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Introduction

Even though initial research into diffusion-weighted 
imaging (DWI) applications focused on the central nervous 
system (CNS) (1-4), there now is a growing amount of 
research extending to other systems. Applications of 
DWI in the musculoskeletal system have come to include 
assisting in differentiating vertebral compression fractures 
vs. malignant fractures (5), degenerative changes (6,7), 
monitoring tumor response to therapy (8), differentiating 
degenerative vs. infectious processes (9), malignant vs. 

infectious processes (10), and characterization of soft-tissue 
and bone tumors (11). The goal of this article is to provide 
a brief overview of the recent advancements and studies in 
the applications of DWI to the musculoskeletal system in 
the context of the authors’ institutional experiences.

Image acquisition and interpretation

The single shot echo planar imaging (SS-EPI) technique 
is the most commonly used sequence in DWI, providing 

Review Article

Diffusion-weighted imaging in musculoskeletal radiology—clinical 
applications and future directions

Nicholas Bhojwani1*, Peter Szpakowski2*, Sasan Partovi2, Martin H. Maurer3, Ulrich Grosse2,4, Hendrik 
von Tengg-Kobligk3, Lisa Zipp-Partovi5, Nathan Fergus2, Christos Kosmas2, Konstantin Nikolaou4, Mark 
R. Robbin2

1Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee; 2Department of Radiology, University Hospitals Case Medical 

Center, Case Western Reserve University, Cleveland, Ohio, USA; 3Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital University 

Hospital Bern, Freiburgstrasse, Bern 3010, Switzerland; 4Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, 

Germany; 5Department of Pediatrics, Rainbow Babies and Children’s Hospital, University Hospitals Case Medical Center, Cleveland, Ohio, USA

*These authors contributed equally to this work.

Correspondence to: Mark R. Robbin, MD. Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, 

Cleveland, Ohio, USA. Email: mark.robbin@uhhospitals.org.

Abstract: Diffusion-weighted imaging (DWI) is an established diagnostic tool with regards to the central 
nervous system (CNS) and research into its application in the musculoskeletal system has been growing. It 
has been shown that DWI has utility in differentiating vertebral compression fractures from malignant ones, 
assessing partial and complete tears of the anterior cruciate ligament (ACL), monitoring tumor response to 
therapy, and characterization of soft-tissue and bone tumors. DWI is however less useful in differentiating 
malignant vs. infectious processes. As of yet, no definitive qualitative or quantitative properties have 
been established due to reasons ranging from variability in acquisition protocols to overlapping imaging 
characteristics. Even with these limitations, DWI can still provide clinically useful information, increasing 
diagnostic accuracy and improving patient management when magnetic resonance imaging (MRI) findings 
are inconclusive. The purpose of this article is to summarize recent research into DWI applications in the 
musculoskeletal system.

Keywords: Diffusion-weighted imaging (DWI); magnetic resonance imaging (MRI); PET/MRI; musculoskeletal 

neoplasms; inflammatory conditions; therapy assessment

Submitted Jul 06, 2015. Accepted for publication Jul 20, 2015.

doi: 10.3978/j.issn.2223-4292.2015.07.07

View this article at: http://dx.doi.org/10.3978/j.issn.2223-4292.2015.07.07



741Quantitative Imaging in Medicine and Surgery, Vol 5, No 5 October 2015

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):740-753www.amepc.org/qims

not only rapid image acquisition but reduced motion  
artifacts (12). Although the mechanics behind DWI 
have not been elucidated entirely (13), it is a non-
invasive method which measures the Brownian motion of 
water in its microscopic environment. This principle is 
exploited to detect and monitor the cellularity of a variety 
of pathologies. The signal obtained reflects the water 
content of the tissue, which is influenced by both perfusion 
and diffusion making image interpretation difficult. A 
diffusion weighted image is created by applying diffusion 
sensitizing gradients to a T2-weighted image, where the 
parameters of the sensitizing gradient are determined by 
the b value. With a b value of 0, the image appears as a T2-
weighted image and a progressive increase in the b value 
begins to suppress the perfusion effect, with only highly 
cellular tissues remaining bright at high b values (13).  
A hyperintense signal on DWI corresponds to an area where 
water motion is restricted and is not able to move out of 
the image plane. Because extracellular fluid motion is less 
restricted in comparison to intracellular fluid motion, more 
extracellular fluid will result in decreased signal. In contrast, 
an increased signal correlates to increased cellularity of 
the tissue because intracellular fluid motion is impeded by 
organelles (11,14).

In conjunction with DWIs, apparent diffusion coefficient 
maps (ADC) are sometimes given, quantify the effect of 
diffusion restriction. ADC calculation requires at least 
two DWIs at different b values and in contrast to DWI, 
stationary water appears hypointense on ADC maps 
(i.e., reduced diffusion) and hyperintense where there is 
increased water diffusion. ADC values in cells are much 
lower than in free standing water because cellular structures 
impede the diffusion of water. With low b values, the 
perfusion component accounts for a larger proportion of the 
signal intensity on ADC maps whereas diffusion dominates 
at higher b values. These can be reported as ADCslow and 
ADCfast components but generally, only a total ADC value is 
given (13).

For proper interpretation of DWIs and ADC maps, 
clinical correlation is essential. Tumors generally have 
restricted diffusion compared to healthy tissues due to 
enlarged nuclei and increased cellularity resulting in 
decreased extracellular volumes. The restricted diffusion 
leads to increased signal on DWI and decreased signal on 
ADC map. Depending on the features of the malignancy 
and the treatment response, this pattern may change in 
the course of the pathology. Rapidly growing tumors can 
outgrow their vascular supply or treatment of tumors can 

lead to necrosis, causing decreased signal intensity on high 
b value images and increased ADC values. Certain tissues 
with long T2 relaxation times can cause increased signal 
on DWI images even though they are not due to decreased 
diffusion. This process is termed the “T2-shine through 
effect” and leads to an increased signal on both, DWI 
and ADC maps (13), therefore comparison of the two is 
essential.

Malignancies of soft-tissue and bone

Morphological magnetic resonance imaging (MRI) 
techniques are applied in the workup of certain soft-tissue 
tumors and characteristic imaging findings are helpful to 
narrow down the differential diagnosis. Investigations using 
DWI as a functional MR sequence have been focusing 
on developing qualitative and quantitative criteria for 
musculoskeletal tumors. One study found that defining 
imaging characteristics on MRI that may differentiate 
chondrosarcomas from chondroblastic osteosarcomas and 
other osteosarcomas is difficult due to overlapping imaging 
features (11). Tumor heterogeneity causes ADC values to 
be variable depending on the region of interest selected, 
with areas of higher cellularity and stroma demonstrating 
low ADC values (14). Although tumor heterogeneity on 
imaging suggests malignancy, it should not be considered a 
prerequisite (14). In the majority of cases histopathological 
confirmation is required. However, the tumor heterogeneity 
reflected by DWI and corresponding ADC maps may be 
helpful for planning of image guided biopsy (Figure 1).

Setting ADC cut-off values for benign and malignant 
tumors has also proven to be difficult which is in part due 
to variability in image acquisition protocols and technical 
specifications between vendors (15). A cut-off value of 
1.34×10−3 mm2/s proposed by one study (16) showed a 
sensitivity of 91% and specificity of 94% in differentiating 
between malignant and benign soft-tissue tumors. For cystic 
lesions, using a mean ADC value greater than 2.5×10−3 mm2/s  
led to a sensitivity of 80% and specificity of 100% (17), 
although the use of different imaging protocols can achieve 
higher ADC values of soft-tissue tumors (15). ADC values 
are usually lower in malignant tumors compared to benign 
tumors, but the overlap in values has made it impossible 
at this point to define ADC cut-offs with high sensitivity 
or specificity thus limiting its diagnostic value (15,18,19). 
Nevertheless, the features suggesting malignancy on DWI are 
areas of hyperintensity seen at high b values and corresponding 
hypointensity on ADC map (20).
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Research in the use of whole body DWI with background 
body signal suppression in localization of metastatic bone 
lesions and staging of tumors is showing good results and 
clinical applications are still being explored (21-23). DWI 
in comparison to positron emission tomography (PET) and 
scintigraphy has shown to be more effective in detecting 
metastatic bone tumors (24) while avoiding the need for 
isotopes which are in short supply (25). One study conducted 
a meta-analysis of 495 patients (26) and showed that whole-
body DWI is sensitive but not specific in detecting bone 
lesions. Whole-body MRI eliminates exposure to high-
doses of radiation, an important consideration especially if 
the patient is to undergo frequent imaging and is young (27).  
DWI has been shown to as effective or more effective in 
detecting metastatic prostate cancer, breast cancer and 
multiple myeloma in comparison to STIR-based protocols 
(28,29). Tumor localization when, conducting whole body 
diffusion, can be improved with overlay of anatomical 
imaging (Figure 2). Even though superimposing anatomical 
imaging on DWI images might be helpful for the clinician, it 

does not increase tumor detection rates (30).
The most common primary malignant tumor of the bone 

is intramedullary osteosarcoma (11). Yakushiji et al. (11) found 
that DWI may be more effective than gadolinium enhanced 
MRI in differentiating chondroblastic osteosarcomas and 
other osteosarcomas. Gadolinium enhanced MRI is important 
because the large chondroid component can make it difficult 
to biopsy appropriate regions containing malignant tumor 
cells (31,32). Missing chondroblastic osteosarcomas is not only 
impairing patient management but eventually clinical outcome. 
Patients with chondrosarcoma have a 5-year survival rate of 
72.6% when they receive appropriate treatment (33) whereas 
the 5-year survival rate for chondroblastic osteosarcomas is 
around 60% (34). MRI can assist in diagnosis of chondroblastic 
osteosarcoma (35), however, the septonodular and peripheral 
rim enhancement pattern often found in chondroblastic 
osteosarcomas can also be found in other chondroid matrix-
forming tumors (11,36). In the specimens studied by Yakushiji 
et al. (11), a heterogeneous pattern of MR enhancement was 
found in all chondroblastic osteosarcomas and other types of 
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Figure 1 A 63-year-old female with a myxoid liposarcoma. Large parts of the tumor mass show strong contrast enhancement (A; B, with 
subtraction); the diffusion weighted imaging displays high signal especially in a nodular medial part of the tumor (C, white arrow) with 
corresponding low signal on the ADC map (D, white arrow). This part of the tumor contains the highest cellularity and should be chosen as 
a target for biopsy. 
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osteosarcoma, but was found in only 16.7% of chondrosarcoma 
cases. Minimum ADC values of osteosarcomas (n=17) was 
found to be (0.84±0.15) ×10−3 mm2/s while chondroblastic 
osteosarcomas (n=5) and chondrosarcomas (n=18) had 
minimum ADC values of (1.24±0.20) ×10−3 and (1.64±0.20) 
×10−3 mm2/s respectively. Even though the population size 
was small, the use of DWI in differentiating osteosarcomas 
from chondroblastic osteosarcomas and chondrosarcomas 
provided useful information based on the results of this study. 
Increased diagnostic accuracy may be possible if DWI is used in 
conjunction with morphological gadolinium enhanced MRI (11).

Bone marrow infiltration can be difficult to interpret 
because of the composition changes that occur with normal 
bone marrow over time. Yellow marrow is composed largely 
of adipose cells and its extent increases as a person ages. 
This occurs in a peripheral to central manner (37). Red 
marrow has increased water content and cellularity due to 
hematopoiesis. The bone marrow may change from yellow 
to red or it can be infiltrated by malignant cells (38,39). In 
normal yellow marrow, characteristic DWI findings include 
low ADC values seen along with signal suppression at higher 
b values on DWI (13). Red and yellow marrow can be mixed 

in the intramedullary space and when yellow is interspersed 
within red marrow, it is called islands of yellow marrow (37).  
This is an important consideration because medullary 
bone can appear to be heterogeneous on MRI and DWI. 
Replacement of bone marrow by malignant cells results 
in low ADC values (due to increased cellularity), however, 
increased signal can be seen at high b-value images (13).  
One study (40) investigated lymphomas infiltrating iliac 
bones and found that the use of DWI in conjunction with 
T1w spin echo results in a sensitivity of 77% and specificity 
of 92.5%. Although malignant tumors demonstrate high 
DWI signals and low ADC values, the study found red 
marrow can also demonstrate high signal intensity on DWI. 
It was also demonstrated in lymphomas infiltrating the iliac 
bone that T1-weighted images and STIR together provided 
a sensitivity and specificity of 85% and 97% respectively (40).  
Due to tendency of DWI to poor image quality and 
lower sensitivity and specificity, they suggested that bone 
lymphomas should be assessed using STIR and T1-weighted 
sequences. As in osteosarcomas, DWI can still play a role in 
whole-body imaging for localization of metastatic lesions and 
monitoring of tumor burden (21).

A B C D
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Figure 2 MR of a 4-year-old male patient with left thoracic Ewing sarcoma, originating from the 7th rib with the following images: (A) T1w 
VIBE post gadolinium axial; (B) T1w TSE fat-saturated axial; (C) T2w TSE fat-saturated axial; (D) T2w HASTE sagittal; (E) DWI with 
b=1,000 axial; (F) corresponding ADC map axial; (G) fusion of T2w TSE fat-saturated axial + color coded DWI with b=1,000 axial. Images 
demonstrate mediastinal shift to the right site with left lung atelectasis, invasion of the left main bronchus, left lung, and posterior thoracic 
wall. Furthermore, invasion of the neuroforamina at T5-6, T6-7 and T7-8 levels and the central canal without cord compression is well 
appreciated on the fused images. The remainder of unaffected left lung is collapsed. Please note the heterogeneity of the tumor with regard 
to cellularity DWI and ADC images. MR, magnetic resonance; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficients.
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DWI may be helpful in differentiating between 
chronically expanding hematomas (CEH) and malignant 
soft tissue tumors (14). The term CEH was defined as a 
hematoma which ruptures and continues to grow for more 
than 1 month (41). On T1- and T2- weighted images, CEH 
can appear as a heterogeneous mass with a hypointense 
peripheral rim (42). Hemoglobin and red blood cell age 
found within the hematomas influence diffusion properties 
resulting in a heterogenous appearing mass on DWI (43),  
an important factor when considering intravascular blood 
and hemorrhagic components of the lesion (14). Calculating 
ADC maps, it was found that the mean ADC values of CEH 
[(1.55±0.121) ×10−3 mm2/s] compared to malignant soft-
tissue masses [(0.139±0.129) ×10−3 mm2/s] was significantly 
higher. They concluded that ADC values can be helpful to 
differentiate CEH from malignant soft-tissue masses (14).

Benign fibrous and fibrohistiocytic tumors are soft-
tissue tumors which are seen in different age groups (44). 
They can demonstrate characteristic features although it 
is possible for features of benign and malignant tumors 
to overlap resulting in misdiagnosis (45). Costa et al. (44) 
studied patients with histologically confirmed fibroblastic/
myofibroblastic/fibrohistiocytic soft tissue tumors who 
were grouped according to the WHO classification scheme 
as benign, intermediate and malignant. Comparison of 
the perfusion-insensitive diffusion coefficient showed 
a statistically significant difference between benign/
intermediate [(1.56±0.25) ×10−3 mm2/s] and malignant 
tumor groups [(0.89±0.15) ×10−3 mm2/s]. As previously 
discussed, overlap between ADC values is possible but the 
additional information from this sequence may allow a more 
comprehensive analysis of the lesion.

Knee injuries

MRI is frequently used to assess the soft-tissue components 
of the knee post injury. A recent study compared ADC 
mapping to MRI morphology imaging of the knee in partial 
and complete anterior cruciate ligament (ACL) tears (46).  
They found that specificity and sensitivity for with ADC 
maps was 96% and 94% respectively in diagnosing complete 
tears which was higher than the 87% and 50% specificity 
and sensitivity achieved when using T1 and T2 sequences 
with fat saturation. It was also found that the increase in 
specificity was statistically significant (P<0.01) but there 
was no statistically significant difference for sensitivity. 
Several studies investigated morphological changes on 
MRI to differentiate partial tears from complete tears 

and although certain features such as wavy ligaments 
or ligament thinning are suggestive of partial tears, 
determination of partial tears still remains a challenge  
(47-51). The difficulty in differentiating partial and complete 
tears can be partially attributed to the edema that results 
from the injury, which appears as a hyperintense signal on 
T2-weighted images, obscuring ligament fibers. It was found 
that applying DWI to traumatic injuries can improve the 
differentiation of partial and complete tears and that ADC 
mapping may be more useful than morphological MRI alone 
in differentiating partial and complete ACL tears (46).

Pre- and post-treatment assessment

Even though MRI is the method of choice for diagnosis 
and follow up of soft-tissue masses (52), assessing therapy 
response can be difficult with conventional MRI techniques 
because tissues can demonstrate post therapeutic cytotoxic 
as well as edematous changes on T2-weighted and STIR 
images (53-58). In clinical practice, often times therapeutic 
response is based on assessment of tumor size. However, 
the lack of reduction in tumor size does not necessarily 
reflect a lack of response to treatment, which is true 
particularly for osteosarcomas or other tumors with a large 
proportion of matrix (59). Assessment of pretreatment and 
post-treatment ADC values may be of prognostic value 
with regard to outcomes and may also reflect treatment 
response (Figure 3). Biologically aggressive tumors with 
areas of necrosis may have higher ADC values associated 
with a worse outcome (60). Areas with increased ADC 
values post-treatment can indicate areas of tumor cells 
which underwent necrosis suggesting a positive response 
to therapy (61). Chemotherapy or radiation can result in 
necrosis or apoptosis of tumor cells, altering water diffusion 
and possibly allowing an earlier, non invasive assessment 
of treatment response (13,44,60). An animal study 
regarding osteosarcoma showed that DWI can effectively 
differentiate between necrotic and viable tissue (62).  
Following treatment, osteosarcoma tissue undergoes 
necrosis and results in hyaline fibrosis and granulation 
tissue (63) which enhance on contrast enhanced images. 
Therefore it is difficult to assess treatment response using 
conventional imaging techniques (59). DWI may be capable 
of differentiating these morphological changes which 
would have been otherwise obscured (64) in addition to 
quantifying the amount of necrosis (65-67).

Studies have shown that increasing ADC values following 
treatment of primary sarcomas of the bone correlates with 
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successful treatment (68,69). Necrosis in Ewing sarcomas 
and osteosarcomas has been recognized as a favorable 
prognostic factor following treatment (25). Osteosarcomas 
with greater than 90% necrosis post-treatment were 
associated with better outcomes (68). In one study (69), 
histologically confirmed necrotic areas were correlated with 
ADC maps demonstrated a mean ADC value of 2.3 (±0.2) 
whereas viable tumor had a mean ADC value of 0.8 (±0.2). 
Increased ADC values following treatment have also been 
described for vertebral metastatic disease, with a change 
from a high signal to a low signal relative to normal vertebral 
bodies on DWI indicating a positive response to therapy (61).

Differentiation of inflammatory, infectious and 
malignant processes

Osteomyelitis and malignancy can have overlapping 
features with both appearing as hyperintense on DWI with 
low ADC values (10,70). In bacterial (7) and tuberculous 
osteomyelitis (71), the increase in inflammatory cells in the 

bone marrow causes an increase in the diffusion-weighted 
signal with a corresponding decrease in ADC values. 
Protein in fluids can restrict water motion, hence infectious 
processes (e.g., abscesses) and endometriotic cysts may 
appear as having restricted diffusion (13). Pui et al. (10) 
found that when using an ADC cutoff value of cutoff of 
1.02×10−3 mm2/s gave a sensitivity and specificity of 60.26% 
and 66% respectively. The low sensitivity and specificity of 
DWI do not make it useful for differentiating infection and 
malignant processes in a clinical setting.

Assessment of abscesses can be difficult using DWI because 
as with tumors, their imaging features may change over 
time. Initially, the increased cellular and protein content of 
the abscess causes restricted diffusion, seen as hyperintensity 
on DWI. As time progresses, the T2 shine-through effect 
can become dominant as the center of an abscess begins to  
liquefy (72). One study (73) investigated a group of 50 patients 
who were suspected of having a soft-tissue abscess, 32 of 
which were intramuscular, 14 intra-abdominal, 1 periorbital 
and 3 breast abscesses. All patients had material aspirated as a 

Figure 3 A 24-year-old female with osteosarcoma. (A-C) Conventional MRI reveals a solid osseous tumor mass in the left lateral femoral 
condyle with replacement of the normal marrow fat seen as bright T1 signal, an extraosseous soft tissue mass, and avid peripheral contrast 
enhancement; (D) DWI shows higher signal within the mass compared to normal bone in the medial condyle; the ADC values are low in 
the periphery of the mass, especially at its medial rim (E, white arrow); after initial chemotherapy of 8 weeks the ADC value of the medial 
rim has increased, indicating lower cellularity and therefore treatment response (F, white arrow). MRI, magnetic resonance imaging; DWI, 
diffusion-weighted imaging; ADC, apparent diffusion coefficients.
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confirmatory method. In this study DWI was shown to have 
a sensitivity and specificity of 92% and 80% respectively. 
Harish et al. (74) studied a group of eight patients and found 
that DWI, when used in conjunction with other imaging 
improved their confidence level for the diagnosis of abscess.

There have been a couple studies regarding the use of 
DWI for degenerative changes in the axial skeleton (6,7). 
Changes to the vertebral endplates may be the source of 
spine pain, in part due to disruption of diffusion of nutrients 
to the disc (75-78). Changes to the vertebral endplates are 
described according to their appearance on conventional 
T1 and T2 imaging using the Modic type classification 
system (76,79,80). One study investigated the use of 
DWI in differentiating endplate infectious causes from 
degenerative changes in the lumbar spine. ADC values in 
the infection group were found to be higher than in those 
with degenerative changes suggesting that DWI may be 
an additional tool for clinicians to differentiate between 
degenerative and infectious causes (9).

The reliance of intervertebral discs on diffusion for 
nutrients, not blood vessels, has suggested the possibility 
of using physical therapy in order to improve diffusion and 
ultimately clinical outcome. Applying mechanical pressure 
to the lumbar regions of patient significantly increased 
signal intensity on DWI (81). In a similar study (82), 
patients were asked to rate their pain after lumbar spine 
mobilization and those who reported immediate relief had a 
4.7% increase in diffusion while those who did not respond 
to the treatment had a decrease of 1.6% in diffusion. The 
increased signal on DWI theoretically correlates with 
increased molecular level diffusion within the disc and can 
potentially be used as a method for monitoring therapy 
response, however, due to the small sample sizes, further 
studies would be required.

It is estimated that anywhere from 0.3% to 1.9% of the 
population is affected by inflammatory spondyloarthritis 
(SpA) (7,83,84). Both SpA and degenerative causes of 
lower back pain are common in young patients and must 
be distinguished (7). DWI has shown to be effective 
in differentiating between acute degenerative lesions 
and early inflammatory sacroiliitis (85). Dallaudière  
et al. (7) conducted a study using DWI to assess patients 
with inflammatory spondyloarthritis and type 1 Modic 
change. When the disc is undergoing inflammation, it 
is described as Modic type 1 changes corresponding to 
an inflammatory stage of disk degenerative disease (80). 
Axial active inflammatory lesions showed significantly 
h igher  ADC va lues  (mean ,  0 .7888×10 −3 mm 2/ s ) 

compared to Modic changes (mean, 0.585×10−3 mm2/s)  
and normal subchondral bone (mean, 0.445×10−3 mm2/s). 
The difference in mean ADC values between subchondral 
bone and Modic changes was also statistically significant. 
Using a box-plot, the authors visually determined an 
optimal ADC cut-off value of 0.58×10−3 mm2/s. A different 
study (86) found that ADC values correlated with active 
ankylosing spondylitis suggesting that DWI may be used to 
monitor patient response to therapy and disease progression. 
Detection of synovitis in rheumatoid arthritis can be 
facilitated using DWI (Figure 4).

Compression fractures

Atraumatic vertebral compression fractures are common in 
the elderly population and may be secondary to osteoporosis, 
metastatic disease or other pathologies, therefore it is 
clinically important to determine their underlying cause (88).  
Depending on the etiology, vertebral compression fractures 
may have distinct radiographic features allowing a diagnosis 
to be readily made. However, overlapping imaging 
characteristics exist (89). Osteoporotic fractures tend to be 
hypo- to isointense when compared to normal vertebral 
bodies and malignant fractures tend to be hyperintense 
on DWI. The hypointensity in osteoporotic fractures is 
secondary to the edema while the hyperintensity seen in 
metastatic fractures is due to densely packed tumor cells 
restricting water diffusion. In their study, Baur et al. (90)  
used a diffusion-weighted steady-state free precession 
(SSFP) sequence which was acquired with various diffusion 
weightings. Reduction of false-positives was achieved by 
increasing the diffusion weighting, changing hyperintense 
osteoporotic fractures to a more hypointense appearance, a 
feature not seen in malignant compression fractures (90).

Zhou et al. (91) investigated the use of ADC maps and 
found that benign fractures showed higher ADC values 
when compared to metastatic fractures, with values of 
(3.2±0.5) ×10−3 and (1.9±0.3) ×10−4 mm2/s respectively. 
Although, this result has been found in several other 
studies (10,61,92,93), there is overlap between ADC 
values depending on imaging protocols, and no cut-off 
can be determined at this point (13). Again, tumors tend 
to demonstrate lower ADC values due to their cellularity 
in the early stages of growth while in later stages when 
necrosis predominates, increased ADC values may be seen. 
The DWI results should be combined with morphologic 
MR findings and other functional imaging modalities such 
as PET, for instance when using the novel hybrid imaging 
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technology PET/MRI (Figure 5). False-negatives can arise 
when the lesions are sclerotic (13) demonstrating low 
signal on conventional MRI and DWI due to the increased 
fibrotic content of the lesion.

Limitations of DWI

DWI has limitations including susceptibility, motion, and 
arterial pulsation artifacts, requiring imaging protocols 
modifications in order to limit the amount of noise (59,72). 
Diffusion MRI is more sensitive to motion in comparison 
to other sequences, a problem which has been minimized 
by the use of echo-planar imaging. Echo-planar imaging, 
however, provides lower spatial resolution images and is 
more susceptible to eddy currents (94). These artifacts from 
eddy currents are introduced at bone-tissue and air-tissue 
interfaces (95). Patient motion can cause voxels to change 
position, an especially important consideration when taking 
multiple images at different b-values to calculate ADC 

maps. Calculating ADC maps also requires the assumption 
that voxels have a certain size when in fact they vary 
according to the local diffusion gradient strength (94). At 
times, depending on the imaging technique used it may not 
be possible to calculate an ADC map, such as with a SSFP 
sequence (90). 

Pitfalls of DWI

There are several challenges that are associated with the 
creation and interpretation of DWI. The guidelines for 
choosing a region of interest are not well-established even 
though tumors are often heterogeneous. As discussed, post-
therapy with mixed viable tumor and areas of necrosis lead 
to inter-reader differences (12). One study using multiple, 
small regions of interest and minimum ADC values, found 
extensive variability within the tumor (14). The usage of 
minimum ADC values is suggested because the regions of 
interest with the lowest ADC values theoretically correlate 

D
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Figure 4 A 74-year-old female with late-onset rheumatoid arthritis with the following MR images: (A) T1w coronal; (B) T1w fat 
suppressed post gadolinium coronal; (C) T1w fat suppressed post gadolinium axial; (D) DWI with b=50 axial; (E) DWI with b=800 axial and 
corresponding ADC map color coded axial. Morphologic findings include radiocarpal and distal radioulnar joint space narrowing as well as 
enhancement of the synovium. Please note that although some authors (87) advocate DWI as a novel non-invasive approach to contrast-free 
imaging of synovitis, the signal hyperintensity on DWI with corresponding high ADC-values reflects mainly T2-shine-through-effects and 
does not represent true diffusion restriction. DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficients.
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well with regions of high cellularity (14) and can possibly 
indicate regions which did not respond to therapy.

B values are influenced by the gyromagnetic ratio, 
gradient strength, diffusion gradient duration, and time 
between diffusion gradient pulses, all of which influence the 
ADC values (12). Taking into consideration the variation in 
MRI specifications between vendors and imaging protocols 
used in different institutions, it is challenging to standardize 

b values and the calculated ADC values. Depending on the 
location of the tumor, artifacts may appear at bone-tissue or 
air-tissue interfaces therefore modified imaging protocols 
may be required (95). Tumors can also appear similar to 
simple fluid on T2-weighted images due to the T2-shine 
through effect (64). Ideally, DWI should be correlated with 
ADC maps (96). Table 1 lists clinically important pitfalls 
associated with DWI.

Table 1 Clinically important pitfalls in DWI

Pitfalls associated with DWI

T2-shine through effect

Non-standardized MRI and image acquisition techniques

Lack of collaboration between vendors

Different imaging protocols and processing models (e.g., mono-exponential modeling)

No pre-defined b values for a given tumor or its location (61)

Perfusion and diffusion components contributing to varying DWI signal, adding to the complexity in interpretation (13)

DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging.

Figure 5 A 16-year-old male patient with osteosarcoma of the mid femoral shaft who was imaged with whole-body FDG-PET/MRI (Siemens, 
Biograph mMR). PET acquisition was performed 67 min post FDG injection. The following images are provided: (A) whole body PET 
maximum-intensity projection; (B) T2w HASTE axial; (C) fusion of T2w HASTE axial and FDG-PET axial; (D) T1w VIBE axial; (E) 
DWI with b=50 axial; (F) DWI with b=800 axial; (G) corresponding ADC map axial. The FDG avid malignancy is seen on AP planar whole 
body image within the left femoral diaphysis. Within the medial aspect of the tumor there is increased signal on T2WI, high b value DWI, 
and corresponding low signal on ADC map consistent with area of high grade tumor cellularity. PET and DWI images demonstrate the 
marked heterogeneity of the tumor with necrotic areas and other highly cellular tumor. PET, positron emission tomography; MRI, magnetic 
resonance imaging; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficients; HASTE, half-Fourier acquisition single-shot; 
VIBE,  volumetric interpolated breath-hold examination.
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Conclusions and future directions

DWI has been shown to add value in several areas by being 
part of the multi-parametric MRI approach, even though 
quantitative values tend to overlap. Investigations into the 
clinical applications regarding monitoring tumor burden or 
whole-body imaging are still at an early stage. A challenge 
that DWI faces is standardization of imaging protocols 
allowing for better comparisons across studies. Therefore, 
initiatives like the Quantitative Imaging Biomarkers 
Alliance (QIBA) organized by RSNA are very promising. It 
is also uncertain whether therapies other than those which 
cause apoptosis or ischemia and essentially associated with 
alterations in cellularity, are capable of being measured by 
DWI (60).

Currently, studies have shown that DWI can be used 
for various musculoskeletal pathologies and is showing 
promising results in a variety of applications. It has been 
demonstrated that MRI can be useful in differentiating 
partial and complete ACL tears (46). The diffusion 
properties of tumors pre- and post-treatment can be used 
to assess the prognosis of patients who have soft-tissue 
tumors (59,60). The effects of increased cellularity of 
tumors on diffusion can also be exploited to localize soft-
tissue tumors and bone lesions (26). The use of DWI in 
differentiating infectious from malignant causes is limited 
due to overlapping imaging characteristics (10) but has 
shown utility in differentiating osteoporotic and metastatic 
compression fractures (5). It will be crucial to correlate 
DWI with morphology on MRI and other functional 
techniques, such as PET as suggested when applying PET/
MRI for musculoskeletal applications (97,98).

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest 
to declare.

References

1.	 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis 
E, Laval-Jeantet M. MR imaging of intravoxel incoherent 
motions: application to diffusion and perfusion in 
neurologic disorders. Radiology 1986;161:401-7.

2.	 Mintorovitch J, Moseley ME, Chileuitt L, Shimizu H, 
Cohen Y, Weinstein PR. Comparison of diffusion- and T2-
weighted MRI for the early detection of cerebral ischemia 
and reperfusion in rats. Magn Reson Med 1991;18:39-50.

3.	 Chien D, Kwong KK, Gress DR, Buonanno FS, Buxton 
RB, Rosen BR. MR diffusion imaging of cerebral infarction 
in humans. AJNR Am J Neuroradiol 1992;13:1097-102; 
discussion 1103-5.

4.	 Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. 
Acute human stroke studied by whole brain echo planar 
diffusion-weighted magnetic resonance imaging. Ann 
Neurol 1995;37:231-41.

5.	 Baur A, Stäbler A, Brüning R, Bartl R, Krödel A, Reiser 
M, Deimling M. Diffusion-weighted MR imaging of 
bone marrow: differentiation of benign versus pathologic 
compression fractures. Radiology 1998;207:349-56.

6.	 Kealey SM, Aho T, Delong D, Barboriak DP, Provenzale 
JM, Eastwood JD. Assessment of apparent diffusion 
coefficient in normal and degenerated intervertebral lumbar 
disks: initial experience. Radiology 2005;235:569-74.

7.	 Dallaudière B, Dautry R, Preux PM, Perozziello A, 
Lincot J, Schouman-Claeys E, Serfaty JM. Comparison 
of apparent diffusion coefficient in spondylarthritis axial 
active inflammatory lesions and type 1 Modic changes. Eur 
J Radiol 2014;83:366-70.

8.	 Baur A, Huber A, Arbogast S, Dürr HR, Zysk S, Wendtner 
C, Deimling M, Reiser M. Diffusion-weighted imaging 
of tumor recurrencies and posttherapeutical soft-tissue 
changes in humans. Eur Radiol 2001;11:828-33.

9.	 Eguchi Y, Ohtori S, Yamashita M, Yamauchi K, Suzuki 
M, Orita S, Kamoda H, Arai G, Ishikawa T, Miyagi M, 
Ochiai N, Kishida S, Masuda Y, Ochi S, Kikawa T, Takaso 
M, Aoki Y, Inoue G, Toyone T, Takahashi K. Diffusion 
magnetic resonance imaging to differentiate degenerative 
from infectious endplate abnormalities in the lumbar 
spine. Spine (Phila Pa 1976) 2011;36:E198-202.

10.	 Pui MH, Mitha A, Rae WI, Corr P. Diffusion-weighted 
magnetic resonance imaging of spinal infection and 
malignancy. J Neuroimaging 2005;15:164-70.

11.	 Yakushiji T, Oka K, Sato H, Yorimitsu S, Fujimoto T, 
Yamashita Y, Mizuta H. Characterization of chondroblastic 
osteosarcoma: gadolinium-enhanced versus diffusion-
weighted MR imaging. J Magn Reson Imaging 
2009;29:895-900.

12.	 Subhawong TK, Jacobs MA, Fayad LM. Insights into 
quantitative diffusion-weighted MRI for musculoskeletal 
tumor imaging. AJR Am J Roentgenol 2014;203:560-72.

13.	 Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-



750 Bhojwani et al. Diffusion-weighted imaging in musculoskeletal radiology

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):740-753www.amepc.org/qims

weighted imaging (DWI) in musculoskeletal MRI: a 
critical review. Skeletal Radiol 2011;40:665-81.

14.	 Oka K, Yakushiji T, Sato H, Yorimitsu S, Hayashida Y, 
Yamashita Y, Mizuta H. Ability of diffusion-weighted 
imaging for the differential diagnosis between chronic 
expanding hematomas and malignant soft tissue tumors. J 
Magn Reson Imaging 2008;28:1195-200.

15.	 Einarsdóttir H, Karlsson M, Wejde J, Bauer HC. 
Diffusion-weighted MRI of soft tissue tumours. Eur 
Radiol 2004;14:959-63.

16.	 Razek A, Nada N, Ghaniem M, Elkhamary S. Assessment 
of soft tissue tumours of the extremities with diffusion 
echoplanar MR imaging. Radiol Med 2012;117:96-101.

17.	 Subhawong TK, Durand DJ, Thawait GK, Jacobs MA, 
Fayad LM. Characterization of soft tissue masses: can 
quantitative diffusion weighted imaging reliably distinguish 
cysts from solid masses? Skeletal Radiol 2013;42:1583-92.

18.	 van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau 
AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in 
the characterization of soft-tissue tumors. J Magn Reson 
Imaging 2002;15:302-7.

19.	 Maeda M, Matsumine A, Kato H, Kusuzaki K, Maier SE, 
Uchida A, Takeda K. Soft-tissue tumors evaluated by line-
scan diffusion-weighted imaging: influence of myxoid 
matrix on the apparent diffusion coefficient. J Magn Reson 
Imaging 2007;25:1199-204.

20.	 Alibek S, Cavallaro A, Aplas A, Uder M, Staatz G. 
Diffusion weighted imaging of pediatric and adolescent 
malignancies with regard to detection and delineation: 
initial experience. Acad Radiol 2009;16:866-71.

21.	 Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van 
Cauteren M. Diffusion weighted whole body imaging with 
background body signal suppression (DWIBS): technical 
improvement using free breathing, STIR and high 
resolution 3D display. Radiat Med 2004;22:275-82.

22.	 Kwee TC, Takahara T, Ochiai R, Nievelstein RA, 
Luijten PR. Diffusion-weighted whole-body imaging 
with background body signal suppression (DWIBS): 
features and potential applications in oncology. Eur Radiol 
2008;18:1937-52.

23.	 Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili 
A, Scherr P, Schmid DT, Graf N, von Weymarn CA, 
Willemse EM, Binkert CA. Comparison of diffusion-
weighted whole body MRI and skeletal scintigraphy for 
the detection of bone metastases in patients with prostate 
or breast carcinoma. Skeletal Radiol 2010;39:333-43.

24.	 Goudarzi B, Kishimoto R, Komatsu S, Ishikawa H, 
Yoshikawa K, Kandatsu S, Obata T. Detection of bone 

metastases using diffusion weighted magnetic resonance 
imaging: comparison with (11)C-methionine PET and 
bone scintigraphy. Magn Reson Imaging 2010;28:372-9.

25.	 Gould P. Medical isotope shortage reaches crisis level. 
Nature 2009;460:312-3.

26.	 Wu LM, Gu HY, Zheng J, Xu X, Lin LH, Deng X, Zhang 
W, Xu JR. Diagnostic value of whole-body magnetic 
resonance imaging for bone metastases: a systematic review 
and meta-analysis. J Magn Reson Imaging 2011;34:128-35.

27.	 Koh DM, Blackledge M, Padhani AR, Takahara T, Kwee 
TC, Leach MO, Collins DJ. Whole-body diffusion-
weighted MRI: tips, tricks, and pitfalls. AJR Am J 
Roentgenol 2012;199:252-62.

28.	 Jacobs MA, Pan L, Macura KJ. Whole-body diffusion-
weighted and proton imaging: a review of this emerging 
technology for monitoring metastatic cancer. Semin 
Roentgenol 2009;44:111-22.

29.	 Pearce T, Philip S, Brown J, Koh DM, Burn PR. Bone 
metastases from prostate, breast and multiple myeloma: 
differences in lesion conspicuity at short-tau inversion 
recovery and diffusion-weighted MRI. Br J Radiol 
2012;85:1102-6.

30.	 Fischer MA, Nanz D, Hany T, Reiner CS, Stolzmann P, 
Donati OF, Breitenstein S, Schneider P, Weishaupt D, von 
Schulthess GK, Scheffel H. Diagnostic accuracy of whole-
body MRI/DWI image fusion for detection of malignant 
tumours: a comparison with PET/CT. Eur Radiol 
2011;21:246-55.

31.	 Hauben EI, Weeden S, Pringle J, Van Marck EA, 
Hogendoorn PC. Does the histological subtype of high-
grade central osteosarcoma influence the response to 
treatment with chemotherapy and does it affect overall 
survival? A study on 570 patients of two consecutive trials 
of the European Osteosarcoma Intergroup. Eur J Cancer 
2002;38:1218-25.

32.	 Geirnaerdt MJ, Bloem JL, Eulderink F, Hogendoorn 
PC, Taminiau AH. Cartilaginous tumors: correlation of 
gadolinium-enhanced MR imaging and histopathologic 
findings. Radiology 1993;186:813-7.

33.	 Dorfman HD, Czerniak B. Bone cancers. Cancer 
1995;75:203-10.

34.	 Bacci G, Bertoni F, Longhi A, Ferrari S, Forni C, Biagini 
R, Bacchini P, Donati D, Manfrini M, Bernini G, Lari 
S. Neoadjuvant chemotherapy for high-grade central 
osteosarcoma of the extremity. Histologic response to 
preoperative chemotherapy correlates with histologic 
subtype of the tumor. Cancer 2003;97:3068-75.

35.	 Geirnaerdt MJ, Bloem JL, van der Woude HJ, Taminiau 



751Quantitative Imaging in Medicine and Surgery, Vol 5, No 5 October 2015

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):740-753www.amepc.org/qims

AH, Nooy MA, Hogendoorn PC. Chondroblastic 
osteosarcoma: characterisation by gadolinium-enhanced 
MR imaging correlated with histopathology. Skeletal 
Radiol 1998;27:145-53.

36.	 De Beuckeleer LH, De Schepper AM, Ramon F, 
Somville J. Magnetic resonance imaging of cartilaginous 
tumors: a retrospective study of 79 patients. Eur J Radiol 
1995;21:34-40.

37.	 Hwang S, Panicek DM. Magnetic resonance imaging 
of bone marrow in oncology, Part 1. Skeletal Radiol 
2007;36:913-20.

38.	 Nonomura Y, Yasumoto M, Yoshimura R, Haraguchi K, 
Ito S, Akashi T, Ohashi I. Relationship between bone 
marrow cellularity and apparent diffusion coefficient. J 
Magn Reson Imaging 2001;13:757-60.

39.	 Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, Cheng 
YS. Evaluation of MR spectroscopy and diffusion-weighted 
MRI in detecting bone marrow changes in postmenopausal 
women with osteoporosis. Clin Radiol 2010;65:377-81.

40.	 Yasumoto M, Nonomura Y, Yoshimura R, Haraguchi K, 
Ito S, Ohashi I, Shibuya H. MR detection of iliac bone 
marrow involvement by malignant lymphoma with various 
MR sequences including diffusion-weighted echo-planar 
imaging. Skeletal Radiol 2002;31:263-9.

41.	 Reid JD, Kommareddi S, Lankerani M, Park MC. Chronic 
expanding hematomas. A clinicopathologic entity. JAMA 
1980;244:2441-2.

42.	 Aoki T, Nakata H, Watanabe H, Maeda H, Toyonaga T, 
Hashimoto H, Nakamura T. The radiological findings 
in chronic expanding hematoma. Skeletal Radiol 
1999;28:396-401.

43.	 Kang BK, Na DG, Ryoo JW, Byun HS, Roh HG, Pyeun 
YS. Diffusion-weighted MR imaging of intracerebral 
hemorrhage. Korean J Radiol 2001;2:183-91.

44.	 Costa FM, Ferreira EC, Vianna EM. Diffusion-weighted 
magnetic resonance imaging for the evaluation of 
musculoskeletal tumors. Magn Reson Imaging Clin N Am 
2011;19:159-80.

45.	 Lee JC, Thomas JM, Phillips S, Fisher C, Moskovic E. 
Aggressive fibromatosis: MRI features with pathologic 
correlation. AJR Am J Roentgenol 2006;186:247-54.

46.	 Delin C, Silvera S, Coste J, Thelen P, Lefevre N, 
Ehkirch FP, Le Couls V, Oudjit A, Radier C, Legmann 
P. Reliability and diagnostic accuracy of qualitative 
evaluation of diffusion-weighted MRI combined with 
conventional MRI in differentiating between complete 
and partial anterior cruciate ligament tears. Eur Radiol 
2013;23:845-54.

47.	 Chen WT, Shih TT, Tu HY, Chen RC, Shau WY. Partial 
and complete tear of the anterior cruciate ligament. Acta 
Radiol 2002;43:511-6.

48.	 Lawrance JA, Ostlere SJ, Dodd CA. MRI diagnosis of 
partial tears of the anterior cruciate ligament. Injury 
1996;27:153-5.

49.	 Tsai KJ, Chiang H, Jiang CC. Magnetic resonance imaging 
of anterior cruciate ligament rupture. BMC Musculoskelet 
Disord 2004;5:21.

50.	 Umans H, Wimpfheimer O, Haramati N, Applbaum YH, 
Adler M, Bosco J. Diagnosis of partial tears of the anterior 
cruciate ligament of the knee: value of MR imaging. AJR 
Am J Roentgenol 1995;165:893-7.

51.	 Yao L, Gentili A, Petrus L, Lee JK. Partial ACL rupture: 
an MR diagnosis? Skeletal Radiol 1995;24:247-51.

52.	 Walker EA, Salesky JS, Fenton ME, Murphey MD. 
Magnetic resonance imaging of malignant soft tissue 
neoplasms in the adult. Radiol Clin North Am 
2011;49:1219-34, vi.

53.	 Weinmann HJ, Brasch RC, Press WR, Wesbey GE. 
Characteristics of gadolinium-DTPA complex: a 
potential NMR contrast agent. AJR Am J Roentgenol 
1984;142:619-24.

54.	 Vanel D, Shapeero LG, De Baere T, Gilles R, Tardivon A, 
Genin J, Guinebretière JM. MR imaging in the follow-up 
of malignant and aggressive soft-tissue tumors: results of 
511 examinations. Radiology 1994;190:263-8.

55.	 Reddick WE, Bhargava R, Taylor JS, Meyer WH, Fletcher 
BD. Dynamic contrast-enhanced MR imaging evaluation 
of osteosarcoma response to neoadjuvant chemotherapy. J 
Magn Reson Imaging 1995;5:689-94.

56.	 Verstraete KL, De Deene Y, Roels H, Dierick A, 
Uyttendaele D, Kunnen M. Benign and malignant 
musculoskeletal lesions: dynamic contrast-enhanced MR 
imaging--parametric "first-pass" images depict tissue 
vascularization and perfusion. Radiology 1994;192:835-43.

57.	 Roberts TP. Physiologic measurements by contrast-
enhanced MR imaging: expectations and limitations. J 
Magn Reson Imaging 1997;7:82-90.

58.	 Erlemann R. Dynamic, gadolinium-enhanced MR imaging 
to monitor tumor response to chemotherapy. Radiology 
1993;186:904-5.

59.	 Bley TA, Wieben O, Uhl M. Diffusion-weighted MR 
imaging in musculoskeletal radiology: applications in 
trauma, tumors, and inflammation. Magn Reson Imaging 
Clin N Am 2009;17:263-75.

60.	 Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny 
HC, Takahara T, Dzik-Jurasz A, Ross BD, Van 



752 Bhojwani et al. Diffusion-weighted imaging in musculoskeletal radiology

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):740-753www.amepc.org/qims

Cauteren M, Collins D, Hammoud DA, Rustin GJ, 
Taouli B, Choyke PL. Diffusion-weighted magnetic 
resonance imaging as a cancer biomarker: consensus and 
recommendations. Neoplasia 2009;11:102-25.

61.	 Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, 
Frahm J. Diffusion-weighted MR imaging of metastatic 
disease of the spine: assessment of response to therapy. 
AJNR Am J Neuroradiol 2002;23:906-12.

62.	 Lang P, Wendland MF, Saeed M, Gindele A, Rosenau 
W, Mathur A, Gooding CA, Genant HK. Osteogenic 
sarcoma: noninvasive in vivo assessment of tumor 
necrosis with diffusion-weighted MR imaging. Radiology 
1998;206:227-35.

63.	 Roberge D, Skamene T, Nahal A, Turcotte RE, Powell 
T, Freeman C. Radiological and pathological response 
following pre-operative radiotherapy for soft-tissue 
sarcoma. Radiother Oncol 2010;97:404-7.

64.	 Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke 
DA. Musculoskeletal tumors: how to use anatomic, 
functional, and metabolic MR techniques. Radiology 
2012;265:340-56.

65.	 Chenevert TL, Meyer CR, Moffat BA, Rehemtulla A, 
Mukherji SK, Gebarski SS, Quint DJ, Robertson PL, 
Lawrence TS, Junck L, Taylor JM, Johnson TD, Dong Q, 
Muraszko KM, Brunberg JA, Ross BD. Diffusion MRI: a 
new strategy for assessment of cancer therapeutic efficacy. 
Mol Imaging 2002;1:336-43.

66.	 Dudeck O, Zeile M, Pink D, Pech M, Tunn PU, Reichardt 
P, Ludwig WD, Hamm B. Diffusion-weighted magnetic 
resonance imaging allows monitoring of anticancer 
treatment effects in patients with soft-tissue sarcomas. J 
Magn Reson Imaging 2008;27:1109-13.

67.	 Zhao M, Pipe JG, Bonnett J, Evelhoch JL. Early detection 
of treatment response by diffusion-weighted 1H-NMR 
spectroscopy in a murine tumour in vivo. Br J Cancer 
1996;73:61-4.

68.	 Hayashida Y, Yakushiji T, Awai K, Katahira K, Nakayama Y, 
Shimomura O, Kitajima M, Hirai T, Yamashita Y, Mizuta 
H. Monitoring therapeutic responses of primary bone 
tumors by diffusion-weighted image: Initial results. Eur 
Radiol 2006;16:2637-43.

69.	 Uhl M, Saueressig U, van Buiren M, Kontny U, 
Niemeyer C, Köhler G, Ilyasov K, Langer M. 
Osteosarcoma: preliminary results of in vivo assessment 
of tumor necrosis after chemotherapy with diffusion- and 
perfusion-weighted magnetic resonance imaging. Invest 
Radiol 2006;41:618-23.

70.	 Chan JH, Peh WC, Tsui EY, Chau LF, Cheung KK, Chan 

KB, Yuen MK, Wong ET, Wong KP. Acute vertebral body 
compression fractures: discrimination between benign and 
malignant causes using apparent diffusion coefficients. Br J 
Radiol 2002;75:207-14.

71.	 Stäbler A, Doma AB, Baur A, Krüger A, Reiser MF. 
Reactive bone marrow changes in infectious spondylitis: 
quantitative assessment with MR imaging. Radiology 
2000;217:863-8.

72.	 Herneth AM, Ringl H, Memarsadeghi M, Fueger B, 
Friedrich KM, Krestan C, Imhof H. Diffusion weighted 
imaging in osteoradiology. Top Magn Reson Imaging 
2007;18:203-12.

73.	 Unal O, Koparan HI, Avcu S, Kalender AM, Kisli E. 
The diagnostic value of diffusion-weighted magnetic 
resonance imaging in soft tissue abscesses. Eur J Radiol 
2011;77:490-4.

74.	 Harish S, Chiavaras MM, Kotnis N, Rebello R. MR 
imaging of skeletal soft tissue infection: utility of diffusion-
weighted imaging in detecting abscess formation. Skeletal 
Radiol 2011;40:285-94.

75.	 Bogduk N, Twomey LT. Clinical Anatomy of the Lumbar 
Spine. London: Churchill Livingstone, 1987. 

76.	 Mitra D, Cassar-Pullicino VN, McCall IW.Longitudinal 
study of vertebral type-1 end-plate changes on MR of the 
lumbar spine. Eur Radiol 2004;14:1574-81.

77.	 Moore RJ. The vertebral endplate: disc degeneration, disc 
regeneration. Eur Spine J 2006;15 Suppl 3:S333-7.

78.	 Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty 
AP, Murugan S. ISSLS prize winner: A study of diffusion 
in human lumbar discs: a serial magnetic resonance 
imaging study documenting the influence of the endplate 
on diffusion in normal and degenerate discs. Spine (Phila 
Pa 1976) 2004;29:2654-67.

79.	 Jones A, Clarke A, Freeman BJ, Lam KS, Grevitt MP. 
The Modic classification: inter- and intraobserver error in 
clinical practice. Spine (Phila Pa 1976) 2005;30:1867-9.

80.	 Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter 
JR. Degenerative disk disease: assessment of changes in 
vertebral body marrow with MR imaging. Radiology 
1988;166:193-9.

81.	 Beattie PF, Donley JW, Arnot CF, Miller R. The change in 
the diffusion of water in normal and degenerative lumbar 
intervertebral discs following joint mobilization compared 
to prone lying. J Orthop Sports Phys Ther 2009;39:4-11.

82.	 Beattie PF, Donley JW, Arnot CF, Miller R. The 
immediate reduction in low back pain intensity 
following lumbar joint mobilization and prone press-
ups is associated with increased diffusion of water in the 



753Quantitative Imaging in Medicine and Surgery, Vol 5, No 5 October 2015

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2015;5(5):740-753www.amepc.org/qims

L5-S1 intervertebral disc. J Orthop Sports Phys Ther 
2010;40:256-64.

83.	 Sieper J, Rudwaleit M, Khan MA, Braun J. Concepts and 
epidemiology of spondyloarthritis. Best Pract Res Clin 
Rheumatol 2006;20:401-17.

84.	 Saraux A, Guillemin F, Guggenbuhl P, Roux CH, 
Fardellone P, Le Bihan E, Cantagrel A, Chary-Valckenaere 
I, Euller-Ziegler L, Flipo RM, Juvin R, Behier JM, Fautrel 
B, Masson C, Coste J. Prevalence of spondyloarthropathies 
in France: 2001. Ann Rheum Dis 2005;64:1431-5.

85.	 Bozgeyik Z, Ozgocmen S, Kocakoc E. Role of diffusion-
weighted MRI in the detection of early active sacroiliitis. 
AJR Am J Roentgenol 2008;191:980-6.

86.	 Gaspersic N, Sersa I, Jevtic V, Tomsic M, Praprotnik S. 
Monitoring ankylosing spondylitis therapy by dynamic 
contrast-enhanced and diffusion-weighted magnetic 
resonance imaging. Skeletal Radiol 2008;37:123-31. 

87.	 Li X, Liu X, Du X, Ye Z. Diffusion-weighted MR imaging 
for assessing synovitis of wrist and hand in patients with 
rheumatoid arthritis: a feasibility study. Magn Reson 
Imaging 2014;32:350-3.

88.	 Compston J. Osteoporosis: social and economic impact. 
Radiol Clin North Am 2010;48:477-82.

89.	 Leeds N, Zhou X, McKinnon G, et al. Diffusion imaging 
of the spine: quantitative ADC mapping explaining signal 
change. Proc Am Soc Neuroradiol 2000;1:12.

90.	 Baur A, Huber A, Ertl-Wagner B, Dürr R, Zysk S, 
Arbogast S, Deimling M, Reiser M. Diagnostic value 
of increased diffusion weighting of a steady-state free 
precession sequence for differentiating acute benign 
osteoporotic fractures from pathologic vertebral 
compression fractures. AJNR Am J Neuroradiol 
2001;22:366-72.

91.	 Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. 
Characterization of benign and metastatic vertebral 
compression fractures with quantitative diffusion MR 
imaging. AJNR Am J Neuroradiol 2002;23:165-70.

92.	 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods 
and applications of diffusion imaging of vertebral bone 
marrow. J Magn Reson Imaging 2006;24:1207-20.

93.	 Byun WM, Jang HW, Kim SW, Jang SH, Ahn SH, Ahn 
MW. Diffusion-weighted magnetic resonance imaging of 
sacral insufficiency fractures: comparison with metastases 
of the sacrum. Spine (Phila Pa 1976) 2007;32:E820-4.

94.	 Le Bihan D, Poupon C, Amadon A, Lethimonnier F. 
Artifacts and pitfalls in diffusion MRI. J Magn Reson 
Imaging 2006;24:478-88.

95.	 MacKenzie JD, Gonzalez L, Hernandez A, Ruppert K, 
Jaramillo D. Diffusion-weighted and diffusion tensor 
imaging for pediatric musculoskeletal disorders. Pediatr 
Radiol 2007;37:781-8.

96.	 Burdette JH, Elster AD, Ricci PE. Acute cerebral 
infarction: quantification of spin-density and T2 shine-
through phenomena on diffusion-weighted MR images. 
Radiology 1999;212:333-9.

97.	 Partovi S, Kohan AA, Zipp L, Faulhaber P, Kosmas C, 
Ros PR, Robbin MR. Hybrid PET/MR imaging in two 
sarcoma patients - clinical benefits and implications 
for future trials. Int J Clin Exp Med 2014;7:640-8. 
eCollection 2014.

98.	 Partovi S, Chalian M, Fergus N, Kosmas C, Zipp L, 
Mansoori B, Ros PR, Robbin MR. Magnetic resonance/
positron emission tomography (MR/PET) oncologic 
applications: bone and soft tissue sarcoma. Semin 
Roentgenol 2014;49:345-52.

Cite this article as: Bhojwani N, Szpakowski P, Partovi S, 
Maurer MH, Grosse U, von Tengg-Kobligk H, Zipp-Partovi 
L, Fergus N, Kosmas C, Nikolaou K, Robbin MR. Diffusion-
weighted imaging in musculoskeletal radiology—clinical 
applications and future directions. Quant Imaging Med Surg 
2015;5(5):740-753. doi: 10.3978/j.issn.2223-4292.2015.07.07


