto which the projection of all data points has the minimum 

entropy is selected as the optimal, and all data points in the scatter plot are rotated by that 

angle.

Step 1 outputs a 2-by-w matrix Y, where w is the total number of image pixels. The majority 

of noise amplification from decomposition is now confined to the second row of Y, y⃗2, while 
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the first row of Y, y⃗1, can be used as an indicator of different materials. We therefore use y⃗1 

for material classification and perform noise suppression on y⃗2.

Fig. 4 shows the pseudo code for Steps 2–4 of the IDEM algorithm. To improve 

computation efficiency, we first sort y⃗1 in ascending order (line 9). For each image pixel, a 

group of pixels is selected such that their y⃗1 values are in a small neighborhood (lines 12–

18). The neighborhood size is set to be β · F, where β is a user-defined parameter (0.5 ~ 1.5 

in our implementations) and F is the measured full-width-at-half-maximum (FWHM) of one 

major peak in the histogram of y⃗1. Note that, since y⃗1 values are pre-sorted, the search range 

for neighboring pixels is small and is adaptively changed for each search. We suppress 

image noise by calculating the COM in the direction perpendicular to the optimal axis using 

the y⃗2 values of all pixels identified as one group. To improve algorithm accuracy in the 

presence of material classification errors, we weight each value of y⃗2 differently in the COM 

calculation (line 28). The weight assigned to one pixel (with index a) inside the 

neighborhood of a different pixel (with index b) is calculated using two schemes shown in 

lines 19–27. The first weight is calculated in line 20, using a Gaussian function of CT value 

differences for pixels a and b on the high and low-energy CT images. The width of Gaussian 

kernel is controlled by δ · σ̂, where δ is a user-defined parameter and σ̂ is the estimated or 

measured noise STD in a CT image. Line 25 calculates a second and optional weight, which 

uses an empirical function of geometric distance, D, between pixels a and b. Pixels with 

close CT values and geometric distance (if the spatial weighting is enabled) are considered 

more likely to be of the same material and therefore contribute more to the COM 

calculation. The calculated COM value then replaces the value of y⃗2(b) (line 30). Noise 

suppressed images of decomposed materials are finally obtained after undoing the 

operations of sorting and rotation (lines 30–32).

D. Selection of Algorithm Parameters

All the control parameters of the IDEM algorithm and their values in our implementations 

are shown in the pseudo codes of Figs. 3 and 4. In this paper, most parameter values are 

fixed and the method performance is controlled by tuning only two parameters: β and δ.

The β value determines the size of the neighborhood used to group pixels for COM 

calculations. As including more pixels in a COM calculation increases the strength of noise 

suppression, β is strongly correlated with the level of noise suppression. Stronger noise 

suppression, however, increases potential errors of image bias. In our studies, we find that β 

values in the range of 0.5 ~ 1.5 well balance the strength of noise suppression and the 

induced image bias errors. The selection of δ balances the same tradeoff by controlling the 

joint-Gaussian function used to weight a pixel’s contribution in the COM calculation based 

on its CT values. The δ value is inversely correlated with the reliance on CT values for 

material classification. We find that our method performance is relatively insensitive to the 

choice of δ values in the range of 10 ~ 30.

E. Evaluation

We have assessed method performance using an evaluation phantom, Catphan©600 (The 

Phantom Laboratory: Salem, NY), and an anthropomorphic head phantom. Projection data 
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were acquired using a tabletop CT system at Georgia Institute of Technology [37], whose 

geometry matches that of the onboard imager system of a Varian radiation therapy machine. 

Phantom data were acquired for 655 projection views using tube potentials of 75 kVp and 

125 kVp and a tube current of 80 mA. To limit photon scatter, the phantoms were imaged 

with a narrowly opened collimator, i.e., a fan-beam equivalent geometry. High and low 

energy CT images were reconstructed using filtered backprojection (FBP), with an image 

size of 512 by 512 pixels and pixel resolution of 0.5 by 0.5 mm2. The x-ray tube (Varian 

RAD-94) has inherent filtration of 0.5 mm Al. Beam hardening effects due to the poly-

energetic spectrum of the x-ray source introduce CT errors and therefore bias on the 

decomposed images. Our algorithm for noise suppression via entropy minimization typically 

takes 10 to 20 minutes using MATLAB on a 2.66 GHz CPU workstation. It is worth noting 

that, although based on the same physical principle, the DECT studies presented in this 

paper use experimental configurations different from those of a clinical DECT scanner.

We compared the IDEM algorithm with a filtering method [35] and an iterative method 

recently developed in our group by Niu et al. [30]. All three methods perform decomposition 

in the image domain after a standard CT reconstruction using FBP. The filtering method 

applies a median filter to the high and low energy images prior to material decomposition. 

This decreases noise in the initial CT images and thus limits the amount of amplified noise 

in the resultant basis material images. The iterative method formulates the material 

decomposition of DECT as a least-squares estimation problem, with a regularization term to 

preserve structural edges and with the inverse of the estimated variance-covariance matrix of 

the decomposed images as the penalty weight in the least-squares term. We used image 

noise, NPS, and spatial resolution as image quality metrics in the comparisons. The accuracy 

of electron density measurements with and without the proposed noise suppression was also 

investigated.

One slice of the Catphan©600 phantom, which contains high contrast line pairs, was used to 

evaluate performance on spatial resolution. The line pairs with spatial frequency from 1 to 

21 line pairs/cm are made of aluminum, surrounded by epoxy, a water-equivalent material. 

In the study, basis materials of aluminum and epoxy were chosen to create “bone” and 

“tissue” images, respectively. A uniform area was selected as the region of interest (ROI) for 

noise analysis. In addition, the 2D NPS was calculated for an area of uniform material as:

(16)

where f is the image ROI with pixel values offset to achieve a zero mean value, and DFT2{f} 

denotes the 2D discrete Fourier transform of the image [38]–[40].

A different slice of the Catphan©600 phantom, which contains rods of different materials, 

was used to assess the accuracy of electron density measurements. We used epoxy and 

aluminum as basis materials to create “tissue” and “bone” images, respectively. Contrast 

rods were used as ROIs for electron density measurement, calculated as:

(17)
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where xb and xt are pixel values of decomposed bone and tissue images, and ρe,b and ρe,t are 

the electron densities of the bone and tissue materials, respectively. Note that the 

decomposed images are unitless and indicate the normalized densities of equivalent basis 

materials contained inside one pixel. For each rod, the average percent error of associated 

pixels was determined using the equation:

(18)

where  is the true electron density of a rod, which is provided in the Catphan©600 

phantom’s user manual, and  is the mean value of measured electron density inside the 

rod. The accuracy of our method as compared to that achieved without noise suppression 

was assessed using the root-mean-square (RMS) of the E(%) of all the rods.

The head phantom was used for comprehensive evaluations of different methods on an 

object with complicated structures. The head phantom is composed of epoxy mimicking soft 

tissue and a calcium compound mimicking bone. Note that, the calcium compound has a 

spatially varying density, producing relatively large entropy in the proposed data processing 

even if image noise is low. The calcium compound (“bone”) and epoxy (“tissue”) were 

chosen as basis materials.

In the presented DECT results, errors in material decomposition stem from sources 

including beam-hardening effects on the CT images and the proposed signal processing. In 

this work, we focus our research on noise suppression in DECT material decomposition. 

Beam-hardening correction is therefore considered beyond our scope and is not 

implemented on the resultant images. The results obtained by direct decomposition via Eqn. 

(3) with no noise suppression are used as the ground truth in our investigations on 

decomposition accuracy of the IDEM algorithm.

III. Results

A. Catphan Study on Spatial Resolution and NPS

Fig. 5 shows the 75 kVp and 125 kVp CT images of the line-pair slice of Catphan©600 

phantom. The decomposed images using different methods are shown in Fig. 6. As indicated 

by Eqn. (3), since the CT images and the elements of the decomposition matrix have the 

same units, the decomposed images are unitless density maps of the basis materials. Direct 

decomposition via Eqn. (3) results in severe noise amplification, as seen in the first row of 

Fig. 6. SVD on the inverse of the decomposition matrix estimates the angle of the optimal 

axis for noise suppression to be 73.13°. The proposed entropy minimization refines this 

value to 72.24°. All three methods, including the filtering method [35], the iterative method 

[30], and the IDEM algorithms, i.e., with and without spatial weighting (SW and NSW, 

respectively), effectively reduce noise on the decomposed images. Table I summarizes the 

mean pixel values and noise STDs of each basis material image within the ROI depicted by 

the dashed circle in Fig. 6. For a fair comparison of performance on spatial resolution, we 

tune the algorithm parameters such that all the methods achieve similar levels of noise 

suppression, with reduction of noise STD on both “bone” and “tissue” images by a factor of 
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around 8.5. By inspecting the line-pair images, especially the zoom-in images contained in 

Figs. 5 and 6, we conclude that the proposed entropy minimization based method (both with 

and without spatial weighting) achieves the best performance on preservation of spatial 

resolution in both decomposed images. The spatial resolution of the decomposed image via 

the IDEM method is close to that of the initial CT images.

It is worth noting that, although the decomposed images produced by the different noise 

suppression algorithms have approximately the same noise STD, the image quality differs 

greatly. This phenomenon is due to different noise correlation characteristics in these 

images. Fig. 7 shows the NPS measured within an ROI of 100 by 100 pixels centered in the 

CT and “tissue” images. It is seen that decomposition without noise suppression and the 

IDEM method without spatial weighting both maintain the overall structure of NPS in the 

original CT image. The filtering method and the iterative method, however, preferentially 

suppress high frequency noise, which alters the texture of the decomposed images. Similar 

performance on NPS is expected with other existing methods, as long as they suppress noise 

by reducing spatial variations of neighboring signals. When the IDEM method uses spatial 

weighting, the same type of NPS degradation appears (i.e., increase of NPS signals in the 

low-frequency region). The overall NPS performance, however, is still superior to those of 

the filtering or iterative methods as shown in Fig. 7.

B. Catphan Study on Electron Density Accuracy

In this study, we aim to investigate possible adverse effects of the IDEM method on 

decomposition accuracy. Fig. 1a shows the low and high energy CT images from a slice of 

Catphan©600 phantom that contains several contrast rods. Using these images, we perform 

material decomposition via Eqn. (3) with no noise suppression and the IDEM method. The 

decomposed images are shown in Fig. 8. For these results, the proposed search algorithm for 

minimum entropy refines the angle of the optimal axis for noise suppression obtained 

through SVD from 73.13° to 72.21°. Algorithm parameters are tuned for strong noise 

suppression with noise STD reduction by a factor of around 13 on decomposed images. Fine 

structures are still well preserved in the images obtained by the proposed noise suppression. 

By applying Eqn. (17), electron densities are calculated from the decomposed images, 

generating the images shown in the third column of Fig. 8. The measured electron densities 

for different contrast rod materials and the RMS of the average percent errors for different 

materials are summarized in Table II. An RMS error of 1.61% is observed on the results 

with direct decomposition and no noise suppression, mainly due to the uncorrected beam 

hardening artifacts in the CT images and possibly limitations of a linear DECT approach to 

electron density measurements. The IDEM method introduces an extra small bias of 1.16% 

and 0.38% when implemented without and with spatial weighting, respectively. These 

results indicate that our method substantially reduces the noise in decomposed images with 

limited effect on decomposition accuracy and that the inclusion of spatial weighting reduces 

most bias errors. It is worth emphasizing that, to fully investigate the capability of the IDEM 

algorithm on noise suppression, we have tuned algorithm parameters for very strong noise 

suppression. If less strong noise suppression is implemented, the bias from our algorithm is 

expected to decrease.
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C. Anthropomorphic Head Phantom Study

The CT images and the decomposed images of the anthropomorphic head phantom are 

shown in Figs. 9 and 10, respectively. Prior to noise suppression, the IDEM method refines 

the angle of the optimal axis from 67.40° to 66.52°. Table III summarizes the mean pixel 

values and noise STDs within an ROI (indicated by the dashed circle in Fig. 10) of the 

decomposed images. Once again, we tune the algorithm parameters so that all the methods 

achieve similar levels of noise suppression. Method performances similar to those in the 

Catphan©600 studies are observed in the image comparison. All three methods reduce the 

average noise STD by a factor of about 24 on the decomposed images. The entropy 

minimization based methods best preserve the image spatial resolution, which is obvious on 

the image comparison of sinus area shown in Fig. 11. The fine, intricate structures shown in 

the initial CT images are still clearly differentiable on the images obtained by the IDEM 

method, while other approaches generate image blur. Furthermore, since our method has less 

effect on the image NPS, the resultant image quality appears more natural. The images 

obtained by other methods contain noise artifacts due to the increased noise correlation 

between neighboring pixels. By comparing the results with and without the proposed noise 

suppression in Table III, we find that the IDEM algorithm with no spatial weighting 

introduces small bias on the decomposed material images and this small bias is effectively 

removed by the proposed spatial weighting scheme. In Fig. 10, it is interesting to note that 

the reduced image bias achieved by spatial weighting causes the images to match more 

closely the mean values of the images without noise suppression, which contain non-

uniform beam hardening artifacts. As a result, the decomposed material images by the 

IDEM method with spatial weighting appear less uniform than those without spatial 

weighting.

IV. Discussion and Conclusions

Noise amplification has been a well-known issue of DECT since its invention [18], [19]. In 

this work, we propose a new algorithm for improving DECT image quality by reducing the 

noise on decomposed images, namely the IDEM method. Our approach is distinct from 

other existing methods in that it processes decomposed images by minimizing the signal 

entropy, instead of reducing the signal variation between neighboring pixels. As a 

consequence, image spatial resolution is preserved with limited effect on NPS even if strong 

noise suppression is applied. This appealing feature is supported by the presented phantom 

studies.

More evaluation studies and algorithmic improvements are of high interest in our future 

research to make the entropy minimization based method practical in clinical rooms. The 

IDEM method achieves material differentiation in a 2D decomposition space by using a 

brute-force searching scheme to orient an axis such that the projection of all data points onto 

that axis has minimal entropy. If the step size of the search is too large or too few histogram 

bins are used in the entropy calculation, the algorithm could potentially find a sub-optimal 

angle. In addition to further optimizing the IDEM algorithm parameters for method stability 

on various DECT data, we will look into other entropy minimization algorithms for 

improved computational efficiency [41]. Future work will also include extensive 
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investigations on material decomposition accuracy which go beyond the electron density 

calculations presented in this paper. Since the experimental setup used in this paper is 

different from that of a clinical DECT scanner, we will implent our algorithm on data 

acquired from a clinical scanner to assess the IDEM method’s performance on specific 

clinical tasks.

In the presented studies, we used the same parameter values for noise suppression at 

different pixel locations, which assumes that noise is stationary on CT images. We will 

improve the algorithm by using different algorithm parameters for different pixels based on 

the estimated variance of non-stationary noise. The noise variance maps of the initial CT 

images can be estimated by existing algorithms, for example, an FBP-based algorithm 

previously developed by our group [42]. When applying the entropy minimization based 

method on volumetric DECT data, the computation time of the IDEM method greatly 

prolongs. Since the entropy minimization algorithm processes each image pixel/voxel 

independently, a structure compatible for parallel computing, we will implement the 

algorithm on a graphics-processing-unit (GPU) based workstation for acceleration [43].

The IDEM method has promise to break the tradeoff between noise suppression and spatial 

resolution preservation by exploring the entropy property of measured signals. Futhermore, 

the method is applied on decomposed material images at the post-processing stage, with a 

flexible framework. It can be combined with existing methods for further enhanced noise 

suppression. The proposed principle may shed light on designs of data processing algorithms 

for advanced CT imaging that acquire spectral information of the scanned object, including 

multi-energy CT [44] and energy-resolved CT [45], [46]. In these future investigations, it 

will be important to remember that the IDEM method relies implicitly upon the assumption 

that the signals after basis material decomposition, if containing no noise, have a small 

number of different levels, which implies small entropy. In situations where this assumption 

becomes invalid, the IDEM method is expected to have limited efficacy. For example, for 

DECT decomposition in the projection domain, we expect the IDEM method to fail because 

projection images have signal values with a continuous distribution and thus large entropy.

In conclusion, we propose a novel method utilizing entropy minimization within a 2D 

transformation space for noise suppression on decomposed images of DECT, i.e., IDEM. 

Distinct from other noise suppression techniques, the IDEM method does not estimate and 

suppress noise based on spatial variations of signals and thus has potential to better preserve 

image spatial resolution and NPS. In Catphan©600 studies, the IDEM method reduces noise 

STD on decomposed images by a factor of around 13 while limiting the induced error in 

electron density calculations to 1.16% and 0.38% without and with spatial weighting, 

respectively. The method reduces the noise STDs on decomposed images of an 

anthropomorphic head phantom by a factor of at least one order of magnitude. In all 

presented studies, the proposed method retains greater spatial resolution than a conventional 

filtering method and a recently developed iterative method at the same level of noise 

suppression, while largely preserving the NPS of the initial CT images.
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Fig. 1. 
(a) CT images of the contrast-rod slice of the Catphan©600 phantom accompanied by 2D 

scatter plots of pixels (b) before and (c) after DECT decomposition. The numbered materials 

are: [1] Teflon, [2] polymethylpentene (PMP), [3] low density polyethylene (LDPE), [4] 

Polystyrene, [5] aluminum, [6] acrylic, and [7] Delrin. The circled area in (b) indicates a 

group of data points from the aluminum rod. The arrows in (c) show the optimized axis and 

the direction of noise suppression in the IDEM algorithm. Display window for (a) is [−500 

1000] HU.
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Fig. 2. 
Outline of the IDEM method. The plot in Step 2 depicts the same data points as those in 

Step 1 rotated about the origin so that the optimized axis is horizontal. Note that different 

scales are used on the axes of the subfigures for improved clarity. In Step 3, the grey points 

are the COM estimates that will replace the black points.
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Fig. 3. 
Pseudo code for Step 1 of Fig. 2. In line 10, 1DHist(T⃗, n) is a function that converts a vector 

T⃗ into a histogram normalized by the total number of points, with n histogram bins.
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Fig. 4. 
Pseudo code for Steps 2 through 4 of Fig. 2. Line 24 calculates the geometric distance 

between two pixels with indices of J(i) and I(υ).
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Fig. 5. 
Low and high energy CT images of the line-pair slice of Catphan©600 phantom. Zoom-in 

images of the line pairs are shown in the second row, with spatial frequencies from 5 to 8 

line pairs/cm, moving from right to left. The dashed box in the top left image indicates the 

location where the zoom-in images are taken. Display window: [−500 2500] HU.
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Fig. 6. 
Decomposed images of the line-pair slice of Catphan©600 phantom. Within each image set, 

the “bone” image precedes the “tissue” image. The inserts are zoom-in images of line pairs 

with spatial frequencies from 5 to 8 line pairs/cm. In the bottom-right image, the dashed 

circle indicates the ROI used for the mean and noise STD calculations shown in Table I. The 

tuning parameters of the IDEM algorithm, (β,δ), are set to (1.27,9.5) when spatial weighting 

is not implemented and (1.32, 11.3) with spatial weighting employed. Display windows are 

[0.1 1.2].

Petrongolo and Zhu Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Measured NPS on the 75 kVp CT image and the “tissue” images generated by different 

algorithms. Zero frequency is at the center of NPS images. Each NPS was produced from an 

ROI of 100 by 100 pixels centered in the respective image. The images are displayed with a 

window of [min max].
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Fig. 8. 
Decomposed and electron density images of the contrast-rod slice of the Catphan©600 

phantom. The first, second, and third columns are “bone,” “tissue,” and electron density 

images, respectively. In the “tissue” image of the last row, the dashed circle indicates the 

ROI used for noise STD calculations. The tuning parameters of the IDEM algorithm, (β,δ), 

are set to (0.57, 15.0) when spatial weighting is not implemented and (0.80, 14.7) with 

spatial weighting employed. Display windows are [0.1 0.7] for the bone images, [0.6 1.4] for 

the tissue images, and [2.75 5] × 1023 e/cm3 for the electron density images.
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Fig. 9. 
Low and high energy CT images of the anthropomorphic head phantom. The dashed box in 

the 125 kVp image indicates the location of the zoom-in images shown in Fig. 11 relative to 

the complete image. Display windows are [−500 1000] HU.
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Fig. 10. 
Decomposed images of the anthropomorphic head phantom. Within each image set, the 

“bone” image precedes “tissue” image. In the bottom-right image, the dashed circle 

indicates the location of the ROI used for mean and noise STD calculations. The tuning 

parameters of the IDEM algorithm, (β,δ), are set to (0.72, 28.1) when spatial weighting is 

not implemented and (1.00, 27.2) with spatial weighting employed. Display windows are 

[0.01 1.4].
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Fig. 11. 
Zoom-in images of the anthropomorphic head phantom in the area indicated by the dashed 

box in Fig 9. The top-left and bottom-left images are 75 kVp and 125 kVp CT images, 

respectively. Within each set of decomposed images, the “tissue” image is shown in the top 

row, and the “bone” image is shown in the bottom row. CT images have a display window 

of [−500 1000] HU. Basis material images have a display window of [0.01 1.4].
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TABLE I

Mean and STD within the ROI (indicated by the dashed circle in Fig. 6) of Catphan© line pair basis material 

images.

“Bone” Image “Tissue” Image

Without Noise Suppression −0.002 ± 0.3 1.00 ± 0.8

Filtering Method −0.004 ± 0.04 1.01 ± 0.1

Iterative Method −0.004 ± 0.04 1.01 ± 0.09

IDEM Method (NSW) 0.003 ± 0.04 0.99 ± 0.09

IDEM Method (SW) −0.002 ± 0.04 1.00 ± 0.09
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TABLE III

Mean and STD values within the ROI (indicated by the dashed circle in Fig. 10) of the decomposed images on 

the anthropomorphic head phantom.

“Bone” Image “Tissue” Image

Without Noise Suppression 0.00 ± 0.6 1.00 ± 2

Filtering Method −0.04 ± 0.03 1.10 ± 0.06

Iterative Method −0.03 ± 0.03 1.07 ± 0.05

IDEM Method (NSW) −0.02 ± 0.04 1.05 ± 0.04

IDEM Method (SW) 0.00 ± 0.04 1.00 ± 0.04
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