RESEARCH ARTICLE

SEISMOLOGY

Earthquake detection through computationally

2015 © The Authors, some rights reserved;
exclusive licensee American Association for
the Advancement of Science. Distributed
under a Creative Commons Attribution
License 4.0 (CC BY). 10.1126/sciadv.1501057

efficient similarity search

Clara E. Yoon,'* Ossian O'Reilly," Karianne J. Bergen,? Gregory C. Beroza'

Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing
algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for
observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that
overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresh-
olding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than
autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large
databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups
similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally
generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged
earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achiev-
ing detection performance comparable to that of autocorrelation, with some additional false detections. FAST is
expected to realize its full potential when applied to extremely long duration data sets over a distributed network
of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic

signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes.

INTRODUCTION

Seismology, a data-driven science where breakthroughs often come
from advances in observational capabilities (1), now has enormous
data sets: years of continuous seismic data streams have been recorded
on networks with up to thousands of sensors, and the rate of data ac-
quisition continues to accelerate. Seismology can benefit from the devel-
opment of new scalable algorithms that process and analyze these massive
data volumes to extract as much useful information from them as pos-
sible. Our work focuses on improving earthquake detection using data
mining techniques originally developed for audio recognition, image
retrieval, and Web search engines.

Background

A seismic network consists of multiple stations (receivers) at distrib-
uted locations, where each station has a seismometer continuously re-
cording ground motion. Traditionally, an earthquake is detected at one
station at a time, using an energy detector such as a short-term average
(STA)/long-term average (LTA). STA/LTA computes the ratio of the
STA energy in a short time window to the LTA energy in a longer time
window, as these windows slide through the continuous data. A detec-
tion is declared when the STA/LTA ratio exceeds certain thresholds (2, 3).
An association algorithm then determines whether detections at multi-
ple stations across the network are consistent with a seismic source. If a
seismic event is detected at a minimum of four stations, it is included in
an earthquake catalog, which is a database of the location, origin time,
and magnitude of known earthquakes.

STA/LTA successfully identifies earthquakes with impulsive, high
signal-to-noise ratio (snr) P-wave and S-wave arrivals. STA/LTA rates
high on general applicability (Fig. 1), which we define as the ability to
detect a wide variety of earthquakes without prior knowledge of the
event waveform or source information. But STA/LTA fails to detect

1Depar‘(ment of Geophysics, Stanford University, Stanford, CA 94305, USA. nstitute for
Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
*Corresponding author. E-mail: ceyoon@stanford.edu

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

earthquakes, or may produce false detections, in more challenging si-
tuations such as low snr, waveforms with emergent arrivals, overlapping
events, cultural noise, and sparse station spacing; thus, STA/LTA has
low detection sensitivity (Fig. 1). Therefore, earthquake catalogs are
incomplete for lower-magnitude events.

We can overcome the limitations of STA/LTA by taking advantage
of information from the entire earthquake waveform for detection,
rather than just the impulsive body wave arrivals. Seismic sources that
repeat in time, over the course of weeks, months, or even years, have
highly similar waveforms when recorded at the same station (4, 5). Path
effects are almost the same: searches for time-dependent travel time
variations before (6) or after (5) large earthquakes reveal that temporal
changes in Earth’s velocity structure are extremely subtle, so Earth’s
structure is essentially constant at seismological time scales. Waveform
cross-correlation exploits the resulting waveform similarity to perform
as a sensitive earthquake detector.

Waveform cross-correlation, also called matched filtering or
template matching, has proven to be a sensitive, discriminative method
for finding a known seismic signal in noisy data; it scores high
on detection sensitivity (Fig. 1). It is a “one-to-many” search method that
computes the normalized correlation coefficient (CC) of a template
waveform with successive candidate time windows of continuous wave-
form data, and any candidate window with a CC value above certain
thresholds is considered a detection (7). The normalized CC between
two time domain waveforms @ and b is defined as

where M is the number of samples in each waveform. Template match-
ing allows detection of extremely low snr events, with few false positives,
when the template includes waveforms from multiple channels and

10f 13

RESEARCH ARTICLE

approach:
FAST

/ —>

Computational efficiency

Fig. 1. Comparison of earthquake detection methods in terms of three
qualitative metrics: Detection sensitivity, general applicability, and
computational efficiency. STA/LTA scores high on general applicability
because it finds unknown sources, scores high on computational efficiency
because it detects earthquakes in real time, but scores low on detection
sensitivity because it can miss low-snr seismic events. Template matching
rates high on detection sensitivity because cross-correlation can find low-
snr events, rates high on computational efficiency because we only need to
cross-correlate continuous data with a small set of template waveforms,
but rates low on general applicability because template waveforms need
to be determined in advance. Autocorrelation has high detection sensitivity
because it cross-correlates waveforms, and high general applicability be-
cause it can find unknown similar sources, but has very low computational
efficiency that scales poorly with the size of the continuous data set. FAST
performs well with respect to all three metrics, combining the detection sen-
sitivity and general applicability of correlation-based detection with high
computational efficiency and scalability.

stations, and detection is based on the summed network CC (7, 8).
Template matching is a versatile and powerful technique that has found
undetected events in a wide range of seismicity studies: uncataloged
low-magnitude earthquakes (9), foreshocks (10), aftershocks (11),
triggered earthquakes (12), earthquake swarms (13), low-frequency
earthquakes (LFEs) in tectonic tremor (8) and triggered tremor (14),
low-magnitude events in areas of potentially induced seismicity where
seismic networks are sparse (15), nuclear monitoring and discrimina-
tion (7, 16), and microseismic monitoring in geothermal (17) and oil
and gas (18) reservoirs.

A major limitation of template matching, however, is that it re-
quires an a priori waveform template; thus, it has low general appli-
cability (Fig. 1). Templates are often chosen by extracting waveforms
of catalog earthquakes or by picking out impulsive event waveforms
from continuous data by human inspection. This is not an effective,
comprehensive way to find unknown sources with low-snr repeating
signals. The subspace detection (19) and empirical subspace detection
(20) methods were developed to generalize template matching to sim-
ilar, nonrepeating sources with more variation in their waveforms;
however, we are interested in the most general case—systematically
performing a blind search for signals with similar waveforms in con-
tinuous data without prior knowledge of the desired signal.

Autocorrelation is an exhaustive “many-to-many” search for simi-
lar waveforms when the desired signal waveform is unknown. We

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

know that seismic signals of interest have a short duration (usually
a few seconds on each channel), so we partition the continuous data
into N short overlapping windows and cross-correlate all possible
pairs of windows. Window pairs with CC exceeding a detection
threshold are marked as candidate events, which can be postprocessed
with additional cross-correlation, or grouped into “families” and
stacked to form less noisy template waveforms. Autocorrelation has
successfully found both known and previously unknown LFEs within
tectonic tremor (21, 22). Autocorrelation provides the improved sen-
sitivity of waveform cross-correlation over STA/LTA and also enables
detection of unknown sources with similar waveforms (Fig. 1).

Autocorrelation has a major disadvantage because it is computa-
tionally intensive (Fig. 1) and ultimately infeasible for detecting earth-
quakes in massive continuous data sets. For N windows, we must
compute N(N — 1)/2 CCs to account for all possible window pairs;
therefore the autocorrelation runtime scales quadratically with data
duration, with algorithmic complexity O(N?). Autocorrelation per-
forms a significant amount of redundant work because most pairs
of windows are uncorrelated and not of interest for detection (fig.
S1A); highly similar earthquakes detected by autocorrelation are a tiny
fraction of the total number of pairs. Autocorrelation is well suited for
detecting frequently repeating earthquakes in a few hours of continu-
ous data (21), where N is small. But the O(N®) runtime of auto-
correlation makes it impractical to find infrequently repeating
events in days, weeks, months, or even years of continuous seismic
data over a network of hundreds of channels and stations without
using large-scale computing resources. We have developed a new ap-
proach that combines the strengths of autocorrelation (detection sen-
sitivity and general ability to find unknown sources) and scalable
runtimes for large N (Fig. 1). Our technique has the potential to im-
prove earthquake monitoring and to reveal new insights into
earthquake processes.

New approach for earthquake detection
Many algorithms have been developed to efficiently search for similar
items in massive data sets (23); applications include identifying similar
files in a large file system (24), finding near-duplicate Web pages (25),
detecting plagiarism in documents (26), and recognizing similar audio
clips for music identification (27), such as in the Shazam mobile app
(28). We can meet our objective of a fast, efficient, automated blind de-
tection of similar earthquake waveforms in huge volumes of continuous
data by leveraging scalable algorithms that are widely used in the com-
puter science community. Seismologists are just beginning to exploit
data-intensive search technologies to analyze seismograms; one recent
application is an earthquake search engine for fast focal mechanism
identification that retrieves a best-fit synthetic seismogram from a large
database (29), whereas another study developed a fast-approximation
algorithm to find similar event waveforms within large catalogs (30).
Locality-sensitive hashing (LSH), a widely used method for high-
dimensional approximate nearest-neighbor search, allows us to avoid
comparing dissimilar pairs, which constitute most pairs of waveforms
in the data; LSH instead returns a shorter list of “candidate pairs” that
are likely to be similar with high probability (23, 31). In computer
science, hashing is often used for the efficient insertion, search, and
removal of items in databases, with constant O(1) runtime; each
item is inserted into one hash bucket that is selected based on the
output of a hash function (32). A hash table contains many hash
buckets, and the hash function determines how items are distributed

20f 13

RESEARCH ARTICLE

among the different hash buckets (32). With LSH (fig. S1B), we only
need to search for pairs of similar items (seismic signals) within the
same hash bucket—these pairs become candidate pairs, and we can
ignore pairs of items that do not appear together in the same hash
bucket, which comprise most pairs. Therefore, LSH allows search
for similar items with a runtime that scales near-linearly with the
number of windows from continuous data, which is much better than
the quadratic scaling from autocorrelation.

Rather than directly comparing waveforms, we first perform feature
extraction to condense each waveform into a compact “fingerprint” that
retains only its key discriminative features. A fingerprint serves as a proxy
for a waveform; thus, two similar waveforms should have similar finger-
prints, and two dissimilar waveforms should have dissimilar fingerprints.
We assign the fingerprints (rather than waveforms) to LSH hash buckets.

Our approach, an algorithm that we call Fingerprint And Simi-
larity Thresholding (FAST), builds on the Waveprint audio finger-
printing algorithm (33), which combines computer-vision techniques
and large-scale data processing methods to match similar audio clips.
We modified the Waveprint algorithm based on the properties and
requirements of our specific application of detecting similar earth-
quakes from continuous seismic data. We chose Waveprint for its de-
monstrated capabilities in audio identification and its ease of mapping
the technology to our application. First, an audio signal resembles a
seismogram in several ways: they are both continuous time series
waveform data, and the signals of interest are often nonimpulsive. Sec-
ond, Waveprint computes fingerprints using short overlapping audio
clips, as in autocorrelation. Third, Waveprint takes advantage of LSH
to search through only a small subset of fingerprints. Waveprint also
reports fast retrieval results with high accuracy, and its feature extrac-
tion steps are easily parallelizable. FAST scores high on three qualita-
tive desirable metrics for earthquake detection methods (Fig. 1)
(detection sensitivity, general applicability, and computational efficiency),
whereas other earthquake detection algorithms (STA/LTA, template
matching, and autocorrelation) do well on only two of the three.

RESULTS

Data set

We tested the detection capability of FAST on a continuous data set
containing uncataloged earthquakes likely to have similar wave-
forms. The Calaveras Fault in central California (Fig. 2) is known
to have repeating earthquakes (34). We retrieved 1 week (168 hours)
of continuous waveform data, measured as velocity, from 8 January
2011 (00:00:00) to 15 January 2011 (00:00:00) at station CCOB.EHN
(the horizontal north-south component) from the Northern California
Seismic Network (NCSN). On 8 January 2011, a M,, 4.1 earthquake
occurred on this fault, followed by several aftershocks according to
the NCSN catalog. Most of these cataloged events were located
within 3 km of the station.

We preprocessed the continuous time series data before running
the FAST algorithm. We applied a 4- to 10-Hz bandpass filter to
the data because correlated noise at lower frequencies interfered with
our ability to detect uncataloged earthquakes. This correlated noise,
which appears to be specific to the station, consists of similar nonseis-
mic signals occurring at different times in the data. We then decimated
the filtered data from their original sampling rate of 100 samples per
second to 20 samples per second, so the Nyquist frequency is 10 Hz.

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

37.4'N e
/\ NCSN stations
Y Mainshock My, 4.1
o ® Catalog earthquakes (detected)
e Catalog earthquakes (missed)
R K
¥ a m
37.3'N - \ \ § 2000
F B\ \w - 1500
5 : A c
kel
\ - 1000 @
) 3
w
\ L4 - 500
37.2'N l
\/ O 0
o
37.1°N al
121.8'W 121.7°W 121.6'W 121.5°'W

Fig. 2. Map with locations of catalog earthquakes on the Calaveras Fault
and seismic station with data. Double-difference catalog locations of the
8 January 2011 M,, 4.1 earthquake (red star) and NCSN catalog events
(dots) between 8 and 15 January 2011 on the Calaveras Fault, and station
CCOB.EHN (white triangle) from which we processed 1 week of data from 8
to 15 January 2011. Blue dots indicate the 21 catalog events detected by
FAST, and black dots indicate the 3 catalog events missed by FAST. (Inset)
Map location within California (red box).

FAST detection results
We demonstrate that FAST successfully detects uncataloged earth-
quakes in 1 week of continuous time series data, and we compare
its detection performance and runtime against autocorrelation. Table
1 contains the parameters we used for FAST, and table S1 displays
autocorrelation parameters; although these parameters are not tuned
to their optimal values, they work reasonably well. Generally, we do
not expect event times from FAST, autocorrelation, and the catalog,
which each have their own lists of event detection times, to match
exactly. Therefore, for comparison purposes, we define matching
events as occurring within 19 s of each other (Table 1), which is
the maximum time of overlap between a 10-s-long fingerprint with
a 1-s lag (Table 1) and a 10-s-long autocorrelation window (table S1).

Table 2 summarizes the performance of autocorrelation and
FAST in terms of several metrics: number of detected events, false
detections, catalog detections, new (uncataloged) detections, missed
detections, and runtime. FAST detected a total of 89 earthquakes in
these data (Fig. 3), whereas autocorrelation found 86 events; thus,
they have comparable performance in terms of the total number of
detected events. FAST has more false detections than auto-
correlation, but runs much faster. Most events are detected by both
autocorrelation (64 of 86) and FAST (64 of 89), but a considerable
fraction of new events are found by either autocorrelation (22 events)
or FAST (25 events) but not by both.

FAST detected 21 of 24 catalog events (Fig. 3) located within the
region of interest in Fig. 2 (between 37.1° and 37.4°N and between
121.8° and 121.5°W), whereas autocorrelation found all 24. Neither

30of 13

RESEARCH ARTICLE

Table 1. FAST input parameters. These were used for detection in synthetic data (except the event detection threshold) and in 1 week of CCOB.

EHN data.

FAST parameter

Value

Time series window length for spectrogram generation

200 samples (10 s)

Time series window lag for spectrogram generation

2 samples (0.1 s)

Spectral image window length

100 samples (10 s)

Spectral image window lag = fingerprint sampling period

10 samples (1 s)

Number of top k amplitude standardized Haar coefficients 800
LSH: number of hash functions per hash table r 5
LSH: number of hash tables b 100

Initial pair threshold: number v (fraction) of tables, pair in same bucket

4 (4/100 = 0.04)

Event detection threshold: number v (fraction) of tables, pair in same bucket

19 (19/100 = 0.19)

Similarity search: near-repeat exclusion parameter

5 samples (5 s)

Near-duplicate pair and event elimination time window

21s

Autocorrelation and catalog comparison time window

19s

Table 2. Summary of performance comparison between autocorrelation and FAST for several metrics. The numbers for metrics 3 to 5 should sum

to the number in metric 1.

Metric Autocorrelation FAST
1. Total number of detected events 86 89
2. Number of false detections (false positives) 0 12

3. Number and percentage of catalog detections

24/24 = 100% 21/24 = 87.5%

4. Number of new detections from both algorithms 43 43
5. Number of new detections from one, missed by the other 19 25
6. Number of missed detections (false negatives) 25 22

7. Runtime

9 days 13 hours 1 hour 36 min

autocorrelation nor FAST detected catalog events outside this region,
using data from only CCOB.EHN. Figure S2 shows 20-s normalized
waveforms ordered by catalog event time for the 21 catalog events
found by FAST (fig. S2A), with magnitudes ranging from M,, 4.10
for the mainshock to My 0.84 for the smallest event (table S2), and
for the 3 catalog events missed by FAST, which are false negatives
(fig. S2B). FAST did not detect these three catalog events because they
did not repeat within the week of continuous data (Fig. 2). One event
at 361,736 s was found at a location (37.13208°N and —121.57879°W)
different from the other catalog events. The other two events at
314,077 and 336,727 s were located closer to most of the catalog events
near the mainshock but had shallower depths (3.50 and 3.53 km, re-
spectively) compared to most of the catalog events with depths of 6 to
7 km (table S2). Autocorrelation found these three catalog events be-
cause their initial phase arrival matched that of another earthquake
with high CC; however, inspection of the earthquake pair after 5 s
revealed that the rest of their waveforms were dissimilar (fig. S3), so
it is not surprising that FAST did not detect them.

In addition to the 21 catalog events, FAST also detected 68 new
events that were not in the catalog (Fig. 3). These additional events

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

provide a more complete description of seismicity on the Calaveras
Fault; the higher temporal resolution of this aftershock sequence
can potentially be used to more reliably predict aftershock rates
for epidemic-type aftershock sequence models. Figure S4 shows
20-s normalized waveforms from these new events ordered by
event detection time in 1 week of CCOB.EHN data. FAST detected
43 new events that autocorrelation also found (fig. S4A), as well as
25 new events that autocorrelation missed (fig. S4B). These events
are noisier than the catalog event waveforms in fig. S2.

The waveforms in fig. S4 are not properly aligned in time for two
reasons: first, FAST event times are accurate only up to 1 s, equal to the
time lag between adjacent fingerprints (Table 1), and second, there can
be multiple detection times for the same event, and we consider only the
time with the highest FAST similarity (Supplementary Materials). FAST
similarity is defined as the fraction of hash tables with the fingerprint
pair in the same bucket (Materials and Methods). FAST does not
estimate a precise arrival time, but this can easily be computed with
cross-correlation in a subsequent step in the detection pipeline.

We also estimated the number of false-positive and false-negative
detections made by FAST, given our choice of parameters in Table 1.

4 of 13

RESEARCH ARTICLE

— C(Catalog events
— New (uncataloged) events

200
o
-200

0 3 6 9

200 T \ I

0

-200
2

200 I I I

¥

0 -— —

-200 | | |
48 51 54 57

200 I \ \
0 N

k3
b 4
—
=+

Amplitude

-200 | | |
72 75 78 81

200 ‘
0 ' M }
~209 |

96 99

120

200 L |

0+ it
|

200, 153

144

200 T \ I

On Y.) "
L o 4 +

-20 | | |
?44 147 150 153

156 159 162 165 168

Time (hours)

Fig. 3. FAST event detections plotted on 1 week of continuous data. Data are from station CCOB.EHN (bandpass, 4 to 10 Hz) starting on 8 January
2011 (00:00:00). FAST detected a total of 89 earthquakes, including 21 of 24 catalog events (blue) and 68 new events (red).

The estimation was based on a careful visual inspection of waveforms:
waveforms had to look like an impulsive earthquake signal on all three
components of data at station CCOB to be classified as “true detec-
tions,” although FAST used only the EHN channel for detection. In
our application, we wanted to only detect earthquakes, so we did not
classify similar signals having nonimpulsive waveforms as true detec-
tions. FAST returned 12 false-positive detections above the event de-
tection threshold that were visually identified as low-amplitude noise
from their 20-s normalized waveforms (fig. S5A). Autocorrelation did
not have any false positives because we deliberately set a high detec-
tion threshold (CC = 0.818); we could have set a lower detection
threshold for autocorrelation to detect more events, but this would
also introduce false positives that complicate the automated compar-
ison between FAST and autocorrelation detections. FAST failed to de-
tect 19 uncataloged events (fig. S5B) found by autocorrelation, so these
are false negatives. Ten of these 19 detections were missed for the
same reason as the three catalog events (fig. S3): autocorrelation
matched the initial P-wave arrivals, but the entire waveforms were dis-
similar. FAST missed a total of 22 events (including the three catalog
events) that autocorrelation found. But the 25 new events found by
FAST and missed by autocorrelation can be interpreted as false nega-
tives for autocorrelation; their CC values ranged from 0.672 to 0.807,
so they were below the CC = 0.818 threshold. The overall shapes of the

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

waveform pairs for these 25 events are similar but not precisely
aligned in time (fig. S6).

Finally, we compare the serial runtime performance of FAST
against autocorrelation to detect events in 1 week of CCOB.EHN data.
Autocorrelation took 9 days and 13 hours to produce a list of earthquake
detections, whereas FAST took only 1 hour and 36 min, a 143-fold speed-
up when processed on an Intel Xeon Processor E5-2620 (2.1-GHz cen-
tral processing unit). The speedup factor estimate has some
uncertainty because neither autocorrelation nor FAST implementa-
tions were optimized for the fastest possible runtime. FAST spent
38% of its time in feature extraction, 11% in database generation,
and 51% in similarity search. FAST has an enormous advantage
over autocorrelation in terms of runtime, and based on the scalabil-
ity of these two algorithms, we expect this advantage to increase for
longer-duration continuous data sets.

Figure S7 illustrates the small number of candidate pairs output
from FAST, which contributes to its computational efficiency. It
displays a histogram of similar fingerprint pairs (including near-
duplicate pairs) on a log scale, binned by FAST similarity. There are
Ng(Ng, = 1)/2 ~ 1.8 x 10" possible fingerprint pairs, but FAST out-
puts 978,904 pairs with a similarity of at least the initial threshold of
0.04 (Table 1), which constitute only 0.0005% of the total number of
pairs. After applying the event detection similarity threshold of 0.19

5o0f 13

RESEARCH ARTICLE

(Table 1), we retain only 918 pairs. Further postprocessing (Supple-
mentary Materials) returns a list of 101 detections that includes 89
true events and 12 false detections: removing near-duplicate pairs re-
duced the number of pairs to 105, and removing near-duplicate events
reduced the number of detections from 2 x 105 = 210 to 101. Al-
though FAST incurs some runtime overhead by computing finger-
prints with feature extraction, it is small compared to the speedup
achieved from avoiding unnecessary comparisons.

DISCUSSION

Scaling to large data sets

To quantify the scalability of FAST runtime and memory usage for
larger data sets, we downloaded 6 months (181 days) of continuous
data from station CCOB.EHN (from 1 January 2011 to 30 June 2011)
and ran FAST on seven different data durations ranging from 1 day to
6 months (table S3), including 1 week. For this scaling test, we used
the parameters in Table 1, but we increased the number of hash
functions r from 5 to 7. This parameter change decreases the detection
performance but improves the computational efficiency.

The memory usage of the LSH-generated database depends on the
number of hash tables, the number of fingerprints, and additional
overhead specific to the hash table implementation. We used the Linux
top command to estimate the memory usage for long-duration data.
We found that about 36 GB of memory was required for 6 months
of continuous data (Fig. 4A).

We investigated FAST runtime as a function of continuous data
duration by separately measuring the wall clock time for the feature
extraction and similarity search steps (Fig. 4B). Feature extraction
scales linearly with data duration, whereas similarity search scales
near-linearly as O(N'®). For comparison, we recorded autocorrelation
runtime for up to 1 week of data, then extrapolated to longer durations
by assuming quadratic scaling. FAST can detect similar earthquakes
within 6 months of continuous data in only 2 days and 8.5 hours—
at least three orders of magnitude faster than our autocorrelation im-
plementation, which is expected to require about 20 years to accomplish
the same task.

Limitations

FAST trades off higher memory requirements in exchange for faster
runtime and reduced algorithmic complexity. Unlike autocorrelation,
FAST needs a significant amount of memory because the LSH-generated
database stores hash tables, with each hash table containing references
to all Ny, = 604,781 fingerprints that are distributed among its collec-
tion of hash buckets. These memory requirements increase as we an-
ticipate searching for events in months to years of continuous data.
For years of continuous data, memory may become a bottleneck,
and a parallel implementation of the database in a distributed comput-
ing environment would be necessary.

We can improve the detection sensitivity and thresholding algorithm
for FAST in several ways. Our current implementation used an event
detection threshold of 0.19 (Table 1) for the FAST similarity metric,
which was set by visually inspecting waveforms: most events above
this threshold looked like earthquakes, and most events below it
looked like noise. As we process longer-duration continuous data,
we will require an automated and adaptive detection threshold that
varies with the noise level during a particular time period. We do not

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

A2 Memory scaling with data duration
)
S 10t}
v
o
©
wv
S
>
g
9] 0l
= 10
1 day 3days 1week 2weeks 1month 3 months 6 months
107"
10° 10! 102
Continuous data duration (days)
1010 Runtime scaling with data duration
e—e Feature extraction
10°} oo Similarity search | t:f
ol FAST total runtime ’ - <30 years
107 H| e—e Autocorrelation runtime i
2 CEmmmmm— 1year
D 10" ¢ Pt
) .7
=
=R 1 week
@ 105 b
1 day
N e 1 hour
107} 1week 2weeks 1month 3 months 6monthsﬁ
102 . ,
10° 10! 107

Continuous data duration (days)

Fig. 4. FAST scaling properties as a function of continuous data dura-
tion up to 6 months. (A) Memory usage for the database generated by
LSH. (B) FAST total runtime (red) subdivided into runtime for feature extraction
(blue) and similarity search (green). Autocorrelation runtimes (purple) for con-
tinuous data longer than 1 week are extrapolated based on quadratic
scaling (dashed line). These results are from running FAST with the para-
meters in Table 1, with the number of hash functions r increased from 5 to 7,
which decreased the total runtime for 1 week of continuous data to under
an hour.

want to compromise detection sensitivity for an entire year of contin-
uous data by using an elevated constant detection threshold because of a
short, unusually noisy time period. Also, the similar fingerprint pairs
output from FAST (fig. S8) are really candidate pairs (23) that require
additional postprocessing to be classified as event detections. For exam-
ple, instead of using the FAST similarity event detection threshold of
0.19 (Table 1), we can take all pairs above the initial threshold 0.04 (Ta-
ble 1) and set an event detection threshold based on directly computed
CC for waveforms of candidate pairs.

6 of 13

RESEARCH ARTICLE

Similar fingerprint pairs output from FAST (fig. S8) only identify
pairwise similarity between waveforms; however, we would like to find
groups of three or more waveforms that are similar to each other.
Clustered similarity has useful seismological applications, from identi-
fying repeating earthquake sequences to finding LFE families in tec-
tonic tremor, which can include thousands of similar events during an

A o
(o)
S 200 L
= 0 g+ |
2 ™
£ 200 ,
400 \ | | |
0 500 1000 1500 2000 2500 3000 3500
B . Time (s)
£ 10p - m5
= |
S i o
El
g
I -5
C 5
= = |
< <
3 3
& s 0
El El
o o
(2 (3
i i
-5
5 N]
3 3
2 2
> >
13 3
2 2 0
2 2
8 I
k] B
[[
s s '
= = ‘
1 |
2 % 20 40 5
E ! !
= x
5} ()
2 2
£ 3
3 13
S o
k7] 0 @ 0
5 8
T 10] 3 10]
2 8
= = 5]
L 0 40 a

Fingerprint yindex
Fingerprint yindex

0

Fingerprint xindex Fingerprint x index

Fig. 5. Feature extraction steps in FAST. (A) Continuous time series data.
(B) Spectrogram: amplitude on log scale. (C) Spectral images from two sim-
ilar earthquakes at 1267 and 1629 s. (D) Haar wavelet coefficients: ampli-
tude on log scale. (E) Sign of top standardized Haar coefficients after data
compression. (F) Binary fingerprint: output of feature extraction. Notice that
similar spectral images result in similar fingerprints.

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

episode (8, 21, 22). Future postprocessing steps could be developed to
determine “links” between pairs of similar waveforms to create groups
of similar waveforms. Further research into identifying connections
between pairs that repeat multiple times (22), or applying a combina-
tion of clustering and graph algorithms (30) often used to analyze so-
cial networks (23), could help solve this problem.

FAST is designed to find similar signals in continuous data, but
these signals may not necessarily be due to earthquakes. FAST may
also register detections for correlated noise, especially if the data have
repeating noise signals such as the 12 false detections in fig. SSA. We
applied a 4- to 10-Hz bandpass filter to the CCOB.EHN data because
low-frequency correlated noise, specific to this station, degraded our
detection performance. Other examples of correlated noise include
short-duration, high-amplitude glitches, spikes, and other artifacts.
Correlated noise also negatively impacts autocorrelation event detec-
tion: when we did not apply the 4- to 10-Hz bandpass filter to the
continuous data, autocorrelation also detected many nonseismic
signals with higher similarity than the earthquake waveforms. Possible
strategies to mitigate the effect of correlated noise include the
following: applying an adaptive detection threshold that is higher dur-
ing noisy periods, grouping detections in a way that separates similar
seismic signals from similar noise signals, and developing postproces-
sing algorithms such as feature classifiers (35) that discriminate earth-
quakes from noise.

Because FAST is designed to detect similar signals, we do not ex-
pect it to find a distinct earthquake signal that does not resemble any
other signals in the continuous data processed by FAST. For example,

A Fingerprint A Fingerprint B
155 155
64 64
231 207
35 35
110 110
21 21
A h(A) B h(B) MHS subset Database
B Hach {P___ 155 match?
e
S bl N0
1 t—e — 64
Hash — 231 — 207
table Wk‘ﬁ_ No @
2 p——35 — 35
Hash — 110 — 110
table Yes
3 — 21 — 21

Fig. 6. Example of how LSH groups fingerprints together in the
database. (A) Example of MHS for two similar fingerprints A and B, with
p = 6. (B) LSH decides how to place two similar fingerprints A (blue) and B
(green) into hash buckets (ovals) in each hash table (red boxes); wave-
forms are shown for easy visualization. The MHS length is p = 6, and there
are b = 3 hash tables, so each hash table gets a different subset of the MHS
of each fingerprint that is 6/3 = 2 integers long: the output of r = 2 Min-
Hash functions. Taking each hash table separately: if the MHS subsets of A
and B are equal, then A and B enter the same hash bucket in the database;
this is true in hash tables 1 and 3, where h(A) = h(B) = [155, 64] and h(A) =
h(B) = [110, 21], respectively. In hash table 2, however, the MHS subsets of
A and B are not equal, because h(A) = [231, 35] and h(B) = [207, 35], so A
and B enter different hash buckets.

7 of 13

RESEARCH ARTICLE

if the data contain 100 event signals but only two of them have
similar waveforms, FAST would return only two detections. Longer-
duration continuous data are more likely to contain similar
earthquake signals, so FAST would be able to detect more seismic
events. If the data still contain a distinct, nonrepeating earthquake
signal, STA/LTA can be used to detect it, provided that it has an
impulsive arrival with enough energy. In addition, FAST can be
applied in “template matching mode,” a variant not pursued in this
study, in which fingerprints from a section of continuous data are
queried against a database of fingerprints from template signals
extracted from other data sets, enabling detections similar to
known waveforms without requiring the matching signal to appear
during the continuous data interval.

Conclusions and future implications

Seismology is a data-driven science where new advances in under-
standing often result from observations (1) and the amount of data
collected by seismic networks has never been greater than today.
Computer scientists have pioneered data mining algorithms for simi-
larity search, with applications ranging from audio clips, to images in

large databases, to Internet Web pages. FAST demonstrates that we
can harness these algorithms to address a fundamental problem in
seismology: identifying unknown earthquakes.

The most important advantage of FAST over competing
approaches is its fast runtime and scalability. For 1 week of continuous
data, FAST runs about 140 times faster than autocorrelation while de-
tecting about the same total number of events. For longer continuous
data streams, however, we anticipate that serial FAST would run
orders of magnitude faster than autocorrelation, based purely on the
runtime complexity of these algorithms: quadratic for autocorrelation
and near-linear for FAST (Fig. 4B).

Seismologists have previously applied parallel processing to speed
up template matching on graphics processing units (36) and on a
Hadoop cluster (37). We also use a parallel autocorrelation imple-
mentation (Supplementary Materials) as a reference for comparing
FAST detection results. FAST runtime can be further reduced with a
parallel implementation, although only the feature extraction steps
are embarrassingly parallel; distributing the LSH-generated finger-
print database across multiple nodes requires a nontrivial algo-
rithm redesign.

A
Hash table 1@ Hash table 2 Hash table b=3
e
N\ - ,/
B
1| @

Similarity

Fig. 7. LSH database and similarity search example. (A) Database generated using LSH, with b = 3 hash tables (red boxes); each hash table has many
hash buckets (ovals). LSH groups similar fingerprints into the same hash bucket with high probability; earthquake signals (colors) are likely to enter the
same bucket, whereas noise (black) is grouped into different buckets. (B) Search for waveforms in database similar to query waveform (blue). First, LSH
determines which bucket in each hash table has a waveform that matches the query. Next, we take all other waveforms in the same bucket in each hash
table and calculate the FAST similarity between each (query, database) waveform pair: the fraction of hash tables containing the pair in the same bucket.
The red waveform is in the same bucket as the blue query waveform in all three hash tables, so their similarity is 1; the green waveform is in the same
bucket in two of three hash tables; and so on. This figure displays waveforms for easy visualization, but the database stores references to fingerprints in
the hash buckets, and a search query requires converting the waveform to its fingerprint.

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015 8 of 13

RESEARCH ARTICLE

To be able to detect earthquakes in low-snr environments, FAST
needs to be applied to distributed seismic networks. The existing
FAST algorithm detected events from one channel of continuous data
at a single station (CCOB); we are developing an extension of FAST
that can detect events using all three components from one station
and can incorporate multiple stations. Many template matching stu-
dies (7, 8, 11) have demonstrated that incorporating channels from
multiple stations enhances detection sensitivity, revealing low-snr
signals buried in noise. In addition, a coherent signal recorded at
multiple stations, at different distances and azimuths from the source,
is more likely to be an earthquake rather than noise local to the sta-
tion. Therefore, we expect a multiple-station detection method to re-
duce the number of false detections and to mitigate the negative effect
of correlated noise on FAST detection performance, assuming that
correlated noise in time is independent between different stations.
Any detection method needs to be robust to changes in network
architecture, such as the addition of new stations or station dropouts
for long-duration data.

The detection capability of FAST needs to be explored further
through tests on a variety of data sets that pose challenges for detec-
tion as a result of low snr, waveforms with nonimpulsive arrivals,
overlapping waveforms, and correlated noise. Future work also ought
to develop more discriminative fingerprinting and to explore different
ways to hash fingerprints into the database.

Because FAST can identify similar seismic events given a query
event in near-constant time, the technique may also be applicable
to real-time earthquake monitoring. The increased detection sensitiv-
ity could reduce catalog completeness magnitudes if implemented at a
large scale across a seismic network. A real-time FAST implemen-
tation could store a database of fingerprints from the continuous
data, and as new data stream in, new fingerprints would be created,
added to the database, checked for similarity with other finger-
prints, and classified as a detection or not. FAST can also enable
large-scale template matching: hundreds of thousands of template
fingerprints can be used as search queries to a massive database of
fingerprints. FAST may find similar earthquakes missed by STA/
LTA or template matching in a diverse range of earthquake se-
quences: foreshocks, aftershocks, triggered earthquakes, swarms, LFEs,
volcanic activity, and induced seismicity. FAST could also identify
low-magnitude seismic signals that repeat infrequently, perhaps once
every few months.

MATERIALS AND METHODS

The FAST algorithm detects similar signals within a single channel of
continuous seismic time series data. It has two major components:
(i) feature extraction and (ii) similarity search. Feature extraction com-
presses the time series data by converting each waveform into a sparse,
binary fingerprint. All of the fingerprints are inserted into a database
using locality-sensitive hash functions. Given a desired “search query”
fingerprint, the database returns the most similar matching finger-
prints with high probability in near-constant time (23). In our current
many-to-many search application, we use every fingerprint in the
database as a search query so that we can find all pairs of similar fin-
gerprints within the data set; however, we can also select a subset of
fingerprints or use other sources of data as search queries. Finally, the
most dissimilar pairs returned from the search queries are removed,

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

and additional postprocessing and thresholding (Supplementary
Materials) result in a list of earthquake detection times.

Fingerprinting: Feature extraction

Figure 5 (A to F) contains an overview of feature extraction steps in
FAST, which follows most of the workflow in Baluja et al. (33): contin-
uous time series data (A), spectrogram (B), spectral image (C), Haar
wavelet transform (D), data compression (E), and binary fingerprint (F).

Spectrogram. We compute the spectrogram (Fig. 5B) of the time
series data (Fig. 5A) using the short-time Fourier transform (STFT).
We take overlapping 10-s windows in the time series (separated by a
0.1-s time lag) (Table 1), apply a Hamming tapering function to each
window, and compute the Fourier transform of each tapered window.
We calculate the power (squared amplitude) of the resulting complex
STFT, then downsample the spectrogram to 32 frequency bins, which
smooth away some noise. Earthquakes appear in the spectrogram as
transient, high-energy events (Fig. 5B).

Spectral image. We want to compare and detect similar earth-
quakes, which are short-duration signals, so we divide the spectrogram
into overlapping windows in the time dimension and refer to each
window as a “spectral image.” Matching patterns between spectral
images has been previously proposed as an earthquake detection
method (38). The spectral image of an earthquake signal has high
power (Fig. 5C) compared to the rest of the spectrogram (Fig. 5B).
There are also window length and lag parameters for spectral images;
we chose Lg, = 100 samples for the spectral image length and 14, = 10
samples for the lag between adjacent spectral images (Table 1), which
correspond to a spectral image length of 10 s and a spectral image lag
of 1 s. A shorter spectral image lag increases detection sensitivity and
timing precision at the expense of additional runtime. The total num-
ber of spectral image windows, and ultimately the number of finger-
prints Np,, is

Nip =

2t = %) @)

Tfp

where N, is the number of time samples in the spectrogram. For the
week of continuous data from CCOB, Ng, = 604,781.

Because the spectrogram content varies slowly with time (33), we
can find similar seismic signals with a longer spectral image lag of 1 s,
compared to the 0.1-s lag used in time series autocorrelation, which
contributes to the fast runtime of FAST. We have fewer spectral
images (compared to the number of autocorrelation time windows)
from the same duration of continuous data; thus we have fewer fin-
gerprints to first calculate and then compare for similarity.

Although the spectral image length is 10 s, it includes 20 s of wave-
form data. Each of the Lg, = 100 time samples in the spectral image
contains 10 s of data, with an offset of 0.1 s between each sample.

The next step (Haar wavelet transform) requires each spectral image
dimension to be a power of 2. We therefore downsample in the time
dimension from Lg, = 100 to 2° = 64 samples. We previously down-
sampled in the frequency dimension to 2° = 32 samples, so the final
dimensions of each spectral image are 32 samples by 64 samples.

Haar wavelet transform. We next compute the two-dimensional
Haar wavelet transform of each spectral image to get its wavelet
representation, which facilitates lossy image data compression with
a fast algorithm while remaining robust to small noise perturbations

9 of 13

RESEARCH ARTICLE

(33, 39). Figure 5D displays the amplitude of the Haar wavelet coeffi-
cients of the spectral images from Fig. 5C; an earthquake signal has
high power in the wavelet coefficients at all resolutions, appearing in a
distinct pattern.

Wavelets are a mathematical tool for multiresolution analysis:
they hierarchically decompose data into their overall average shape
and successive levels of detail describing deviations from the average
shape, from the coarsest to the finest resolution (40). In Fig. 5D, the
finest resolution detail coefficients are in the upper-right quadrant,
and they get coarser as we move diagonally left and down, until we
reach the average coefficient of the entire spectral image in the lower-
left corner. A Fourier transform has basis functions that are sines and
cosines, is localized only in the frequency domain, and can describe
periodic signals using just a few coefficients. In an analogous way, a
discrete wavelet transform (DWT) has different kinds of basis
functions, is localized in both the time and the frequency domains,
and can express nonstationary, burst-like signals (such as earthquakes)
using only a few wavelet coefficients (41). The DWT has previously
been used to improve STA/LTA earthquake detection and to accurate-
ly estimate phase arrivals (42). The DWT can be computed recursively
using the fast wavelet transform but requires the dimension of the
input data to be a power of 2. The DWT can also be computed with
other wavelet basis functions, such as the Daubechies basis functions
of different orders (41), but this requires more computational effort
than the Haar basis.

Data compression: Wavelet coefficient selection. We now
compress the data by selecting a small fraction of the Haar wavelet
coefficients for each spectral image, discarding the rest. Because
much of the continuous signal is noise, we expect diagnostic wavelet
coefficients for earthquakes to deviate from those of noise. Therefore,
we keep the top k Haar wavelet coefficients with the highest devia-
tion from their average values, with deviation quantified by standar-
dizing each Haar coefficient. We use z-score-based standardized
coefficients, rather than simple amplitudes of the Haar coefficients,
because they have greater discriminative value and empirically re-
sulted in improved earthquake detection performance.

We now describe how standardized Haar coefficients can be ob-
tained. The M = 32 x 64 = 2048 Haar coefficients of N = N, spectral
images are placed in a matrix H in R, Let H be the matrix with
columns k; = hy/llhjl,, obtained by normalizing each column h; of H.
Then, for each row i of the matrix, we compute the sample mean p;
and corrected sample standard deviation o; for Haar coefficient i over
all spectral images j

Ay 1 N :
=57 Zl‘}u) Gi N _1 Z(I—A[i/'_“‘i)

“WN-1\ A

3)

The standardized Haar coefficient Z-j computed as the z-score for each
Haar coefficient i and spectral image j, then gives the number of stan-

dard deviations from the mean across the data set for that coefficient value

Zy=—1"H (4)

Gi

For each spectral image, we select only the top k = 800 standardized
Haar coefficients (Table 1, 800/2048 = 39%) with the largest amplitude

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

(which preserves negative z-scores with a large amplitude) and set the
rest of the coefficients to 0. Only the sign of the top k coefficients is
retained (Fig. 5E): +1 for positive (white), —1 for negative (black), and
0 for discarded coefficients (gray). Storing the sign instead of the am-
plitude provides additional data compression while remaining robust
to noise degradation (33, 39).

Binary fingerprint. We generate a fingerprint that is binary
(consists of only 0 and 1) and sparse (mostly 0) so that we can
use the LSH algorithm described in the next section to efficiently
search for similar fingerprints and to minimize the number of bits
required for storage. We represent the sign of each standardized
Haar coefficient using 2 bits: -1 — 01, 0 — 00, 1 — 10. Thus, each
fingerprint uses twice as many bits as Haar coefficients. Because
each spectral image window had 2048 Haar coefficients, each
fingerprint has 2 x 2048 = 4096 bits. Figure 5F shows the binary
fingerprints derived from the earthquake spectral images, where
1 is white and 0 is black.

Similarity search

After feature extraction, we have a collection of Ny, fingerprints,
one for each spectral image (and thus the waveform). Our objective
is to identify pairs of similar fingerprints to detect earthquakes.
FAST first generates a database in which similar fingerprints are
grouped together into the same hash bucket with high probability.
Then, in similarity search, the database returns all fingerprints that
are similar to a given search query fingerprint, as measured by Jac-
card similarity. The search is fast and scalable with increasing
database size, with near-constant runtime for a single search query.
FAST uses every fingerprint in the database as a search query, so
the total runtime is near-linear.

Jaccard similarity. In template matching and autocorrelation,
we use the normalized CC (Eq. 1) to measure the similarity be-
tween two time domain waveforms. Here, we use the Jaccard simi-
larity as a similarity metric for comparing fingerprints in the LSH
implementation. The Jaccard similarity of two binary fingerprints
A and B is defined as (23)

_ |ANB|

J(4,B) = A5

()
In Eq. 5, the numerator contains the number of bits in both A and B
that are equal to 1, whereas the denominator is the number of bits in
either A, B, or both A and B that are equal to 1. Figure SOA shows two
very similar normalized earthquake waveforms, and fig. S9B displays
the Jaccard similarity of their corresponding fingerprints.

Database generation. The dimensionality of each fingerprint is
reduced from a 4096-element bit vector to a shorter integer array
using an algorithm called min-wise independent permutation
(Min-Hash) (43). Min-Hash uses multiple random hash functions
hi(x) with permutation i, where each hash function maps any sparse,
binary, high-dimensional fingerprint x to one integer h,(x). Min-
Hash has an important LSH property—the probability of two finger-
prints A and B mapping to the same integer is equal to their Jaccard
similarity

Prih(4) = h(B)] = J (4, B) (6)

Thus, Min-Hash reduces dimensionality while preserving the simi-
larity between A and B in a probabilistic manner (23, 33).

10 of 13

RESEARCH ARTICLE

The output of Min-Hash is an array of p unsigned integers called a
Min-Hash signature (MHS), given a sparse binary fingerprint as input
(23). The MHS can be used to estimate the Jaccard similarity between
fingerprints A and B by counting the number of matching integers
from the MHS of both A and B, then dividing by p; the Jaccard simi-
larity estimate improves as p increases (33). Each of the p integers is
computed using a different random hash function h; applied to the
same fingerprint. These p Min-Hash functions are constructed by
drawing p x 4096 (where 4096 is the number of bits in the fingerprint)
independent and identically distributed random samples from a
uniform distribution, returned by calling a uniform random hash
function, to get an array r(i,j), where i = 1,...,p and j = 1,...,4096.
Then, to obtain the output of a Min-Hash function A,(x) for a given
fingerprint x, we use the index of the k nonzero bits in the fingerprint
to select k values in the (i,j) array. For example, if we consider the first
hash function h;(x) out of all p hash functions and if the index of a
nonzero bit in fingerprint x is j = 4, then (1, 4) is chosen. Out of all
the k selected values (i,j), we select the minimum value and assign the
index j that obtains the minimum as the output of the Min-Hash
function hy(x) (23). We further reduce the output size by keeping only
8 bits so that the MHS has a total of 8p bits; each integer in the MHS
has a value between 0 and 255 (33). Figure 6A shows sample MHS
arrays for two similar fingerprints A and B, with p = 6.

LSH uses the MHS to insert each fingerprint into the database. Fig-
ure 6B demonstrates how LSH places two similar fingerprints A and B
into hash buckets in each hash table in the database, given their MHS
arrays (Fig. 6A). The 8p bits of each MHS are partitioned into b sub-
sets with 8r bits in each subset (p = rb). These 8r bits are concatenated
to generate a hash key, which belongs to exactly one out of b hash
tables. Each hash key is a 64-bit integer index that retrieves a hash
bucket, which can contain multiple values (references to fingerprints).
For a given hash table, if A and B share the same hash key (equiva-
lently, if their MHS subsets in Fig. 6 are the same), then they are
inserted into the same hash bucket; otherwise, they are inserted into
different hash buckets (23, 33).

Figure 7A presents a schematic of a database created by LSH; highly
similar fingerprints are likely to be grouped together in the same hash
bucket. The database stores 32-bit integer references to fingerprints in
the hash buckets, rather than the fingerprints (or waveforms) themselves.
We generate bNj, hash keys and values for each MHS from all N, fin-
gerprints and insert all of the values into hash buckets within the b hash
tables, given their corresponding hash keys. Each of the N, = 604,781
fingerprints is represented in some hash bucket in every hash table, so
LSH produces multiple groupings of fingerprints into hash buckets.

Similarity search within the database. The LSH-generated
database provides a fast, efficient way to find similar fingerprints
and, therefore, similar waveforms. Figure 7B shows how one can
search for fingerprints in the database that are similar to the query
fingerprint (blue). For each search query fingerprint, we determine
its hash bucket in each hash table using the procedure illustrated in
Fig. 6 and retrieve all fingerprint references contained in these
selected hash buckets using the corresponding hash keys, forming
pairs where the first item is the query fingerprint and the second
item is a similar fingerprint from the same hash bucket in the
database (23, 33). Thus, for each query, we perform as many look-
ups as hash tables. The amortized time for a lookup is O(1). The
retrieval time depends on the number of items per bucket; it is de-
sirable for each bucket to contain a small subset of fingerprint ref-

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

erences in the database, so that we ignore fingerprint references in
all other hash buckets, making the search scalable with increasing
database size. Out of all retrieved pairs for a given query, we only
retain the pairs that appear in at least v = 4 out of b = 100 hash
tables, for an initial FAST similarity threshold of 4/100 = 0.04 (Table 1);
these become our candidate pairs (33). We later set v = 19 out of b =
100 hash tables, for a FAST similarity of 0.19, as an event detection
threshold (Table 1) after visual inspection of waveforms corresponding
to these fingerprint pairs. We define FAST similarity as the fraction of
hash tables containing the fingerprint pair in the same hash bucket.

The theoretical probability of a successful search—the probability
that two fingerprints hash to the same bucket (have a hash collision)
in at least v out of b hash tables, with r hash functions per table, as a
function of their Jaccard similarity s—is given by (23)

Pr = IZ [(b Ja- ><>} ™)

(1) a0 ®

The red curves in fig. S10 (same in all subplots) plot Eq. 7 with varying
Jaccard similarity s, given our specific input parameters (Table 1): =5
hash functions per table, b = 100 hash tables (so the MHS for each
fingerprint had p = rb = 500 integers), and v = 19 as the threshold for
the number of hash tables containing a fingerprint pair in the same
bucket. The probability increases monotonically with similarity.

We adjust the position and slope of the curve from Eq. 7 by vary-
ing the , b, and v parameters so we can modify the Jaccard similarity
at which we have a 50% probability of a successful search. Figure SI0A
modifies r while keeping b and v constant; the curve shifts to the right
as r increases, requiring higher Jaccard similarity for a successful
search. For a large r, there are a large number of hash buckets; thus,
the resulting low density of fingerprints within these buckets may lead
to missed detections, as similar fingerprints are more likely to end up
in different buckets. But if is too small, there are few hash buckets;
each bucket may have too many fingerprints, which would increase
both the runtime to search for similar fingerprints and the likelihood
of false detections. Figure S10B modifies b, keeping r and v constant;
the curve moves left as b increases because having more hash tables
increases the probability of finding two fingerprints in the same bucket
even if they have moderate Jaccard similarity. But this comes at the
expense of increased memory requirements, search runtime, and
false detections (23). Figure S10C modifies v, keeping r and b con-
stant; the curve moves to the right with steeper slope as v increases,
requiring higher Jaccard similarity between fingerprint pairs for a
successful search and a sharper cutoff between detections and non-
detections.

To detect similar earthquakes in continuous data, our many-to-
many search application of FAST uses every fingerprint in the database
as a search query so that we can find all other fingerprints in the
database that are similar to each query fingerprint, with near-linear run-
time complexity: O((pr)“"), where 0 < p < 1. For this data set, using
the parameters in Table 1 and with the number of hash functions
increased to r = 7, we estimated p = 0.36, given the similarity search
runtime ¢ as a function of continuous data duration d from Fig. 4B;
we assume a power law scaling t = Cd"**, where we solved for the

11 of 13

RESEARCH ARTICLE

factors C and p with a least-squares linear fit in log space: log t = log C +
(1+p)log d. Because there is a linear relationship between d and Np,,
od"**) ~ O((pr)””). This is faster and more scalable than the qua-
dratic runtime of autocorrelation: O(N?), with N > Njp. The output of
similarity search is a list of pairs of similar fingerprint indices, which we
convert into times in the continuous data, with associated FAST simi-
larity values. We can visualize this list of pairs as a sparse, symmetric
N X Ny, similarity matrix (fig. S8). This matrix is sparse because LSH
avoids searching for dissimilar fingerprint pairs, which constitute most
of the possible pairs.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/11/e1501057/DC1

Continuous data time gaps

Detection on synthetic data

Reference code: Autocorrelation

Near-repeat exclusion of similar pairs

Postprocessing and thresholding

Fig. S1. lllustration of comparison between many-to-many search methods for similar pairs of
seismic events.

Fig. S2. Twenty-second catalog earthquake waveforms, ordered by event time in 1 week of
continuous data from CCOB.EHN (bandpass, 4 to 10 Hz).

Fig. S3. Catalog events missed by FAST, detected by autocorrelation.

Fig. S4. Twenty-second new (uncataloged) earthquake waveforms detected by FAST, ordered
by event time in 1 week of continuous data from CCOB.EHN (bandpass, 4 to 10 Hz); FAST
found a total of 68 new events.

Fig. S5. FAST detection errors.

Fig. S6. Example of uncataloged earthquake detected by FAST, missed by autocorrelation.
Fig. S7. Histogram of similar fingerprint pairs output from FAST.

Fig. S8. Schematic illustration of FAST output as a similarity matrix for one channel of
continuous seismic data.

Fig. S9. CC and Jaccard similarity for two similar earthquakes.

Fig. S10. Theoretical probability of a successful search as a function of Jaccard similarity.
Fig. S11. Synthetic data generation.

Fig. S12. Hypothetical precision-recall curves from three different algorithms.

Fig. S13. Synthetic test results for three different scaling factors c: 0.05 (top), 0.03 (center), 0.01
(bottom), with snr values provided.

Table S1. Autocorrelation input parameters.

Table S2. NCSN catalog events.

Table S3. Scaling test days.

Table S4. Example of near-duplicate fingerprint pairs detected by FAST, which represent the
same pair with slight time offsets.

Reference (44)

REFERENCES AND NOTES

1. P. M. Shearer, Introduction to Seismology (Cambridge Univ. Press, New York, ed. 2,
2009).

2. R. Allen, Automatic phase pickers: Their present use and future prospects. Bull. Seismol.
Soc. Am. 72, S225-5242 (1982).

3. M. Withers, R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, J. Trujillo, A comparison of
select trigger algorithms for automated global seismic phase and event detection. Bull.
Seismol. Soc. Am. 88, 95-106 (1998).

4. R.J. Geller, C. S. Mueller, Four similar earthquakes in central California. Geophys. Res. Lett. 7,
821-824 (1980).

5. D.P. Schaff, G. C. Beroza, Coseismic and postseismic velocity changes measured by repeat-
ing earthquakes. J. Geophys. Res. 109, B10302 (2004).

6. G. Poupinet, W. L. Ellsworth, J. Frechet, Monitoring velocity variations in the crust using
earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. 89,
5719-5731 (1984).

7. S.J. Gibbons, F. Ringdal, The detection of low magnitude seismic events using array-based
waveform correlation. Geophys. J. Int. 165, 149-166 (2006).

8. D. R. Shelly, G. C. Beroza, S. Ide, Non-volcanic tremor and low-frequency earthquake
swarms. Nature 446, 305-307 (2007).

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

20.

21.

22.

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. D. P. Schaff, F. Waldhauser, One magnitude unit reduction in detection threshold by cross

correlation applied to Parkfield (California) and China seismicity. Bull. Seismol. Soc. Am.
100, 3224-3238 (2010).

. A. Kato, S. Nakagawa, Multiple slow-slip events during a foreshock sequence of the 2014

Iquique, Chile M,, 8.1 earthquake. Geophys. Res. Lett. 41, 5420-5427 (2014).

. Z. Peng, P. Zhao, Migration of early aftershocks following the 2004 Parkfield earthquake.

Nat. Geosci. 2, 877-881 (2009).

. X. Meng, Z. Peng, J. L. Hardebeck, Seismicity around Parkfield correlates with static shear

stress changes following the 2003 M,6.5 San Simeon earthquake. J. Geophys. Res. 118,
3576-3591 (2013).

. D.R. Shelly, D. P. Hill, F. Massin, J. Farrell, R. B. Smith, T. Taira, A fluid-driven earthquake

swarm on the margin of the Yellowstone caldera. J. Geophys. Res. 118, 4872-4886
(2013).

. C-C. Tang, Z. Peng, K. Chao, C-H. Chen, C-H. Lin, Detecting low-frequency earthquakes

within non-volcanic tremor in southern Taiwan triggered by the 2005 M,,8.6 Nias
earthquake. Geophys. Res. Lett. 37, L16307 (2010).

. R. J. Skoumal, M. R. Brudzinski, B. S. Currie, J. Levy, Optimizing multi-station earthquake

template matching through re-examination of the Youngstown, Ohio, sequence. Earth
Planet. Sci. Lett. 405, 274-280 (2014).

. D. Bobrov, 1. Kitov, L. Zerbo, Perspectives of cross-correlation in seismic monitoring at the

international data centre. Pure Appl. Geophys. 171, 439-468 (2014).

. K. Plenkers, J. R. R. Ritter, M. Schindler, Low signal-to-noise event detection based on wave-

form stacking and cross-correlation: Application to a stimulation experiment. J. Seismol.
17, 27-49 (2013).

. F. Song, H. S. Kuleli, M. N. Tokséz, E. Ay, H. Zhang, An improved method for hydrofracture-

induced microseismic event detection and phase picking. Geophysics 75, A47-A52 (2010).

. D. Harris, Subspace Detectors: Theory (Lawrence Livermore National Laboratory Report

UCRL-TR-222758) (Lawrence Livermore National Laboratory, Livermore, CA, 2006), p. 46.
S. A. Barrett, G. C. Beroza, An empirical approach to subspace detection. Seismol. Res. Lett.
85, 594-600 (2014).

J. R. Brown, G. C. Beroza, D. R. Shelly, An autocorrelation method to detect low frequency
earthquakes within tremor. Geophys. Res. Lett. 35, L16305 (2008).

A. C. Aguiar, G. C. Beroza, PageRank for earthquakes. Seismol. Res. Lett. 85, 344-350 (2014).

. J. Leskovec, A. Rajaraman, J. D. Uliman, Finding similar items, in Mining of Massive Datasets

(Cambridge Univ. Press, New York, ed. 2, 2014), pp. 73-130; http://www.mmds.org.

U. Manber, Finding similar files in a large file system, Proceedings of the USENIX Conference,
San Francisco, CA, 17 to 21 January 1994, pp. 1-10.

M. Henzinger, Finding near-duplicate Web pages: A large-scale evaluation of algorithms,
Proceedings of the 29th SIGIR Conference, Seattle, WA, 06 to 10 August 2006 (ACM).

B. Stein, S. M. zu Eissen, Near-similarity search and plagiarism analysis, Proceedings of the
29th Annual Conference German Classification Society, Magdeburg, Germany, 09 to 11
March 2005, pp. 430-437.

J. Haitsma, T. Kalker, A highly robust audio fingerprinting system, Proceedings of the Inter-
national Conference on Music Information Retrieval, Paris, France, 13 to 17 October 2002,
pp. 144-148.

A. Wang, An industrial-strength audio search algorithm, Proceedings of the International
Conference on Music Information Retrieval, Baltimore, MD, 27 to 30 October 2003,
pp. 713-718.

J. Zhang, H. Zhang, E. Chen, Y. Zheng, W. Kuang, X. Zhang, Real-time earthquake
monitoring using a search engine method. Nat. Commun. 5, 5664 (2014).

M. Rodgers, S. Rodgers, D. C. Roman, Peakmatch: A Java program for multiplet analysis of
large seismic datasets. Seismol. Res. Lett. 86, 1208-1218 (2015).

A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Commun. ACM 51, 117-122 (2008).

A. Levitin, Introduction to the Design and Analysis of Algorithms (Pearson Education, Addison-
Wesley, Upper Saddle River, NJ, ed. 3, 2012).

S. Baluja, M. Covell, Waveprint: Efficient wavelet-based audio fingerprinting. Pattern Recognit.
41, 3467-3480 (2008).

D. P. Schaff, G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, W. L. Ellsworth, High-resolution
image of Calaveras Fault seismicity. J. Geophys. Res. 107, ESE 5-1-ESE 5-16 (2002).

D. A. Dodge, W. R. Walter, Initial global seismic cross-correlation results: Implications for
empirical signal detectors. Bull. Seismol. Soc. Am. 105, 240-256 (2015).

X. Meng, X. Yu, Z. Peng, B. Hong, Detecting earthquakes around Salton Sea following the
2010 Mw7.2 El Mayor-Cucapah earthquake using GPU parallel computing. Proc. Comput.
Sci. 9, 937-946 (2012).

T. G. Addair, D. A. Dodge, W. R. Walter, S. D. Ruppert, Large-scale seismic signal analysis
with Hadoop. Comput. Geosci. 66, 145-154 (2014).

M. Joswig, Pattern recognition for earthquake detection. Bull. Seismol. Soc. Am. 80, 170-186
(1990).

C. E. Jacobs, A. Finkelstein, D. H. Salesin, Fast multiresolution image querying, Proceedings
of SIGGRAPH 95, Los Angeles, CA, 06 to 11 August 1995.

12 of 13

http://advances.sciencemag.org/cgi/content/full/1/11/e1501057/DC1
http://advances.sciencemag.org/cgi/content/full/1/11/e1501057/DC1
http://www.mmds.org

RESEARCH ARTICLE

40. E. J. Stollnitz, T. D. Derose, D. H. Salesin, Wavelets for computer graphics: A primer.1. [EEE
Comput. Graphics Appl. 15, 76-84 (1995).

41. D. Shasha, Y. Zhu, High Performance Discovery in Time Series: Techniques and Case Studies
(Springer, Berlin, 2004).

42. H.Zhang, C. Thurber, C. Rowe, Automatic P-wave arrival detection and picking with multiscale
wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93, 1904-1912
(2003).

43. A. Z. Broder, M. Charikar, A. M. Frieze, M. Mitzenmacher, Min-wise independent permuta-
tions. J. Comput. Syst. Sci. 60, 630-659 (2000).

44.). Davis, M. Goadrich, The relationship between precision-recall and ROC curves, Proceedings of
the 23rd International Conference on Machine Learning, Pittsburgh, PA, 25 to 29 June 2006,
pp. 233-240.

Acknowledgments: We thank the Northern California Earthquake Data Center for the
earthquake catalog and continuous seismic waveform data and the Stanford Center for Com-
putational Earth and Environmental Science for providing cluster computing resources. We
used Generic Mapping Tools to generate the map in Fig. 2. Funding: C.E.Y. was supported
by a Chevron Fellowship and a Soske Memorial Fellowship. K.J.B. was supported by a Stanford
Graduate Fellowship. This research was supported by the Southern California Earthquake
Center (contribution no. 6016). The Southern California Earthquake Center was funded by

Yoon et al. Sci. Adv. 2015;1:e1501057 4 December 2015

NSF Cooperative Agreement EAR-1033462 and U.S. Geological Survey Cooperative Agreement
G12AC20038. Author contributions: C.E.Y. wrote the feature extraction software and postpro-
cessing scripts, performed all data analyses, and wrote the manuscript. 0.0. performed the
initial proof-of-concept study and software development. K.J.B. developed the algorithm for
data compression during feature extraction. G.C.B. designed the project and served in an ad-
visory role. All authors contributed ideas to the project. Competing interests: U.S. Patent
Pending 14/704387 (“Efficient similarity search of seismic waveforms”) filed on 5 May 2015.
The patent, filed by the Office of Technology Licensing at Stanford University, belongs to the
four authors (CE.Y., 0.0, KJ.B, and G.C.B.). Data and materials availability: All data needed
to evaluate the conclusions in the paper are present in the paper and/or the Supplementary
Materials. Additional data related to this paper may be requested from the authors and down-
loaded from http://www.ncedc.org.

Submitted 6 August 2015
Accepted 25 October 2015
Published 4 December 2015
10.1126/sciadv.1501057

Citation: C. E. Yoon, O. O'Reilly, K. J. Bergen, G. C. Beroza, Earthquake detection through
computationally efficient similarity search. Sci. Adv. 1, e1501057 (2015).

13 of 13

