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Abstract
Pluripotent stem cells possess complex systems that protect them from oxidative stress

and ensure genomic stability, vital for their role in development. Even though it has been

reported that antioxidant activity diminishes along stem cell differentiation, little is known

about the transcriptional regulation of the involved genes. The reported modulation of some

of these genes led us to hypothesize that some of them could be regulated by the transcrip-

tion factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in

induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of

multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found

that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse

differentiation protocols showing an expression pattern similar to Nanog gene. Moreover,

Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactiva-

tion assay using two different reporter constructions. Finally, we studied Sod2 gene regula-

tion by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that

downregulation of any of them reduced Sod2 expression. Our results indicate that pluripo-

tency transcription factors positively modulate Sod2 gene transcription.
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Introduction
Embryonic Stem Cells (ESCs) have a complex network that ensures genomic stability, which is
critical as they can give rise to all the cell types of the organism, including the germ line. Their
low mutational rate is thought to be a consequence of the concerted action of efficient DNA
repair, high fidelity mechanisms, detoxifying activities, and low levels of oxidative stress [1].
Additionally, cells that accumulate mutations are induced to undergo apoptosis or differentia-
tion programs, providing an extra safeguard to the stem cell population genome [2].

Reactive oxygen species (ROS), generated mainly by mitochondrial respiration, play an
important role in cellular responses when they are in limited amounts, being second messen-
gers in many signal transduction pathways [3]. Their homeostasis is vital for maintaining sev-
eral cellular functions such as proliferation, differentiation and apoptosis. Nevertheless, in
higher concentration, ROS can modify macromolecules like proteins, lipids and nucleic acids
becoming toxic for the cells and even inducing DNA damage [4]. During development, the
antioxidant stress defense of the early embryo is challenged by the increasing amounts of ROS
resulting in a continuous decrease of glutathione levels [5]. Furthermore, it has been shown
that the number of mitochondria and mitochondrial biogenesis is low in ESCs. However, dur-
ing differentiation mitochondrial proliferation and activity increase [6], concomitantly with an
augmented demand for ATP [1,7] and a rise in ROS levels [1]. In addition, there are evidences
showing that high levels of ROS promote differentiation in hematopoietic [8,9] and embryonic
[10] stem cells.

Induced pluripotent stem cells (iPSCs) have been obtained from multiple cell types since
they were developed in 2006 [11]. It has been reported that they have stress defense systems
similar to that of ESCs, in spite of being derived from terminally differentiated cells that con-
tain larger amounts of mitochondria. It has also been found that ROS levels in undifferentiated
iPSCs are low and that they increase during differentiation, similar to ESC’s [12]. As a whole,
these evidences suggest that during the reprogramming process for iPSCs obtention, there is an
activation of the cellular mechanisms that provides antioxidant stress defense.

Although it has been shown that mouse and human ESCs express high levels of antioxidant
enzymes [1, 6], there is still limited knowledge about their transcriptional regulation. Their
modulation and the high complexity of these orchestrated systems led us to hypothesize that
some of the genes involved in the cellular oxidative stress defense could be regulated by the
transcription factors critical for self-renewal and pluripotency, such as Oct4, Sox2 and Nanog.
With the purpose of gaining insight into stress defense factors’ transcriptional regulation, in
this work we studied the expression pattern of multiple genes involved in antioxidant defense
systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-
Sod/Sod2) was highly expressed in pluripotent stem cells and repressed during differentiation
and that its promoter was induced by the pluripotency transcription factors Oct4 and Nanog.

Materials and Methods

Cell culture, culture conditions and differentiation
R1 and Ainv15 ESC lines are commercial lines purchased from ATCC. They were cultured and
differentiated as previously described [13–15]. The iPSC-20 line was derived and validated pre-
viously by us [16], and cultured and differentiated as previously described [16]. This line was
obtained by reprogramming day 13.5 mouse embryonic fibroblasts transduced with pHA-
GE-EF1a-STEMCCA [17]. NIH/3T3 cell line (ATCC) was cultured in DMEM supplemented
with 10% FBS (Gibco) and antibiotics [100 U/ml penicillin and 100 mg/ml streptomycin
(Gibco)]. 46C Sox1-GFP ESC line [18] was a kind gift from Austin Smith and were cultured in
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0.1% gelatin coated plates in N2B27 2i/LIF medium, composed of serum free N2B27 based
medium [19] (prepared using B27 without Vitamin A) and supplemented with 0.1 mM 2-mer-
captoethanol, 10 μg/ml human insulin (Sigma), Glutamax, 1 μMMEK Inhibitor PD0325901
(Tocris), 3 μMGSK3 inhibitor CHIR99021 (Tocris) and 1000 units/ml of LIF (ESGRO). To
induce neural progenitor differentiation, cells were cultured for 24 h at high density conditions
(1x105 cells/cm2) in N2B27 2i/LIF medium, which maintains the cells in undifferentiated state.
On the following day, cells were harvested and resuspended in N2B27 medium with Vitamin
A-containing B27 (N2B27-RA), and plated at 1x104 cells/cm2 onto Fibronectin (Sigma) coated
dishes. Differentiation N2B27 base medium was prepared using DMEM:F12 and Neurobasal
media without phenol red. Cells were cultured until day 6 with change of medium every other
day. Efficacy of the differentiation protocol was visualized by fluorescence microscopy.

Quantitative real time RT-PCR (RT-qPCR)
Total cellular RNA was isolated from subconfluent cultures or EBs using TRIzol reagent
according to the manufacturer’s instructions (Life Technologies). The yield and purity of RNA
samples were assessed by the absorbance at 260 nm and 260 nm/280 nm ratio, respectively.
One μg of total RNA was retro-transcribed using MMLV reverse transcriptase (Thermo Scien-
tific) and Random Primers (Invitrogen) according to the manufacturer’s instructions. Quanti-
tative Real time PCR amplification of DNA was carried out using FastStart SYBR Green
Master (Roche) and specific oligonucleotides (S1 Table) in Opticon Real Time DNA engine
(Bio-Rad). A melting curve analysis was performed immediately after amplification at a linear
temperature transition rate of 0.2°C/s from 61°C to 91°C with continuous fluorescence acquisi-
tion. The amplicon size was confirmed by gel electrophoresis. Raw data were analyzed with
LinReg PCR software and N0 fluorescence values were calculated using the same program.
Gene expression was normalized to the housekeeping gene Glyceraldehyde 3-phosphate dehy-
drogenase (Gapdh) or to the geometrical mean of Gapdh and Phosphoglycerate kinase 1 (Pgk1)
expression and referred to the control condition, as indicated in each case. A no-template blank
served as negative control.

Cloning and construction of reporter vectors
To construct the reporter vectors pSod2.1-Luc and pSod2.2-Luc, a 1142 bp fragment and a
1533 bp fragment of the promoter region of Sod2 were amplified by PCR from R1 ESCs geno-
mic DNA, respectively, and they were cloned into MluI and XhoI cloning sites in the pGL3-Ba-
sic vector (Promega) upstream of the Luciferase gene. The oligonucleotides are listed in S1
Table. Restriction enzymes were obtained from Promega. All constructs were verified by DNA
sequencing.

Transfection and luciferase activity assay
NIH/3T3 cells were co-transfected in 24-well plate with 300 ng of pSod2.1-Luc or pSod2.2-Luc
reporters and 0, 100, 200 or 400 ng of pMXs-Nanog and/or pMXs-Oct4 (Addgene). Transfec-
tion was carried out using PEI (Linear Polyethylenimine 25 kDa, Polysciences, Inc.) with a
DNA/PEI ratio of 1:3. For normalization of transfection efficiency, 20 ng of pRL-TK reporter
(Promega), constitutively expressing the Renilla reniformis luciferase, was included in each
transfection assay. After ON incubation, the medium was replaced by fresh medium. After 24
h, cells were lysed and assayed for luciferase activity using the Dual Luciferase kit (Promega)
on a GloMax Multi Detection System (Promega). Experiments were performed in triplicate
and repeated at least three times.
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Downregulation of transcription factors by shRNA approach
R1 ESCs cultured in standard medium on gelatin coated p60 plates, were transfected with 3 μg
pLKO.1-puro derived vectors (Sigma), expressing shRNA targeting Nanog
(SHCLND-XM_132755), Oct4 (SHCLND-NM_013633) or eGFP (SHC005), which was used
as control vector. Transfection was carried out using PEI, as transfection reagent, with a DNA/
PEI ratio of 1:5. After ON incubation, the medium was replaced by fresh medium. Twenty four
hours after transfection, transfected cells were selected for 48 h with puromycin at 3 μg/ml
final concentration. Then, total RNA was isolated using TRIzol reagent (Life Technologies)
and mRNA expression was analyzed by RT-qPCR as described in the RT-qPCR section.

Statistics and data analysis
Experimental results are presented as mean ± standard error of the mean (SEM). Statistical
comparisons were performed using randomized block design ANOVA for biological replicates
using Infostat statistical software [20]. For analysis of the experiments shown in Figs 1, 2 and
S2 Fig, data were transformed with log10. Residuals fitted normal distribution and homogeneity
of variance. When necessary, Tukey Test was used for comparisons between means. p
values< 0.05 were considered significant.

Results
Based on previously reported evidences, we decided to look for genes involved in the response
to oxidative stress, which might have a differential expression pattern in undifferentiated stem
cells compared to differentiated cells. We hypothesized that genes that are modulated during
differentiation could be transcriptionally regulated by pluripotent stem cells’ specific transcrip-
tion factors. To achieve this, we first analyzed in silico the promoter regions of multiple genes
that encoded different proteins or enzymes involved in redox metabolism, such as Catalase
(Cat), Glutaredoxin (Glrx), Glutathione peroxidases (Gpx), Glutathione reductase (Gsr), Per-
oxiredoxins (Prdx), Superoxide dismutases (Sod), Thioredoxins (Txn), and Thioredoxin reduc-
tases (Txnrd). We searched for predicted binding sites for transcriptions factors expressed in
pluripotent stem cells that are critical for self-renewal and pluripotency, particularly for Oct4,
Sox2 and Nanog. As shown in S2 Table, all the analyzed sequences from the selected genes con-
tained putative binding sites for at least one of the transcription factors. The position of each
predicted site is detailed in S3 Table.

To identify genes that are differentially expressed in undifferentiated compared to differen-
tiated state, we studied their expression in three pluripotent stem cell lines: two ESC lines and
an iPSC line generated by us, iPSC-20 [16]. We used two different mouse ESC lines, R1 and
Ainv15, which were derived from embryos of different strains. Since genetic background influ-
ences gene expression, we reasoned that obtaining similar results in different cell lines could
lead us to find out conserved mechanisms, extending our results. With the purpose of analyz-
ing gene modulation along the differentiation process, we generated embryoid bodies (EBs)
using an in vitro differentiation protocol, both for ESCs and iPSCs and analyzed the selected
genes’mRNA levels by quantitative RT-PCR (RT-qPCR), from days 0, 4 and 7 after plate
attachment. Concomitantly, we measured the expression of the pluripotency gene markers
Oct4, Nanog and Sox2, to confirm the differentiation protocol. We found a great diversity in
the transcriptional profile of the selected genes, some being upregulated along the process, oth-
ers highly repressed, and some resulted unaffected. Moreover, we observed high variability in
almost all analyzed genes, among the different replicates even within the same cell line (S1 Fig),
probably as consequence of the non-directed nature of the hanging drop differentiation.
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Although we could not find a defined profile in most of the evaluated genes, we systematically
found that Sod2 gene was repressed along the differentiation in the three studied cell lines.

Based on the results of our screening and in the vast evidence that reports the high relevance
of Sod2 gene in oxidative stress cellular defense, we decided to further investigate its modula-
tion. For this purpose, we next compared ESCs cultured in standard culture medium in the
presence of LIF (control) with cells cultured in the absence of this cytokine for 4 days, a condi-
tion that drives cells out from the pluripotent state. As shown in Fig 1A, both Sod2 and Nanog
gene expression showed a significant decrease in the absence of LIF. Finally, we also found
Sod2 repression during a neural progenitor differentiation protocol performed in an ESC
reporter line that expresses GFP driven by Sox1 promoter, a specific marker of neuroectoderm
[18] (Fig 1B and S2 Fig).

Taking into account the similar behavior between Sod2 and Nanog expression observed in
the studied differentiation protocols and on the presence of putative consensus sites for pluri-
potency transcription factors in Sod2 promoter, we decided to study whether pluripotent stem
cells’ transcription factors regulate Sod2 gene expression in a more defined system. To achieve
this, we constructed two reporter vectors containing fragments from the promoter region of
this gene cloned upstream from the firefly luciferase reporter gene. We generated pSod2.1-Luc
reporter vector containing a fragment from -942 to +200 respect to the transcription start site

Fig 1. Sod2 is repressed in ESCs subjected to distinct differentiation protocols. ESCs were cultured as described in each case. Then, RNA was
extracted and the expression of the indicated genes was measured by RT-qPCR. Gene expression was normalized to the geometrical mean of Gapdh and
Pgk1 expression and referred to the control condition. Results are shown as mean ± SEM of three independent experiments. (A) R1 ESCs were cultured
under standard conditions in the presence of LIF (control, shown as a dashed line) or in the absence of LIF, for 4 days. * p < 0.05. (B) 46C ESCs were
subjected to a neural progenitor differentiation protocol. Expression of the indicated genes was analyzed at days 0 (D0, control), 3 (D3) and 6 (D6) after the
induction of differentiation. Different letters (A or B) indicate statistically significant differences between treatments. AB indicates no statistically significant
difference either to A or to B (p < 0.05).

doi:10.1371/journal.pone.0144336.g001
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of the promoter region of Sod2 driving the reporter gene, and pSod2.2-Luc, containing a larger
fragment from -1333 to +200. The first fragment contains three putative binding sites for stem
cells’ transcription factors, two for Oct4 and one for Nanog; the larger fragment contains one
more site for Oct4 and two more sites for Nanog (Fig 2A). For performing the transactivation
assay, we chose the NIH/3T3 mouse embryonic fibroblast cell line, in which we could not
detect Oct4 or Nanog mRNA levels. The reporter constructs were co-transfected with different

Fig 2. Oct4 and Nanog induce pSod2-Luc constructions. (A) Scheme of pSod2.1-Luc and pSod2.2-Luc constructions showing the putative binding sites
for Oct4 and Nanog. (B) NIH/3T3 cells were transfected with pSod2.1-Luc or pSod2.2-Luc and with the indicated amounts of pMXs-Nanog, pMXs-Oct4 or
both. Luciferase activities were measured as described in Material and Methods. Values were normalized to Renilla’s luciferase and referred to the basal
condition (without the addition of any transcription factor). Results are shown as mean ± SEM of at least three independent experiments. Different letters
indicate statistically significant differences between treatments (p < 0.05).

doi:10.1371/journal.pone.0144336.g002
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amounts of the expression vectors for Nanog, Oct4 or both. As outlined in Fig 2B, although we
didn’t find a synergic effect, both transcription factors were capable of significantly induce
luciferase expression in a dose-dependent manner both in pSod2.1-Luc and in pSod2.2-Luc.
These results indicated that the selected Sod2 promoter regions are induced by both Oct4 and
Nanog.

Next, to study the effect of Oct4 and Nanog transcription factors on the expression of the
endogenous Sod2 gene, we downregulated their expression by a shRNA approach. We trans-
fected R1 ESCs with vectors expressing shRNA targeting Nanog (shNanog), Oct4 (shOct4) or
eGFP (shGFP) as a control, and then analyzed Oct4, Nanog and Sod2 gene expression by RT-
qPCR. As shown in Fig 3, both key transcription factors were downregulated by their specific
shRNA. Moreover, Nanog was also repressed in R1 ESCs transfected with shOct4, as expected
based on previous reports [21]. We then analyzed Sod2 mRNA levels and found a reduction of
about 35% when Nanog was downregulated and about 50% in ESCs transfected with the
shOct4. These results are in agreement with the fact that Sod2 gene was expressed in pluripo-
tent stem cells and repressed along differentiation, and with the aforementioned transactiva-
tion assay findings, indicating that both Oct4 and Nanog, critical transcription factors to
maintain the pluripotent state, positively modulate Sod2 gene transcription.

Discussion
ROS generated by mitochondrial respiration play an important role in maintaining cellular
functions. During embryo development, changes in metabolism take place shifting from glycol-
ysis to oxidative phosphorylation [3]. Concomitantly, somatic cells switch their metabolism
from an oxidative to a glycolytic state when they are reprogrammed and these changes are criti-
cal to generate iPSCs quicker and more efficiently [22]. The production of ROS as natural by-
products of metabolism is a consequence of using oxygen as an electron acceptor, and when an
imbalance in the redox homeostasis occurs, ROS are a considerable cause of DNA damage.
Both ESCs and iPSCs have complex and coordinated mechanisms that ensure the maintenance
of their genomic stability. This network is composed by multiple enzymes and non-catalytic
proteins that work together to preserve an accurate redox balance. Although these components
have been extensively studied for many years, and it was reported that antioxidant defense
activity diminishes during differentiation [1,7], little is known about the mechanisms involved
in their transcriptional regulation.

In this work, we studied the gene expression pattern of some of the components of the oxi-
dative stress defense system in ESCs and iPSCs in the undifferentiated state and during differ-
entiation. We selected and analyzed a group of genes under the hypothesis that some of these
are transcriptionally regulated by the transcription factors critical for stem cells pluripotency.

We first selected relevant proteins from different functional groups belonging to the antioxi-
dant defense system. We decided to study the glutathione/thioredoxin system since glutathione
is the main redox buffer for thiol-disulfide groups of the cell [23]. This system and others
related to oxidative stress defense involve multiple genes and several of them were shown to be
modulated during differentiation [1,7,12,24]. For example, it has been reported that Manga-
nese superoxide dismutase (Mn-Sod/Sod2) and some glutathione peroxidases are repressed
during mouse ESCs differentiation [7]. Furthermore, the same modulation was found for Sod2
and Gpx2 in human ESCs [1]. Sod2 is a mitochondrial enzyme that converts superoxide anion
into peroxide, which is substrate for Prdxs and Gpxs that produce H2O as a final product. On
the other hand, glutathione reductase, that restores reduced glutathione that was oxidized by
Gpx, was also reported to decrease its expression along differentiation, both in human ESCs
and iPSCs [1,24]. However, there is a report that differs from those previously mentioned,
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where the expression level of proteins was analyzed instead of the mRNAs, showed a subtle
variation in Sod2 expression and a decreased expression of Catalase during human ESCs differ-
entiation [22]. Furthermore, it was found that the thioredoxin inhibitor, Thioredoxin-interact-
ing protein (TXNIP), increased its expression during differentiation [1]. We were interested in
studying the behavior of other enzymes involved in the defense system such as Thioredoxin 1,
that is essential in embryogenesis and its absence does not allow the proliferation of the inner
cell mass [25]; Glutaredoxin, critical for cell cycle progress during embryogenesis [26]; and
finally Thioredoxin 2 and Thioredoxin reductases, also proved to be relevant to embryogenesis
[27,28].

Based on these evidences, we selected a group of fourteen genes and analyzed their promoter
regions searching for putative binding sites for the transcription factors Oct4, Nanog and Sox2.
We next investigated the expression profile of the selected genes along a hanging drop differen-
tiation protocol compared to undifferentiated cells. We reasoned that genes whose modulation
could be detected among the high diversity of cell types present in embryoid bodies in a non-
directed differentiation could play a relevant role in the undifferentiated state. Many of the
selected genes did not change or did not show a similar pattern to Oct4, Sox2 or Nanog. How-
ever, we found that Gsr, Sod1 and Sod2 were consistently downregulated during the differenti-
ation processes in both R1 ESCs and iPSCs. In this study, we focused on Sod2 modulation by
Oct4 and Nanog.

Sod2 is the member of superoxide dismutases family whose knock out in mouse has the
most severe phenotype [29,30], suggesting that the toxicity of the mitochondrial ROS is highly
deleterious. Moreover, Sod2 deficient mice display multiple biochemical features of mitochon-
drial disease associated with ROS toxicity [31]. Regarding its regulation, bioinformatic analyses
have revealed many transcriptional regulatory elements in the proximal promoter regions of all
three Sod genes that are putative binding sites for several common transcription factors [32].
However, to our knowledge there are no reports about the effect of pluripotency transcription
factors on Sod2 gene modulation. This gene has been previously mentioned in a genome wide
analysis among other genes whose expression decreased after LIF starvation in mouse ESCs
[21]. It was also reported to be modulated in a genome wide meta-analysis applied to multiple
gene expression datasets from three mouse ESCs lines during differentiation into various line-
ages [33]. Recently, it was reported that Sod2 promoter was induced by LIF in a JAK2/STAT3
dependent manner, and that Sod2 silencing resulted in the loss of pluripotency, even in pres-
ence of LIF. Moreover, the authors showed that Sod2 overexpression was sufficient for

Fig 3. Sod2 is repressed in R1 ESCs transfected with shRNA targeting Oct4 or Nanog. R1 ESCs were transfected with pLKO.1-puro derived vectors
targeting stem cells’ transcription factors (shOct4 or shNanog), or eGFP (shGFP, control), as indicated under each bar. Then, transfected cells were selected
with puromycin for 48 hs and RNA was extracted. The expression levels of Oct4 (A), Nanog (B) or Sod2 (C) were analyzed by RT-qPCR and referred to the
control. Gene expression was normalized to the geometrical mean of Gapdh and Pgk1 expression and referred to the control condition. Results are shown as
mean ± SEM of at least four independent experiments. Different letters indicate statistically significant differences between treatments (p < 0.05).

doi:10.1371/journal.pone.0144336.g003
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maintaining the expression of pluripotent genes in the absence of STAT3 signaling in R1 ESCs.
As a whole, they propose that Sod2 may also play a role in mouse ESCs pluripotency besides its
known function as a regulator of ROS levels [34]. It has also been previously reported that
STAT3 induced Sod2 transcription in mouse normal brain but it was downregulated after
reperfusion in mouse cerebral ischemic injury with a concomitant increase in superoxide
anions [35].

In this work we found that Sod2 expression pattern was similar to Nanog’s, one of the main
pluripotency transcription factors in pluripotent stem cells, when these cells were subjected to
three distinct differentiating conditions, two non-directed protocols, the hanging drop protocol
and the culture in absence of LIF, and a directed neural precursor differentiation protocol. As a
whole, distinct differentiating contexts led us to find out that Sod2 gene was repressed when
ESCs leave behind the undifferentiated state. Next, using a transactivation assay, we found that
both Oct4 and Nanog induced two different fragments from Sod2 gene promoter region.
Finally, we found that silencing either of these transcription factors in ESCs produced a
decrease in Sod2 mRNA levels, indicating that these factors have a role in Sod2 gene modula-
tion in ESCs.

In summary, we have presented a modest landscape of the transcriptional modulation of
antioxidant defense components in pluripotent stem cells and found that Sod2, which is critical
for cellular defense against ROS and that may also play a role in pluripotency maintenance, is
induced by both Oct4 and Nanog. We consider that these findings may contribute to the com-
prehension of the oxidative stress defense system in pluripotent stem cells, and we are currently
studying Gsr and Sod1 genes regulation since their expression also decreased along differentia-
tion and their promoters also contain putative binding sites for the pluripotency transcription
factors Oct4, Sox2 and Nanog. We hope that these results will contribute to improve the
knowledge of the mechanisms involved in the ability of stem cells to maintain an intact
genome, critical for their future applications in the field of tissue engineering and cell therapy.

Supporting Information
S1 Fig. Expression level of genes involved in stress defense along in vitro differentiation in
mouse pluripotent stem cells. (A) R1 ESC line (B) Ainv15 ESC line (C) iPSC-20 line. (i) Rep-
resentative pictures of undifferentiated colonies (left panels), embryoid bodies (EB) obtained
by in vitro hanging drop differentiation protocol (middle panels) and differentiated cells
obtained after embryoid bodies’ attachment (right panels). Scale bars: 100 μm (ii) Pluripotent
stem cells were subjected to the hanging drop protocol and gave rise to embryoid bodies that
were attached to gelatin coated plates. RNA was extracted from undifferentiated cells (D0), and
at days 4 (D4) and 7 (D7) after EBs’ attachment. mRNA levels were measured by RT-qPCR
and relativized to D0, shown as a dashed line. Gene expression was normalized to Gapdh.
Results are shown as mean ± SEM of two independent experiments. Oct4, Nanog and Sox2
modulation along differentiation is shown (iii); Sod1, Sod2, Cat, Prdx1, Prdx2, Gpx1, Gpx4,
Txn1, Txn2, Glrx1, Glrx2, Txnrd1, Txnrd2 and Gsr were analyzed.
(TIF)

S2 Fig. Neural progenitor differentiation of 46C embryonic stem cell line. 46C ESC were
subjected to neural precursor differentiation protocol for 6 days. (A) Representative pictures of
day 6 of differentiation showing expression of GFP driven by Sox1 promoter, marker of neu-
roectoderm. Bright field, left panel; GFP, right panel. Scale bars: 200 μm. (B) RNA was
extracted at days 0 (D0), 3 (D3) and 6 (D6) after the induction of differentiation and mRNA
levels were measured by RT-qPCR. Gene expression of the neural differentiation markers Blbp
and Nestin was normalized to the geometrical mean of Gapdh and Pgk1 expression and
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referred to D0. Results are shown as mean ± SEM of three independent experiments. Different
letters indicate statistically significant differences between treatments (p< 0.05).
(TIF)
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The number of putative binding sites is indicated for each transcription factor (TF). � Com-
posed binding site for Oct4, Sox2, Nanog, Tcf3 (Tcf7l1) and Sall4b in pluripotent cells. TF:
Transcription Factor; Sod: Superoxide dismutase; Prdx: Peroxiredoxin; Gpx: Glutathione per-
oxidase; Cat: Catalase; Glrx: Glutaredoxin; Txn: Thioredoxin; Txnrd: Thioredoxin reductase;
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