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Mitochondria can change their shape from discrete

isolated organelles to a large continuous reticulum. The

cellular advantages underlying these fused networks are

still incompletely understood. In this paper, we describe

and compare hypotheses regarding the function of

mitochondrial networks. We use mathematical and phys-

ical tools both to investigate existing hypotheses and to

generate new ones, and we suggest experimental and

modelling strategies. Among the novel insights we

underline from this work are the possibilities that

(i) selective mitophagy is not required for quality control

because selective fusion is sufficient; (ii) increased

connectivity may have non-linear effects on the diffusion

rate of proteins; and (iii) fused networks can act to dampen

biochemical fluctuations. We hope to convey to the reader

that quantitative approaches can drive advances in the

understanding of the physiological advantage of these

morphological changes.
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: Additional supporting information may be found in the
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Introduction

Mitochondria are highly dynamic organelles of central
importance for ATP production in most eukaryotic cells. They
are observed to undergo fusion and fission events continu-
ously, leading to a diverse range of mitochondrial morphol-
ogies, from fragmented states to continuous networks.
Mitochondrial dynamics and morphological structures have
been the object of intense study in the past two decades: they
are fundamental to the functionality of the cell, highly
responsive to cellular state [1] and have been implicated in
numerous diseases including Parkinson’s [2], diabetes [3],
cancer [4] and Alzheimer’s [5], as well as being of central
importance in various mitochondrial diseases [3, 6, 7]. Despite
this medical importance – and the increasing volume and
detail of experimental results describing mitochondrial net-
works – many aspects of the function of mitochondrial fission
and fusion remain unclear.

Various effects of fused mitochondrial states have been
observed, including an increase in energy production [8–12],
protection against apoptotic stresses [10, 13–16], an increase
in cell proliferation ([17] and references therein), and
regulation of various signalling pathways [18–21]. Exactly
how these effects are established through increased
mitochondrial connectedness remains unclear. Here, we
attempt to provide more clarity by exploring the mechanistic
advantages of mitochondrial networks (i.e. large connected
pieces of mitochondrial material) including increases in
controllability, efficiency, robustness of mitochondria with
respect to perturbations, and increases in oxidative capacity.
To complement the mainly qualitative discussions that exist
in the literature, we here use mathematical and physical
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arguments to probe the properties and bioenergetics of
mitochondrial network formation, with the aim of gaining
biological insights and suggesting research strategies. In the
right-hand panel of Fig. 1A, several possible functions of
mitochondrial networks are proposed. Some of them are
novel; others have been suggested based on experimental
results, and discussed qualitatively, largely in the absence of
mathematical models to test them. We hope to show that
quantitative approaches to the question of mitochondrial
network formation can serve as a tool to critically analyse old
hypotheses and motivate new ones.

We will not focus on the specific proteins involved in
mitochondrial dynamics, but we occasionally refer to them
and therefore provide a very brief overview. The three main
proteins involved in the fusion of mammalian mitochondria
are the GTPases Optic Atrophy 1 (OPA1) and the two
mitofusins, MFN1 and MFN2. The central protein in mitochon-
drial division is the highly conserved Dynamin-Related
Protein 1 (Drp1), which also belongs to the family of large
GTPases. For a review on the proteins involved in mitochon-
drial dynamics, readers can refer to Ref. [22].

Quantitative definitions of micro, meso-
and hyperfusion

To assist in developing intuition describing our approach, we
will assume here that there exists a smallest mitochondrial

‘unit’. These units may be fused (when they
are part of a lumenally continuous filament)
or fragmented. This assumption is a math-
ematical convenience and does not affect
our later findings or represent our belief in a
quantised set of mitochondrial sizes. We
define a fission rate lfis and a fusion rate
lfus. These rates are assumed to be
constants per mitochondrial unit (this
automatically makes both fission and
fusion rates larger in a long mitochondrial
filament than in a small filament because
the larger filament consists of more units,
each with rates lfis and lfus). The quantity

p � lfus
lfisþlfusð Þ then broadly estimates the probability that a

continuous link exists between any two neighbouring
mitochondrial units (i.e. the probability that two neighbour-
ing units are fused).

Percolation theory [23] suggests that as p increases, at some
value of p a percolating path (a chain of fused mitochondria
extending fromoneendof thecell to theother, in thelimitofvery
large cells) will exist. This situation merits some special
consideration in the context of several hypotheses, and so we
refer to thispercolatingvalueaspc (theexactvalueofpcdepends
on the underlying network structure). Roughly, at and above
thiscritical value,amitochondrionatoneextremeendof thecell
is expected to be continuously connected to amitochondrion at
the other end of the cell.We note that simple percolation theory
is of relatively limited use in describing fine detail of
mitochondrial dynamics, which are dynamic, unlikely to lie
on a lattice, and have connectivity properties dependent on
membrane potential.

The different morphological states we introduce are
fragmented (p¼0; no fusion), microfused (p�0; rare fusion),
mesofused (0< p<pc; fission dominated), dynamic hyper-
fused (pc< p< 1; fusion dominated) and static hyperfused
(p� 1; rare fission). These states are illustrated in Fig. 1B. A
high value of pmeans that the mitochondrial population is in
a highly fused state, which can be the result of a high fusion
rate, low fission rate, or both. The distinction between
dynamic hyperfusion and static hyperfusion is important. For
both hyperfused states a percolating continuous path exists
(p> pc). The difference is that in dynamic hyperfused states,

Figure 1. Potential causes and types of mitochondrial network formation. A: There are
clear benefits of small-scale fusion events (microfusion) such as membrane and matrix
protein complementation (and possibly mtDNA complementation) and selective degrada-
tion. However, to appreciate these advantages, one does not require the formation of
large extended networks, the functions of which remains to be elucidated. In this paper
we discuss the functions proposed in the right panel. B: The quantity p, defined as lfus/
(lfusþlfis), roughly estimates the probability that any two neighbouring mitochondrial
units are fused. Note that different rates of fusion and fission can lead to the same
connectivity of the network, as long as the ratio lfus/(lfusþlfis) remains constant. In a
static hyperfused state, virtually no fission events occur and therefore no quality control is
possible. However, in a dynamic hyperfused state the fission rate is non-zero (lfis>0)
and quality control is present. The red arrows represent fusion or fission events and are
absent in the static hyperfused state.
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there can still be an appreciable rate of fission (e.g. if fusion
proteins are overexpressed), whereas in static hyperfused
states there are (almost) no fission events (e.g. if fission
proteins are knocked out or heavily downregulated). Enforc-
ing mitochondrial elongation leads to oxidative damage and
decreased respiration [24], increased cell death [25], mito-
chondrial DNA (mtDNA) loss [26] and chromosomal insta-
bility [27]. In many of these studies, the hyperfused state is
induced by knockout of fission proteins, which creates a static
hyperfused state. However, if physiological hyperfusion
involves dynamic rather than static hyperfusion, fission
events do occur and the aforementioned negative conse-
quences may not be manifested.

We appreciate that our assumption of equal rates of fission
and fusion for all mitochondrial units represents an over-
simplification. In reality, for example, fusion rate depends on
membrane potential [24, 28, 29] and fission and fusion events
are not independent [24, 30]. We nonetheless believe that
using a simplified approach can help make testable
predictions and it provides a framework for more sophisti-
cated models. We note that there is a disconnect between an
idealised mathematical description of network structure and
experimental measurements that are currently possible,
although new approaches are narrowing this gap [31, 32],
but useful insights may still be gained by considering
mathematical abstractions.

Physiological circumstances in which meso- and hyper-
fusion have been observed, as well as the ‘typical’
morphological state of mitochondria, are summarized in
Tables S1 and S2: it is currently unclear whether meso- and
hyperfusion are widespread cellular phenomena or restricted
to certain cell types and situations.

Hypothesised reasons for mitochondrial
meso- and hyperfusion

In this section, we list existing hypotheses regarding the
function of mitochondrial meso- and hyperfusion. Besides
the hypotheses discussed here, additional hypotheses that
could not be included due to space restrictions are
mentioned in the supplementary information (SI) in sections
S2.1–S2.4. These include the possibilities that meso- and
hyperfusion (i) create a genetic reservoir [33]; (ii) increase
ATP synthesis through a range of mechanisms in addition to
the one described in the main text; (iii) enable faster energy
transmission along mitochondrial cables [34–37] (see also
Fig. 3C); and (iv) have no function. All hypotheses (including
the ones discussed in the SI) are summarized in Table 1,
which includes critiques of each hypothesis. In Table 2 we
provide, for each hypothesis discussed in the main text,
experimental tests and suggestions for further modelling.

One immediate consequence of a mathematical perspec-
tive on mitochondrial fusion is the observation that, for
fused states to be physiologically beneficial, a non-linear
relationship between a mitochondrial property and cellular
functionality must be involved. In other words, a fused
mitochondrion must be of more use to the cell than the sum
of the individual pre-fused mitochondria. Suppose x denotes

some extensive property of a mitochondrion and f (x)
describes how useful this mitochondrion is to the cell. Then,
if there is another mitochondrion with property y and
‘usefulness’ f (y), we expect:

f ðxþ yÞ
|fflfflfflffl{zfflfflfflffl}

usefulness of the fused mitochondrion

> f xð Þ þ f yð Þ:
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

sum of usefulness of the individual mitochondria

In other words, the function f, relating some aspect of
mitochondrial size to ‘usefulness’, must be non-linear.
Somehow fusion into networks must create ‘extra usefulness’
to the cell; the network structure must allow for, or give rise
to, options that were not available before. In some of the
hypotheses discussed, each individual fusion event benefits
the cell; in others, a benefit only arises once sufficiently
many mitochondria have fused to form an interconnected
network.

Selective fusion creates the possibility of quality
control without needing selective mitophagy

Summary

Mitochondrial quality control is the process that maintains a
healthy mitochondrial population by identifying and degrad-
ing dysfunctional mitochondria [24, 72], degrading damaged
mitochondrial components [73] and transporting damaged
components out of the mitochondrion [74, 75]. Three
mechanisms contributing to this control are fusion, fission
and mitophagy. To ensure that a degradation bias is present
(dysfunctional mitochondria should be more likely to be
degraded than healthy mitochondria), selection occurring in
one of these mechanisms is sufficient. We argue that selective
fusion combined with non-selective fission and non-selective
mitophagy leads to the desired biased degradation and that
in fact there are two levels of quality control: (i) control on
the level of the mitochondrial network (non-selective fission
and selective fusion) that does not require mitophagy and
which we call ‘blind surveillance’; and (ii) control on the
level of the cell using non-selective mitophagy. In this
section, our terms ‘selective’ and ‘non-selective’ refer to
selection based on mitochondrial function; we assume that
mitophagy always selects on mitochondrial size (i.e. only
small mitochondrial fragments are targeted for mitophagy).
Size-dependent mitophagy is the source of non-linearity in
this model.

Blind surveillance consists of two parts. The first part
involves random (blind) fission events. By random we mean
that these events are not selective, and therefore a functional
mitochondrion is just as likely to become fragmented as a
dysfunctional one. The second part is the surveillance, which
involves selective fusion events: a functional mitochondrion is
more likely to fuse [24]. As a consequence, a functional
mitochondrion will, on average, stay fragmented for a shorter
period of time than a dysfunctional mitochondrion.With blind
surveillance present, mitophagy does not need to be selective
because any isolated mitochondrion is more likely to be
dysfunctional than healthy and, therefore, even if mitophagy

....Prospects & Overviews H. Hoitzing et al.

689Bioessays 37: 687–700,� 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s



is non-selective, a bias towards degrading dysfunctional
mitochondria is automatically established. The strength of
this effect is increased in cases of higher mitochondrial fusion
(see section S1.1).

Having dysfunctional mitochondria separated from the
fused network is an advantage on its own, because a
dysfunctional mitochondrion fusing with an already fused
and functional network may have negative effects that are not
present if the mitochondrion in question remains isolated.
Blind surveillance thus forms the a first level of quality control
(it separates dysfunctional mitochondria from the network
by using non-selective fission and selective fusion), and
mitophagy forms the second level by eliminating fragmented
mitochondria (which are more likely to be dysfunctional –
hence even non-selectivemitophagy eliminates more dysfunc-
tional than functional mitochondria).

Experimental support

Selection on the level of fusion (mitochondria with low Dc are
less likely to fuse [28, 29, 24]) and mitophagy [76–79] is
supported by observation. A possible mechanism for selective
fusion is the increased processing of OPA1 by OMA1 when
Dc is low [80, 81], which then results in a lower fusion
probability. Selective elimination of damaged mitochondria
has been observed [82, 83], although the precise mechanisms
are still incompletely understood [84].

Coarse-grained quantitative model

Mathematical models of mitochondrial quality control have
been constructed previously [85–87] and show that fission,
selective fusion and selective autophagy together increase

Table 1. An overview of hypotheses discussed in this paper including criticism

Hypothesis and references Limitations/criticism

Increased selection bias in quality control* The results of the model that is used depend on the rate of
autophagy. If no autophagy is present, one needs to create additional

assumptions to obtain the same results
Faster or more effective complementation [38–43] Matrix protein complementation through small fusion events is

efficient [43], cells with low fusion levels show no major

dysfunctions [44], and ongoing fission and fusion events can,
according to one estimate, lead to better mixing after 2 hours than

stress induced hyperfusion [41]
Increases in ATP production caused by:
(i) Changes in inner membrane shape (discussed in section

S2.2.1) [45–50]

(i) There is no obvious reason why cristae shape should be

determined by overall state of mitochondrial organisation
(ii) Decreases in proton leak (discussed in section S2.2.2) [51] (ii) This may only be relevant in brown adipose tissue (because proton

leak has a more important role in this tissue); it may not explain
hyperfusion in other tissues

(iii) Decreases in mitophagy levels (discussed in section

S2.2.3) [9, 12]

(iii) The cell may keep total mitochondrial mass (or mitochondrial

volume) at the same level; an absence of mitophagy may have other
undesirable cellular consequences

(iv) Non-linear response of ATP synthesis rate to membrane
potential*

iv) The model discussed considers the role of Dc in producing ATP,
whereas actually the proton motive force drives ATP synthesis:
extensions to the electrochemical potential are desirable

Improved bioenergetic control and energy production through
Ca2þ signalling [52–55]

Various studies suggest that calcium has no significant influence on
rate of ATP synthesis in vivo [56]. Other modes of calcium uptake
besides the mitochondrial uniporter that are more rapid exist [57]

Increased buffering against perturbations* It might seem just as natural that in a fragmented state, the isolation
of the different mitochondria is a form of robustness. Fluctuations in

larger mitochondria will occur more frequently because of the larger
surface area

Enables energy transmission (power cabling) along

mitochondria (discussed in section S2.3) [35–37]

This does not account for hyperfusion in tissues that are less

dependent on oxygen and have lower ATP demand
Creating a genetic reservoir (discussed in section S2.1) [33]* It is not clear whether large-scale fusion is necessary to maintain a

genetic reservoir; modulating biogenesis and mitophagy might be
sufficient. Some mitochondria with harmful mtDNA mutations may
not be able to fuse, and are likely to be degraded regardless of

increased fusion rates. If mtDNA mutations are not harmful,
increased fusion is not required per se to create new mutations

No function (discussed in section S2.4) It seems coincidental that different kinds of stress lead to increases
in fusion or decreases in fission activity with a hyperfused state as a
result. Additionally, the main argument to support this hypothesis

(many proteins involved in mitochondrial dynamics are involved in
other processes) is also an argument for the importance of

mitochondrial dynamics

Asterisks denote hypotheses that, to our knowledge, have not been previously proposed.
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Table 2. Suggestions for future modelling and experiments for further analyses of the hypotheses

Hypothesis for forming
mitochondrial networks Further modelling Experimental tests

Increased selection bias in
quality control

The ordinary differential equation model we
describe in section S1.1 is deterministic
and neglects the pronounced stochastic

influences likely to affect mitochondrial
quality control. More powerful models

could be constructed by including these
stochastic influences and relaxing some of
the simplifying assumptions of our model

One of the assumptions of our model is that
only small mitochondrial fragments are
degraded. The existence of a threshold size

above which a mitochondrial filament is not
degraded by mitophagy can be measured.

Alternatively, construct two populations of
cells, one wild-type and one with increased
fusion rates. The autophagy rate parameter

should be the same in both populations.
Measure the average Dc in cells from both

populations. Our model predicts that the
distribution of averages is more centered
towards low values of Dc in the wild-type

population
Faster or more effective

complementation

Mitochondria do not lie on a square lattice,

so a more powerful model than the one we
present can use randomly distributed
nodes or use the microtubule network. A

model that does not explicitly position
nodes in space has been developed [58],
but it does not consider diffusion on the

network. The model in Ref. [58] of the
mitochondrial network also shows

percolation phenomena, and future work
can extend the model by introducing a
diffusing particle on the network and

preferably introducing heterogeneity in
fusion rates to represent heterogeneity in

membrane potentials

This hypothesis suggests that the root

mean squared distance travelled by
mitochondrial proteins depends non-
linearly on the connectedness of the

network (network connectedness can e.g.
be estimated by measuring the average
length of a mitochondrial fragmented).

Calculate the diffusion coefficient of
proteins and the root mean squared

distance travelled by these proteins while
slowly changing fission or fusion rate

Increased ATP production
caused by non-linear response

of ATP synthesis rate to
membrane potential

Numerous biophysical models of the
respiratory chain in mitochondria have

been developed (e.g. [59–61]). Using this
class of models to study respiratory chain

and TCA cycle kinetics during fusion of two
mitochondria can help in finding the
existence and cause of increased ATP

synthesis rate upon fusion

Measure Dc (and preferably simultaneously
DpH) of mitochondria before, during, and

after fusion events. Measurements of Dc
during and after fission (but not fusion)

events have been done before [24, 62], and
an asymmetry in potential is seen after
fissioning [24]. Whether this asymmetry is

simply a reversion to a pre-existing
asymmetry in potential before the
preceding fusion event (fusion events are

usually followed quite soon by fission
events [24]) should be determined.

Alternatively, take snapshots of cells and
quantify the amount of mitochondrial mass
that is fused (by e.g. measuring the average

mitochondrial size, which on average will
be proportional to the level of connectivity

in the cell) while also measuring [ATP]. Do
this for many cells in order to search for a
correlation between the amount of fused

mitochondria and cellular [ATP]. Such
correlations have been found before [8–11]

but not without perturbing the cell. We
propose to take advantage of natural
fluctuations in connectedness.

Alternatively, observe passive fluctuations
in network size of mitochondria in single
cells, while reading out [ATP]. As a final

option, induce fragmentation while
monitoring [ATP] and membrane potential

during treatment
(Continued )
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mitochondrial functionality. To address the specific role of
network state, we construct a simple model of ordinary
differential equations based on populations of healthy and
dysfunctional mitochondria (for details see section S1.1).
Assumptions made in this model are that only fragmented
mitochondria can be removed by mitophagy (which causes
the non-linearity), the total number of mitochondria is
constant, and spatial distributions of mitochondria are
ignored.

If the rate at which healthy mitochondria become
dysfunctional is particularly slow, then the model predicts
a steady state where all the dysfunctional mitochondria have
been removed by non-selective mitophagy. If healthy
mitochondria are allowed to become damaged, then steady
states with both functional and dysfunctional mitochondria
exist. When fusion rate is increased, the steady state fraction
of functional mitochondria increases. We thus quantitatively
illustrate that large-scale selective fusion, without need for
selective mitophagy or fission, has a beneficial effect on
cellular mitochondrial populations.

Limitations/Critique

Autophagy is required for this mechanism to function,
although this assumption also underlies other quality control
mechanisms. Our model makes several assumptions (men-
tioned above). A possibility for future work is to relax these
assumptions (by e.g. including spatial distributions of
mitochondria [86]).

Small changes in fusion state can cause large
changes in complementation rate

Summary

Large-scale fusion facilitates sharing of mitochondrial machi-
nery, as this machinery moves through the mitochondrial
network. Increased sharing may equilibrate concentrations
of nuclear encoded proteins to enable better control over
mitochondria [39], promote coordinated behaviour between

Table 2. (Continued)

Hypothesis for forming
mitochondrial networks Further modelling Experimental tests

Improved bioenergetic control

and energy production through
Ca2þ signalling

Metabolic control analysis (MCA) can be

used to predict how sensitive ATP
production is to changes in activities of

mitochondrial enzymes provoked by
calcium differences. MCA has been used to
study OXPHOS and glycolysis [63–67] and

the TCA cycle [68]. It was shown that a-
ketoglutarate dehydrogenase and isocitrate

dehydrogenase had 70 and 23% control
over respiration, respectively [68]. This
result, however, is only true for specific

conditions. To make physiologically
relevant predictions, these models can be

integrated into biophysical models of the
TCA cycle and respiratory chain. Ordinary
differential equation-based biophysical

models linking calcium and mitochondrial
physiology can also be probed to explore
this relationship [56]

Prepare two populations of cells, one wild-

type and one with more fused
mitochondria. Then stimulate

[Ca2þ]cytoplasm while also measuring oxygen
consumption of the populations. Compare
the change in oxygen consumption induced

by increased [Ca2þ]cytoplasm between the
two populations of cells, to find a

relationship between connectedness of the
mitochondrial network and calcium-
stimulated respiration. Alternatively, look at

the distribution of [Ca2þ]matrix in single cells
of both populations after stimulation of

[Ca2þ]cytoplasm , to check whether this
distribution is more homogeneous in cells
with more fused mitochondria (see Fig. 4)

Increased buffering against
perturbations

Biophysical models of the mitochondrion
that already exist (including, e.g. [69–71])

can be used to check whether an increase
in size indeed dampens fluctuations in
membrane potential. However, one must

be careful to use models that define the flux
of ions into the mitochondrion to be

proportional to surface area. The model
presented in Ref. [59], for example, defines
flux to be proportional to mitochondrial

volume, and this model thus cannot be
used to check the hypothesis discussed

here.

While looking at (and quantifying) natural
fluctuations in the size of a mitochondrial

filament, measure fluctuations in
membrane potential (and preferably also
fluctuations in DpH) of this filament, to

check whether larger filaments have
smaller fluctuations. Alternatively, increase

the permeability of the mitochondrial inner
membrane in cells with fused mitochondria,
and cells with fragmented mitochondria.

Then measure the effect of this change in
permeability (and thus biochemical

fluctuations) on Dc and DpH in both
situations.

For each hypothesis discussed in the main text, we suggest further modelling approaches and experiments that will help test the hypothesis.
Most of the experimental tests suggested will be possible with the tools available today. In this article we consider several hypotheses for an
increase in [ATP] in highly fusedmitochondrial states; in this table we only discuss hypothesis (iv): the others are discussed in sections S2.2.1,
S2.2.2 and S2.2.3.
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mitochondria to synchronize gene expression [1, 88] or
improve the health of the mitochondrial population by
allowing mitochondria to complement each other’s deficien-
cies [89, 90] (functional complementation).

The effect of increased fusion (or decreased fission) on
diffusion rate is most important for fast-diffusing species
because theywill have their diffusion rate cappedbyfissionand
fusion rates. By diffusion rate we mean the effective rate of
diffusion through the mitochondrial network, which will
depend on fission and fusion rates. As the network becomes
more interconnected, a fast-diffusing species will rapidly
explore the new available spaces. Small increases in p (i.e.
small increases in network connectivity may lead to large, non-
linear, increases in diffusion rate, especially near the percolat-
ing value pc. This is because when p>pc it suddenly becomes
possible to diffuse from one extreme end of the cell to the other
end, whereas when p< pc the distance that can be travelled is
much more restricted. A ‘switch-like’ response is thus present
for fast-diffusing species. Slow-diffusing species will locally be
exposed to a relatively rapidly fluctuating network structure;
thus, their diffusion rate increases linearly with fusion level,
meaning that there is no ‘switch-like’ response.

Experimental support

Functional complementation through fusion has been
observed in numerous experimental studies [40, 89, 90],
indicating that fused mitochondria do exchange contents. As
mentioned before, the effect of increased connectedness of

mitochondria is likely to be largest for fast-diffusing species.
We therefore compare diffusion constants of several mito-
chondrial proteins (and mtDNA) in Table S3.

Coarse-grained quantitative model

We can study the diffusion of species along mitochondrial
networks by simulations in which the network is represented
by a 2D or 3D lattice. Mitochondria are represented by the
nodes in the network, and they can be connected through the
edges. The edges can flicker ‘on’ and ‘off’, representing fusion
and fission events respectively, with rates lfus and lfis. In this
model, each mitochondrion has the potential to fuse with any
of its direct neighbours independently, and does so with rate
lfus (similarly for fission). The previously-defined value p
broadly determines how likely it is that an edge is ‘on’. If the
hopping rate for molecules moving between adjacent points
on the network is given by ldif, and particles are restricted to
move only along ‘on’ edges, then the average time it takes a
particle to diffuse across a certain distance can be calculated
in dynamic hyperfused (pc<p< 1), mesofused (0< p< pc)
and microfused (p�0) states (see section S1.2). Our coarse-
grained model makes several assumptions, including con-
stant mitochondrial mass (corresponding to a short time-
scale), an absence of mitophagy and a lattice topology
(Ref. [58] provides an alternative approach).

In Fig. 2A, it is shown how the apparent diffusion
coefficient varies with p for different values of t, where t is the
relaxation time of the fluctuating bonds [91, 92] and is defined
as t ¼ 1

lfisþlfus
(a lower t means that bonds flicker more

frequently between the states ‘on’ and ‘off’). This figure is
based on a mean field approximation, and similar results are
produced by our agent-based stochastic model. In static
percolation (t¼1), an abrupt change in diffusion rate is
present at p¼0.5 (in 2D, assuming a square lattice), but when
bonds fluctuate in time, the diffusion rate changes less
abruptly. For a given p, letting bonds fluctuate faster has the
effect of increasing the diffusion rate, and this effect is largest
around p¼0.5. The simple model shows that a microfused
state results in a smaller diffusion rate than a hyperfused
state, even if the microfused state has very frequent fusion and
fission events. Even slowly-varying hyperfused networks thus
afford more facility to spread elements throughout the cell,
confirming that a hyperfused morphology confers a mixing
advantage for proteins.

Figure 2. Apparent diffusion coefficient depends non-linearly on
degree of fusion. An abrupt change in diffusion rate can occur with
only a small change in fusion rate. A: This figure shows the diffusion
constant of a particle diffusing on a 2D fluctuating lattice as a
function of p (the fraction of present bonds) and t (the relaxation
time of the fluctuating bonds). If t¼1, the bonds are static;
conversely, t¼0 corresponds to the limit of very fast fluctuating
bonds. B: A single trajectory of a diffusing particle (on the left) and a
lattice snapshot for p¼0.6 and t¼100 (on the right). The red dot in
the trajectory marks the starting point of the particle. Existing bonds
in the lattice snapshot are shown in red. C: Trajectory and lattice
snapshot for p¼0.4 and t¼100. Figure B and C show that (for
t¼100) increasing the value of p from 0.4 to 0.6, results in a more
connected network and less restricted diffusion, as is also sug-
gested in Fig. A which indicates a rather abrupt increase in effective
diffusion rate around p¼0.5.
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Limitations/Critique

Complementationmay be sufficiently achieved without a need
for large-scale fusion: short ‘kiss and run’ events are claimed
to be responsible for most mixing because of their high
frequency [43]. In the spirit of ‘back-of-the-envelope’
calculations in biology [93], we use rough estimates to assess
the feasibility of equilibration. The duration of association of
these fusion events approximately ranges from 4 seconds to 5
minutes, with a mean of 45 seconds [43]. The diffusion
coefficient of Green Fluorescent Protein was measured to be
20–30mm2/s [94, 95], meaning that in 45 seconds a distance of
about x � ffiffiffiffiffiffiffi

2Dt
p � 40� 50mm can be travelled, which is more

than enough to accomplish equilibration. However, even
though complementation of matrix components is feasible,
kiss and run events may be too short to allow for sharing of
membrane proteins and nucleoids.

Fusion increases ATP synthesis

Summary

Mitochondrial fusion may increase ATP production, through
one or more of several possible mechanisms. We suggest
the following possible mechanisms of particular interest:
(i) higher [ATP] is caused by fusion-induced changes in
inner membrane shape; (ii) higher [ATP] is caused by fusion-
induced decreases in proton leak; (iii) higher [ATP] is caused
by fusion-induced decreases in mitochondrial degradation;
(iv) higher [ATP] is caused by the non-linear response of ATP
synthesis rate to membrane potential. (i–iii) are discussed in
more detail in the SI. We note that an assumption made in all
four hypotheses is that fusion causes in higher [ATP].
However, it remains to be determined whether mitochon-
drial fusion is the cause of an observed increase in [ATP], or
whether hyperfusion and high ATP concentrations have a
common cause, e.g. a recent study suggested that an
increase in ATP production may precede mitochondrial
fusion [96].

Experimental support

Several studies suggest that hyperfusion increases ATP levels
andmitochondrial respiratory capacity [8–11]. In nutrient-rich
environments mitochondria tend to be fragmented, whereas
under starvation they are observed to form elongated
networks [9, 12], which can be interpreted as an attempt to
enhance energy production in challenging environments.
Hyperfusion is also observed at the G1/S transition, before
energetically costly DNA replication [8]. It is worth noting that
in hyperfused states, concentrations of cellular ATP – not just
the rate of ATP production – were measured to be higher [10].
These increased concentrations suggest a physiological role
for fusion beyond that of meeting extra ATP demand. This role
could be to act as a cellular ‘accelerator pedal’, because an
increase in ATP/ADP ratio in the cell has the consequence that
many reactions will go faster [97, 98]. Further support for
specific hypotheses is described in sections S2.2.1, S2.2.2 and
S2.2.3.

Coarse-grained quantitative model

We focus mathematically on hypothesis (iv) which we have
not seen discussed elsewhere. We first consider how the
membrane potentials of two individual mitochondria Dc1,
Dc2 are related to the overall membrane potential of their
fused product Dc1þ2. A simple model is that the fused product
inherits the arithmetic average of the two individuals, i.e.
Dc1þ2 ¼ 1

2 Dc1 þDc2ð Þ. However, physical calculations
based on considering charged capacitors suggest a range of
possibilities depending onmodelled cristae structureDc1þ2 ¼
Dc1 þDc2ð Þ2�2=y where 0:5 < 2�2=y < 0:63 (see section S1.4).
We do not claim that this capacitor model is a particularly
realistic one (in particular, it does not necessarily capture the
behaviour of mitochondria fusing in chains), but we use it to
give a quantitative example of the possibility of non-averaging
potentials when two charged objects are combined.

Fusion has a clear advantage in the case that
Dc1þ2 >

1
2 Dc1 þDc2ð Þ. We argue that if potentials do average

(i.e. Dc1þ2 ¼ 1
2 Dc1 þDc2ð Þ), it is still possible that total ATP

synthesis rate increases (or decreases) upon fusion. This
advantage is due to a sigmoidal dependence of ATP synthesis
rate (rATP) on Dc [99, 100] (see Fig. 3A). Referring to the
illustration in Fig. 3A, fusion ofmitochondria B andC causes an
increase in rATP (i.e. rATP is larger post-fission than pre-fission)
whereas fusingAandB causes a decrease in rATP and fusion of C
and D leaves rATP approximately constant. The effect of fusion
on rate of ATP synthesis therefore depends on themagnitude of
the potentials of the pre-fusing mitochondria. Having mito-
chondria like A fusing to others causes net decreases in energy
production, and this is a possible reason for why mitochondria
with low Dc have a lower fusion probability [28, 29, 24].

Limitations/Critique

The causal relationship between higher ATP levels and
mitochondrial fusion is still incompletely understood, and it
may be possible that fusion is the effect of high [ATP] instead of
the cause. A recent study showed that the rate of inner
membrane fusion was closely correlated with oxygen con-
sumption, and that this rate increased during OXPHOS
stimulation as the result of increased OPA1 cleavage by
Yme1l [96]. Also, in the model discussed above we have
considered the roleofDc inATPsynthesis rate,whereasactually
the proton motive force (defined as Dp ¼ jDcj þ 2:3 RT

F DpH)
drives ATPproduction [99, 100]. The region of the ATP synthesis
sigmoid at which mitochondria lie is not yet experimentally
clear. Further critique of specific hypotheses is described in
sections S2.2.1, S2.2.2 and S2.2.3.

Fusion affects bioenergetic control and total
energy production through calcium signalling

Summary

Fusion averages out calcium concentrations across the
mitochondrial network, giving rise to two advantages: (i)
calcium concentrations are placed in an intermediate regime
where small changes have pronounced effects on enzymatic
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rates, and thus tight bioenergetic control of
the mitochondrial population is facilitated;
and (ii) the amount of mitochondrial
volume that experiences a rise in
[Ca2þ]matrix is increased, hence boosting
total energy production.

Calcium is known to stimulate certain
enzymes of the TCA cycle [101–103], which
in turn influences the rate of ATP produc-
tion. The dependence of TCA cycle activity
on calcium is sigmoidal [104], which means
that the cell has maximal control over this
activity when [Ca2þ]matrix is in the steeply
rising part of the sigmoid curve, as
indicated in Fig. 4A. If [Ca2þ]matrix is high
enough to reach the plateau region of the
sigmoid, the enzymes are saturated. Only
mitochondria located near microdomains of
high [Ca2þ] (e.g. ER calcium channels) are
thought to take up calcium efficiently [105,
106]. The calcium concentration in these

Figure 3. A: The effect of fusion on rate of ATP synthesis depends on the magnitude of the
potentials of the pre-fusing mitochondria. In this figure, ri denotes the ATP synthesis rate
(rATP) for mitochondrion i and r(iþ j) denotes the rate for the fused product of mitochondria i
and j. For simplicity we assume equal mitochondrial size; our results still hold when this
assumption is relaxed. Because of the non-linear dependence of rATP on Dc, if two
mitochondria in the exponential regime fuse (i.e. mitochondria A and B), then averaging their
potentials upon fusion causes the net ATP synthesis rate to decrease. This is because 2
r(AþB)< rAþ rB (the fused mitochondrion is twice as large as the pre-fused mitochondria and
we thus effectively have two mitochondria post-fusion, each with rate r(AþB)). In the plateau
region, rATP does not depend on Dc, so there will most likely be no Dc induced change in
rATP if two mitochondria in this regime fuse (e.g. mitochondria C and D). If a mitochondrion
from the exponential regime fuses with one from the plateau (i.e. mitochondria B and C), net
rATP increases because 2 r(BþC)> rBþ rC. B: Mitochondrial fusion buffers fluctuations in
membrane potential. Opening of the mitochondrial permeability transition pore or changes in
ion leakage can lead to depolarizations of mitochondria. These perturbations to the
membrane potential will have less effect when mitochondria are fused because their bigger
size makes them more robust. C: Mechanism of mitochondrial power cabling. Oxygen
concentrations are higher at the periphery of the cell and mitochondria positioned here will
pump protons out of their matrix. In the core of the cell, if ATP is required, the ATP synthase
will pump protons into the matrix. A proton gradient establishes itself along the mitochondrial
cable and protons diffuse thereby transmitting chemical potential. This is the main idea of
mitochondrial power cabling; a replacement of diffusion of ATP or oxygen through the
cytoplasm by proton movement along mitochondrial filaments, which may result in an
increased speed of energy transmission.
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mitochondria rises significantly during ER depletion or
calcium entry into the cell. This rise in [Ca2þ]matrix can be
such that the saturation level is reached, and increasing
[Ca2þ]matrix further has no effect on enzyme activity. Because
fusion averages out concentrations inside the matrix, fusing a
calcium-saturated mitochondrion with one with low
[Ca2þ]matrix has the effect of shifting [Ca2þ]matrix towards the
more controllable region. Mitochondria far from high [Ca2þ]
microdomains with lower [Ca2þ]matrix increase stimulation of
their TCA cycles by fusing with a mitochondrion with high
[Ca2þ]matrix. Fusion therefore increases the amount of
mitochondrial volume affected by a calcium signal, which
subsequently increases total energy production.

Experimental support

The idea that fusion increases the number of mitochondria
that experiences a given calcium signal in the cell has been
suggested before in Ref. [107].

Coarse-grained quantitative model

We focus on the uptake of calcium from the ER as the most
important influence on mitochondrial calcium levels, assum-
ing that without fusion, the mitochondria near ER calcium

channels have saturated calcium-dependent TCA cycle
enzymes, and the mitochondria far from the ER or plasma
membrane have low [Ca2þ]matrix (as in Fig. 4A). The first few
fusion events will increase total enzyme stimulation (and
therefore ATP production) because the mitochondria fusing to
the calcium saturated ones experience a significant increases
in [Ca2þ]matrix and enzyme activation, whereas the saturated
mitochondria experience little change in enzyme activation,
despite their drop in [Ca2þ]matrix (because of the sigmoidal
dependence of enzyme activity on [Ca2þ]). Adding more and
more mitochondria to the fused chain will ultimately lead to a
decrease in enzyme stimulation (because [Ca2þ]matrix will
reach the lower part of the sigmoid), meaning that there exists
a certain number of fused mitochondria that leads to maximal
enzyme activation. This number depends on the amount of
calcium released by the ER, the number of mitochondria near
the ER, the basal [Ca2þ]matrix present in mitochondria far from
the ER, the exact shape of the sigmoid, and, furthermore,
relies on the assumption that when many mitochondria are
fused, [Ca2þ]matrix becomes so diluted as to reach the low
enzyme activity regime. There will of course be many other
factors that influence this ‘optimal number of fused
mitochondria’ (e.g. the ratio of phosphate bound calcium to
free calcium): we merely present the basic idea, which is also
shown in Fig. 4B (for details see section S1.5).

Limitations/Critique

This hypothesis is based on several assumptions that are
debated in the literature. While several studies show that
higher calcium concentrations lead to increases in NADH
production and oxygen consumption [68, 108, 109], mathe-
matical modelling [56] and uniporter studies [110] suggest that
calcium perturbations may have little effect on respiration.
Other studies have observed that calcium only has an effect on
NAD(P)H concentrations in glucose-stimulated conditions
[111], or that only a single TCA enzyme is controlled by
calcium [104]. The mechanisms of calcium uptake that are
mainly used, the dependence of thesemechanisms on calcium
concentrations, and the number of sites close to sources of
calcium are also debated [105, 112] (for details, see section
S1.6). Mitochondria have been observed to experience calcium

Figure 4. Fusion may increase controllability of TCA cycle activity
and total energy production. A: If only mitochondria in contact with
the ER easily take up calcium, then in a fragmented state only few
mitochondria will have high (saturated) [Ca2þ]matrix and most will
have low [Ca2þ]matrix. The bottom figure indicates the position of the
mitochondria on the sigmoid. If mitochondria fuse, [Ca2þ]matrix

averages out, which moves the previously saturated mitochondria
down the sigmoid and also moves the mitochondria which pre-
viously had very low [Ca2þ]matrix up the sigmoid with the result of
increasing total enzyme stimulation. When even more mitochondria
fuse, total enzyme stimulation will drop again because the mitochon-
dria moved too far down the sigmoid. B: As the number of
mitochondria fused to a mitochondrion close to the ER increases,
total energy output will first increase and then decrease again
because [Ca2þ]matrix is now so diluted as to reach the low enzyme
activity regime. This plot is merely meant as a proof of principle,
details are given in section S1.5.
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transients, meaning that they extrude calcium quite rapidly
after having absorbed it [53] and the simple model we discuss
in section S1.5 may therefore only be valid on short timescales.
Finally, calcium signalling linked to mitochondrial ultra-
structure is by no means the only, or simplest, way in which
the cell regulates its energy status.

Fusion provokes state changes protective
against perturbations

Summary

By changing their morphological state, mitochondria can
make themselves less susceptible to perturbations (for
example, fluctuations in electrochemical membrane poten-
tial). The fused neighbours of a mitochondrial element can act
as a buffer for biochemical or physical fluctuations. If failure
of individual mitochondria has severe consequences for
the cell, this increased robustness through fusion will be
beneficial when mitochondria are subject to perturbations.

Experimental support

There are some experimental indications that fused mitochon-
dria are better protected against stress [113]. This hypothesis
could account for why hyperfusion occurs during stress [10],
andmayalsobeanexplanationas towhyfusionprotects thecell
against apoptosis [10, 13–16] (or at least delays apoptosis [114]),
becauseprior tocytochromecrelease (which inducesapoptosis)
remodelling of the cristae structure has been seen as a cause of
changes in membrane potential [115]. If a larger network
protects against fluctuations in membrane potential, it may be
able topreventcristae remodelling, therebypotentiallydelaying
or preventing apoptosis.

In stressful conditions, it may thus be disadvantageous for
the cell to have its mitochondria fragmented because all of
them are vulnerable tomembrane potential fluctuations. If the
cell fuses its mitochondria, they become more robust to the
fluctuations, which may prevent the failure of many
individual mitochondria, and subsequent cell death.

Coarse-grained quantitative model

A biophysical calculation considering the change in mem-
brane potential upon changes in permeability of the inner
mitochondrial membrane (see section S1.7.1) suggests dDc

dt / ry

where r is the radius of the mitochondrion and y 2 ð�1;0Þ
depends on the structure of the membrane (the more
invaginated the membrane, the larger y). This result suggests
that for large mitochondria, fluctuations of Dc caused by
transient perturbations will be of smaller magnitude. Fusing
mitochondria thus protects them from perturbations, as
illustrated in Fig. 3B. This model assumes spherical
mitochondrial geometry. Small fragmented mitochondria
are often seen to have a spherical shape and the fusion of
two small spherical mitochondria may produce a mitochond-
rion that itself has an approximate spherical shape. Themodel
discussed here may therefore be applied to fusion events
involving small mitochondrial fragments.

We provide an alternative model that is independent of volume
and surfacearea scalingand involvespicturingmitochondriaas
individual agents coupledwith spin-like interactions [116]. This
model, in which amitochondrion prefers to be in a similar state
as its neighbours, shows that groups of mitochondria are less
likely toundergoacatastrophic lossof function than individuals
(see section S1.7.2).

Limitations/Critique

Even though fluctuations in larger mitochondria (fused
mitochondria) may be of smaller relative magnitude, they
will occur more frequently because of the larger surface area
which increases the probability that, for example, a pore
opens or an ETC component fails. Stress does not always lead
to a fused mitochondrial state, but can also lead to
mitochondrial fragmentation [117, 118]. It can be that the
level of stress is important, and that too much stress leads to
fragmentation and subsequent apoptosis.

Conclusions

The function of mitochondrial networks is currently unclear,
suggesting that new research strategies may be of use. We
have shown that ideas from physics and mathematics provide
a framework to suggest and critically evaluate hypothesised
functions. Among the insights we underline from this work are
the possibilities that ‘blind surveillance’ through selective
fusion alone leads to an increase in mitochondrial quality
control; that increased fusion may have non-linear effects on
the diffusion rate of proteins; that the effect on membrane
potential of fusion may be more complicated than a simple
averaging; and that fusion can act to dampen biochemical
fluctuations.

Which hypothesis is most likely to be true? Three
hypotheses that we find attractive are (i) increased robust-
ness; (ii) blind surveillance; and (iii) increased ATP
production through non-linear dependence of ATP flux on
the properties of fusing mitochondria. Hypothesis (i)
suggests a reason why mitochondrial morphology is
dependent on cellular stress, which seems to be the main
regulator of mitochondrial morphology. Hypothesis (ii) also
links fusion with oxidative stress, because in stress
conditions improved quality control is beneficial. Hypothesis
(iii) provides intuitive mechanisms by which fusion may
improve the energetic status of the cell, compatible with a
large amount of evidence that mitochondrial structure is
correlated with bioenergetic capabilities of the cell. We stress
again the observation that with increased fusion, ATP
concentration, rather than merely the rate of production and
consumption of ATP, changes. This implies an acceleration
of cellular processes and suggests that fusion serves as a
cellular accelerator pedal. We cannot exclude the possibility
that the central ‘purpose’ of network formation is not one of
the currently considered hypotheses; but we anticipate that
quantitative modelling approaches will also be powerful
tools in analysing any future hypotheses.

The authors have declared no conflicts of interest.

....Prospects & Overviews H. Hoitzing et al.

697Bioessays 37: 687–700,� 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s



Acknowledgements
We thank Markus Schwarzl€ander, David Logan, Werner
Koopman and Nick Lane for critical reading of the manuscript
and Michael Duchen, Orian Shirihai, Gyorgy Szabadkai,
Samuel Johnson, Juvid Aryaman and Tom McGrath for useful
discussions.

References

1. Braschi E, McBride HM. 2010. Mitochondria and the culture of the
Borg. BioEssays 32: 958–66.

2. Laar VSV, Berman SB. 2009. Mitochondrial dynamics in Parkinson’s
disease. Exp Neurol 218: 247–56.

3. Liesa M, Palac�n M, Zorzano A. 2009. Mitochondrial dynamics in
mammalian health and disease. Physiol Rev 89: 799–845.

4. Grandemange S, Herzig S, Martinou JC. 2009. Mitochondrial
dynamics and cancer. Semin Cancer Biol 19: 50–6.

5. Zhu X, Perry G, Smith MA, Wang X. 2013. Abnormal mitochondrial
dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis
33: S253–62.

6. Chan DC. 2012. Fusion and fission: interlinked processes critical for
mitochondrial health. Annu Rev Genet 46: 265–87.

7. Chen H, Chan DC. 2009. Mitochondrial dynamics—fusion, fission,
movement, and mitophagy—in neurodegenerative diseases. Hum Mol
Genet 18: R169–76.

8. Mitra K, Wunder C, Roysam B, Lin G, et al. 2009. A hyperfused
mitochondrial state achieved at G1S regulates cyclin E buildup and
entry into S phase. Proc Natl Acad Sci USA 106: 11960–5.

9. Gomes LC, Benedetto GD, Scorrano L. 2011. During autophagy
mitochondria elongate, are spared from degradation and sustain cell
viability. Nat Cell Biol 13: 589.

10. Tondera D, Grandemange S, Jourdain A, Karbowski M, et al. 2009.
SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO
J 28: 1589–600.

11. RollandSG,Motori E,MemarN,Hench J, et al. 2013. Impaired complex
IVactivity in response to lossof LRPPRC function canbecompensatedby
mitochondrial hyperfusion. Proc Natl Acad Sci USA 110: E2967–76.

12. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. 2011.
Tubular network formation protects mitochondria from autophagosomal
degradation during nutrient starvation. Proc Natl Acad Sci USA 25:
10190–5.

13. Lee Yj, Jeong SY, Karbowski M, Smith CL, et al. 2004. Roles of the
mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and
Opa1 in apoptosis. Mol Biol Cell 15: 5001–11.

14. Ong SB, Subrayan S, Lim SY, Yellon DM, et al. 2010. Inhibiting
mitochondrial fission protects the heart against ischemia/reperfusion
injury. Circulation 121: 2012–22.

15. Jahani-Asl A, Cheung ECC, Neuspiel M, MacLaurin JG, et al. 2007.
Mitofusin 2 protects cerebellar granule neurons against injury-induced
cell death. J Biol Chem 282: 23788–98.

16. Jahani-Asl A, Pilon-Larose K, Xu W, MacLaurin JG, et al. 2011. The
mitochondrial inner membrane GTPase, Optic Atrophy 1 (Opa1),
restores mitochondrial morphology and promotes neuronal survival
following excitotoxicity. J Biol Chem 286: 4772–82.

17. Mitra K. 2013. Mitochondrial fission-fusion as an emerging key
regulator of cell proliferation and differentiation. BioEssays 35: 955–64.

18. McBride HM, Neuspiel M, Wasiak S. 2006. Mitochondria: more than
just a powerhouse. Curr Biol 16: R551–60.

19. Castanier C, Garcin D, Vazquez A, Arnoult D. 2010. Mitochondrial
dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep
11: 133–8.

20. Picard M, Shirihai OS, Gentil BJ, Burelle Y. 2013. Mitochondrial
morphology transitions and functions: implications for retrograde
signaling? Am J Physiol-Reg I 304: R393–406.

21. Zemirli N, Pourcelot M, Ambroise G, Hatchi E, et al. 2014.
Mitochondrial hyperfusion promotes NF-B activation via the mitochon-
drial E3 ligase MULAN. FEBS J 14: 3095–112.

22. van der Bliek AM, Shen Q, Kawajiri S. 2013. Mechanisms of
mitochondrial fission and fusion. Cold Spring Harb Pers Biol 5: a011072.

23. Stauffer D, Aharony A. 1994. Introduction to Percolation Theory.
London: CRC Press.

24. Twig G, Elorza A, Molina AJ, Mohamed H, et al. 2008. Fission and
selective fusion govern mitochondrial segregation and elimination by
autophagy. EMBO J 27: 433–46.

25. Westrate LM, Sayfie AD, Burgenske DM, MacKeigan JP. 2014.
Persistent mitochondrial hyperfusion promotes G2/M accumulation and
caspase-dependent cell death. PLoS ONE 9: e91911.

26. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, et al. 2008.
Preventing mitochondrial fission impairs mitochondrial function and
leads to loss of mitochondrial DNA. PLoS ONE 3: e3257.

27. Qian W, Choi S, Gibson GA, Watkins SC, et al. 2012. Mitochondrial
hyperfusion induced by loss of the fission protein Drp1 causes ATM-
dependent G2/M arrest and aneuploidy through DNA replication stress.
J Cell Sci 125: 5745–57.

28. Legros F, Lombs A, Frachon P, Rojo M. 2002. Mitochondrial fusion in
human cells is efficient, requires the inner membrane potential, and is
mediated by mitofusins. Mol Biol Cell 13: 4343–54.

29. Meeusen S, McCaffery JM, Nunnari J. 2004. Mitochondrial fusion
intermediates revealed in vitro. Science 305: 1747–52.

30. Cagalinec M, Safiulina D, Liiv M, Liiv J, et al. 2013. Principles of
the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126:
2187–97.

31. Rafelski SM. 2013. Mitochondrial network morphology: building an
integrative, geometrical view. BMC Biol 11: 71.

32. Rafelski SM, Viana MP, Zhang Y, Chan YHM, et al. 2012.
Mitochondrial network size scaling in budding yeast. Science 338:
822–4.

33. Rodell AB, Rasmussen LJ, Bergersen LH, Singh KK, et al. 2013.
Natural selection of mitochondria during somatic lifetime promotes
healthy aging. Front Neuroenergetics 5: 7.

34. Bakeeva L, Chentsov Y, Skulachev V. 1978. Mitochondrial framework
(reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys
Acta 501: 349–69.

35. Skulachev VP. 1990. Power transmission along biological membranes.
J Membrane Biol 114: 97.

36. Amchenkova AA, Bakeeva LE, Chentsov YS, Skulachev VP, et al.
1988. Coupling membranes as energy-transmitting cables. I. Filamen-
tous mitochondria in fibroblasts and mitochondrial clusters in cardio-
myocytes. J Cell Biol 107: 481–95.

37. Skulachev VP. 2001. Mitochondrial filaments and clusters as
intracellular power-transmitting cables. Trends Biochem Sci 26:
23–9.

38. Wikstrom JD, Twig G, Shirihai OS. 2009. What can mitochondrial
heterogeneity tell us about mitochondrial dynamics and autophagy? Int
J Biochem Cell Biol 41: 1914–27.

39. Kowald A, Kirkwood TB. 2011. Evolution of the mitochondrial
fusion–fission cycle and its role in aging. Proc Natl Acad Sci USA 108:
10237–42.

40. Chen H, Vermulst M, Wang YE, Chomyn A, et al. 2010. Mitochondrial
fusion is required for mtDNA stability in skeletal muscle and tolerance of
mtDNA mutations. Cell 141: 280–9.

41. Wilkens V, Kohl W, Busch K. 2013. Restricted diffusion of OXPHOS
complexes in dynamic mitochondria delays their exchange between
cristae and engenders a transitory mosaic distribution. J Cell Sci 126:
103–16.

42. Busch KB, Kowald A, Spelbrink JN. 2014. Quality matters: how does
mitochondrial network dynamics and quality control impact on mtDNA
integrity? Philos Trans R Soc Lond B Biol Sci 369: 1–12.

43. Liu X, Weaver D, Shirihai O, Hajn�oczky G. 2009. Mitochondrial kiss-
and-run: interplay between mitochondrial motility and fusion–fission
dynamics. EMBO J 28: 3074–89.

44. Chen H, Chomyn A, Chan DC. 2005. Disruption of fusion results
in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:
26185–92.

45. Cipolat S, Rudka T, Hartmann D, Costa V, et al. 2006. Mitochondrial
rhomboid PARL regulates cytochrome c release during apoptosis via
OPA1-dependent cristae remodeling. Cell 126: 16–75.

46. Frezza C, Cipolat S, de Brito OM, Micaroni M, et al. 2006. OPA1
controls apoptotic cristae remodeling independently frommitochondrial
fusion. Cell 126: 177–89.

47. Olichon A, Baricault L, Gas N, Guillou E, et al. 2003. Loss of OPA1
perturbates the mitochondrial inner membrane structure and
integrity, leading to cytochrome c release and apoptosis. J Biol Chem
278: 7743–6.

48. Gilkerson RW, Selker JM, Capaldi RA. 2003. The cristal membrane of
mitochondria is the principal site of oxidative phosphorylation. FEBS
Lett 546: 355–8.

49. Jimenez L, Laporte D, Duvezin-Caubet S, Courtout F, et al. 2013.
Mitochondrial ATP synthases cluster as discrete domains that
reorganize with the cellular demand for oxidative phosphorylation. J
Cell Sci 127: 719–26.

H. Hoitzing et al. Prospects & Overviews....

698 Bioessays 37: 687–700,� 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s



50. Patten DA, Wong J, Khacho M, Soubannier V, et al. 2014. OPA1-
dependent cristae modulation is essential for cellular adaptation to
metabolic demand. EMBO J 33: 2676–91.

51. WikstromJD,MahdavianiK,LiesaM,SeredaSB, et al. 2014.Hormone-
induced mitochondrial fission is utilized by brown adipocytes as an
amplification pathway for energy expenditure. EMBO J 33: 418–36.

52. Bernardi P. 1999. Mitochondrial transport of cations: channels,
exchangers, and permeability transition. Physiol Rev 79: 1127–55.

53. Malli R, Frieden M, Osibow K, Zoratti C, et al. 2003. Sustained Ca2þ

transfer across mitochondria is essential for mitochondrial Ca2þ

buffering, store-operated Ca2þ entry, and Ca2þ store refilling. J Biol
Chem 278: 44769–79.

54. Szabadkai G, Simoni A, Chami M, Wieckowski M, et al. 2004. Drp-1-
dependent division of the mitochondrial network blocks intraorganellar
Ca2þ waves and protects against Ca2þ-mediated apoptosis. Mol Cell
16: 59–68.

55. Patergnani S, Suski JM, Agnoletto C, Bononi A, et al. 2011. Calcium
signaling around mitochondria associated membranes (MAMs). Cell
Commun Signal 9: 19.

56. Vinnakota KC, Dash RK, Beard DA. 2011. Stimulatory effects of
calcium on respiration and NAD(P)H synthesis in intact rat heart
mitochondria utilizing physiological substrates cannot explain respira-
tory control in vivo. J Biol Chem 286: 30816–22.

57. Dedkova EN, Blatter LA. 2013. Calcium signaling in cardiac
mitochondria. J Mol Cell Cardiol 58: 125–33.

58. Sukhorukov VM, Dikov D, Reichert AS, Meyer-Hermann M. 2012.
Emergence of the mitochondrial reticulum from fission and fusion
dynamics. PLoS Comput Biol 8: e1002745.

59. Beard DA. 2006. A biophysical model of the mitochondrial respiratory
system and oxidative phosphorylation. PLoS Comput Biol 1: e36.

60. Saa A, Siqueira KM. 2013. Modelling the ATP production in
mitochondria. B Math Biol 75: 1636.

61. Wu F, Yang F, Vinnakota KC, Beard DA. 2007. Computer modeling of
mitochondrial tricarboxylic acid cycle, oxidative phosphorylation,
metabolite transport, and electrophysiology. J Biol Chem 282:
24525–37.

62. Twig G, Graf SA, Wikstrom JD, Mohamed H, et al. 2006. Tagging and
tracking individual networks within a complex mitochondrial web with
photoactivatable GFP. Am J Physiol Cell Physiol 291: C176–84.

63. Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, et al. 1982.
Quantification of the contribution of various steps to the control of
mitochondrial respiration. J Biol Chem 257: 2754–7.

64. Murphy MP. 2001. How understanding the control of energy
metabolism can help investigation of mitochondrial dysfunction,
regulation and pharmacology. Biochim Biophys Acta 1504: 1–11.

65. Soboll S, Oh MH, Brown GC. 1998. Control of oxidative phosphor-
ylation, gluconeogenesis, ureagenesis and ATP turnover in isolated
perfused rat liver analyzed by top-down metabolic control analysis. Eur
J Biochem 254: 194–201.

66. Brand M. 1998. Top-down elasticity analysis and its application to
energy metabolism in isolated mitochondria and intact cells. Mol Cell
Biochem 184: 13–20.

67. Ainscow EK, Brand MD. 1999. Top-down control analysis of ATP
turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
Eur J Biochem 263: 671–85.

68. Cortassa S, Aon MA, Marbn E, Winslow RL, et al. 2003. An integrated
model of cardiac mitochondrial energy metabolism and calcium
dynamics. Biophys J 84: 2734–55.

69. Song DH, Park J, Maurer LL, Lu W, et al. 2013. Biophysical
significance of the inner mitochondrial membrane structure on the
electrochemical potential of mitochondria. Phys Rev E 88: 062723.

70. Magnus G, Keizer J. 1997. Minimal model of b-cell mitochondrial Ca2þ
handling. Am J Physiol 42: C717.

71. Bazil JN, Buzzard GT, Rundell AE. 2010. Modeling mitochondrial
bioenergetics with integrated volume dynamics. PLoS Comput Biol 6:
e1000632.

72. Fischer F, Hamann A, Osiewacz HD. 2012. Mitochondrial quality
control: an integrated network of pathways. Trends Biochem Sci 37:
284–92.

73. Hemion C, Flammer J, Neutzner A. 2014. Quality control of oxidatively
damaged mitochondrial proteins is mediated by p97 and the
proteasome. Free Radic Biol Med 75: 121–8.

74. Neuspiel M, Schauss AC, Braschi E, Zunino R, et al. 2008. Cargo-
selected transport from themitochondria to peroxisomes ismediated by
vesicular carriers. Curr Biol 18: 102–8.

75. Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, et al. 2012.
Reconstitution of mitochondria derived vesicle formation demonstrates
selective enrichment of oxidized cargo. PLoS ONE 7: e52830.

76. Narendra D, Tanaka A, Suen DF, Youle RJ. 2008. Parkin is recruited
selectively to impaired mitochondria and promotes their autophagy. J
Cell Biol 183: 795–803.

77. Liu L, Feng D, Chen G, Chen M, et al. 2012. Mitochondrial outer-
membrane protein FUNDC1 mediates hypoxia-induced mitophagy in
mammalian cells. Nat Cell Biol 14: 177–85.

78. Lemasters JJ. 2005. Selective mitochondrial autophagy, or mitophagy,
as a targeted defense against oxidative stress, mitochondrial dysfunc-
tion, and aging. Rejuvenation Res 8: 3–5.

79. Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat Rev Mol
Cell Biol 12: 9–14.

80. Ehses S, Raschke I, Mancuso G, Bernacchia A, et al. 2009.
Regulation of OPA1 processing and mitochondrial fusion by m-AAA
protease isoenzymes and OMA1. J Cell Biol 187: 1023–36.

81. Head B, Griparic L, Amiri M, Gandre-Babbe S, et al. 2009. Inducible
proteolytic inactivation of OPA1 mediated by the OMA1 protease in
mammalian cells. J Cell Biol 187: 959–66.

82. Kim I, Rodriguez-Enriquez S, Lemasters JJ. 2007. Selective
degradation of mitochondria by mitophagy. Arch Biochem Biophys
462: 245–53.

83. Imai Y. 2012. Mitochondrial regulation by PINK1-Parkin signaling. ISRN
Cell Biol 2012: 1–15.

84. Gilkerson RW, De Vries RL, Lebot P, Wikstrom JD, et al. 2012.
Mitochondrial autophagy in cells with mtDNA mutations results from
synergistic loss of transmembrane potential and mTORC1 inhibition.
Hum Mol Genet 21: 978–90.

85. Mouli PK, Twig G, Shirihai OS. 2009. Frequency and selectivity of
mitochondrial fusion are key to its quality maintenance function.Biophys
J 96: 3509–18.

86. Patel P, Shirihai O, Huang K. 2013. Optimal dynamics for quality
control in spatially distributed mitochondrial networks. PLoS Comput
Biol 9: e1003108.

87. Figge MT, Reichert AS, Meyer-Hermann M, Osiewacz HD. 2012.
Deceleration of fusion–fission cycles improves mitochondrial quality
control during aging. PLoS Comput Biol 8: e1002576.

88. Picard M, Burelle Y. 2012. Mitochondria: starving to reach quorum?
BioEssays 34: 272–4.

89. Ono T, Isobe K, Nakada K, Hayashi JI. 2001. Human cells are
protected from mitochondrial dysfunction by complementation of DNA
products in fused mitochondria. Nat Genet 28: 272–5.

90. Nakada K, Inoue K, Ono T, Isobe K, et al. 2001. Inter-mitochondrial
complementation: mitochondria-specific system preventing mice
from expression of disease phenotypes by mutant mtDNA. Nat
Med 7: 934–40.

91. Harrison AK, Zwanzig R. 1985. Transport on a dynamically disordered
lattice. Phys Rev A 32: 1072.

92. Sahimi M. 1986. Dynamic percolation and diffusion in disordered
systems. J Phys C: Solid State Phys 19: 1311.

93. Johnston IG, Rickett BC, Jones NS. 2014. Explicit tracking of
uncertainty increases the power of quantitative rule-of-thumb reasoning
in cell biology. Biophys J 107: 2612–7.

94. Partikian A, lveczky B, Swaminathan R, Li Y, et al. 1998. Rapid
diffusion of green fluorescent protein in the mitochondrial matrix. J Cell
Biol 140: 821–9.

95. Verkman AS. 2002. Solute and macromolecule diffusion in cellular
aqueous compartments. Trends Biochem Sci 27: 27–33.

96. Mishra P, Carelli V, Manfredi G, Chan DC. 2014. Proteolytic
cleavage of Opa1 stimulates mitochondrial inner membrane fusion
and couples fusion to oxidative phosphorylation. Cell Metab 19:
630–41.

97. das Neves RP, Jones NS, Andreu L, Gupta R, et al. 2010. Connecting
variability in global transcription rate to mitochondrial variability. PLoS
Biol 8: e1000560.

98. Johnston JM, Wang H, Provasi D, Filizola M. 2012. Assessing the
relative stability of dimer interfaces in G protein-coupled receptors.
PLoS Comput Biol 8: e1002649.

99. Junesch U, Graber P. 1991. The rate of ATP-synthase as a function of
dpH and dpsi catalyzed by the active, reduced Hþ-ATPase from
chloroplasts. FEBS 294: 275–8.

100. Soga N, Kinosita K, Yoshida M, Suzuki T. 2012. Kinetic equivalence of
transmembrane pH and electrical potential differences in ATP synthesis.
J Biol Chem 287: 9633–9.

....Prospects & Overviews H. Hoitzing et al.

699Bioessays 37: 687–700,� 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s



101. Denton RM, Randle PJ, Martin BR. 1972. Stimulation by calcium ions
of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:
161–3.

102. Denton RM, Richards D, Chin J. 1978. Calcium ions and the regulation
of NADþ-linked isocitrate dehydrogenase from the mitochondria of rat
heart and other tissues. Biochem J 176: 899–906.

103. McCormack J, Denton R. 1979. The effects of calcium ions and
adenine nucleotides on the activity of pig heart 2-oxoglutarate
dehydrogenase complex. Biochem J 180: 533–44.

104. Wan B, LaNoue KF, Cheung JY, Scaduto RC. 1989. Regulation of
citric acid cycle by calcium. J Biol Chem 264: 13430–9.

105. Rizzuto R, Pinton P, CarringtonW, Fay FS, et al. 1998. Close contacts
with the endoplasmic reticulum as determinants of mitochondrial Ca2þ

responses. Science 280: 1763–6.
106. RizzutoR, BriniM,MurgiaM, Pozzan T. 1993.Microdomains with high

Ca2þ close to IP3-sensitive channels that are sensed by neighboring
mitochondria. Science 262: 744–7.

107. Maltecca F, De Stefani D, Cassina L, Consolato F, et al. 2012.
Respiratory dysfunction by AFG3L2 deficiency causes decreased
mitochondrial calcium uptake via organellar network fragmentation.
Hum Mol Genet 21: 3858–70.

108. Chouhan AK, Ivannikov MV, Lu Z, Sugimori M, et al. 2012. Cytosolic
calcium coordinates mitochondrial energy metabolism with presynaptic
activity. J Neurosci 32: 1233–43.

109. Viola HM, Hool LC. 2014. How does calcium regulate mitochondrial
energetics in the heart? New insights. Heart Lung Circ 7: 602–9.

110. Logan CV, Szabadkai G, Sharpe JA, Parry DA, et al. 2014. Loss-of-
function mutations in MICU1 cause a brain and muscle disorder linked to
primaryalterations inmitochondrialcalciumsignaling.NatGenet46:188–93.

111. De Marchi U, Thevenet J, Hermant A, Dioum E, et al. 2014. Calcium
co-regulates oxidative metabolism and ATP synthase-dependent
respiration in pancreatic beta cells. J Biol Chem 289: 9182–94.

112. Friedman JR, Lackner LL, West M, DiBenedetto JR, et al. 2011. ER
tubules mark sites of mitochondrial division. Science 334: 358–62.

113. Mai S, Klinkenberg M, Auburger G, Bereiter-Hahn J, et al. 2010.
Decreased expression of Drp1 and Fis1 mediates mitochondrial
elongation in senescent cells and enhances resistance to oxidative
stress through PINK1. J Cell Sci 123: 917–26.

114. Estaquier J, Arnoult D. 2007. Inhibiting Drp1-mediated mitochondrial
fission selectively prevents the release of cytochrome c during
apoptosis. Cell Death Differ 14: 1086–94.

115. Gottlieb E, Armour S, Harris M, Thompson C. 2003. Mitochondrial
membrane potential regulates matrix configuration and cytochrome c
release during apoptosis. Cell Death Differ 10: 709–17.

116. Krapivsky PL, Redner S, Ben-Naim E. 2010. A Kinetic View of
Statistical Physics. Cambridge University Press.

117. Wu S, Zhou F, Zhang Z, Xing D. 2011. Mitochondrial oxidative stress
causes mitochondrial fragmentation via differential modulation of
mitochondrial fission–fusion proteins. FEBS J 278: 941–54.

118. Zhang B, Davidson MM, Zhou H, Wang C, et al. 2013. Cytoplasmic
irradiation results in mitochondrial dysfunction and DRP1-dependent
mitochondrial fission. Cancer Res 73: 6700–10.

H. Hoitzing et al. Prospects & Overviews....

700 Bioessays 37: 687–700,� 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

P
ro
b
le
m
s
&
P
a
ra
d
ig
m
s


