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The probabilistic nature of neurotransmitter release in synapses is
believed to be one of the most significant sources of noise in the
central nervous system. We show how p0, the probability of re-
lease per docked vesicle when an action potential arrives, affects
the dynamics of the rate of vesicle release in response to changes
in the rate of arrival of action potentials. Furthermore, we examine
the theoretical capability of a synapse in the estimation of desired
signals using information from the stochastic vesicle release events
under the framework of optimal linear filter theory. We find that a
small p0, such as 0.1, reduces the error in the reconstruction of the
input, or in the reconstruction of the time derivative of the input,
from the time series of vesicle release events. Our results imply that
the probabilistic nature of synaptic vesicle release plays a direct
functional role in synaptic transmission.
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Randomness is present in almost all levels of all nervous sys-
tems, such as in ionic channels of individual neurons, in

synapses between neurons, and in environmental stimuli. The prob-
abilistic nature of the synaptic vesicle release process is believed to
be one of the most significant sources of randomness. Stochastic
vesicle release affects information transfer from a presynaptic
neuron to a postsynaptic neuron, and hence may play not only an
important role in synaptic plasticity (1, 2) but also a significant role
in determining the functionality of certain synapses, a point we will
argue in this article. The functional role of stochastic vesicle release
in synaptic transmission is likely to be more significant in those
synapses in the central nervous system, where the size of the readily
releasable vesicle pool is usually smaller than those in the periphery.
Synaptic vesicle release has only recently been studied in a

probabilistic or information–theoretic manner (3–5). A system-
atic perspective on how stochastic vesicle release affects neural
code processing at synapses is still lacking. On the experimental
front, a comprehensive, quantitative knowledge about the nature
of vesicle docking, priming, fusing, undocking, replenishing, and
recycling is far from complete, and hence a biophysically detailed
model of the entire vesicle release process is not yet possible.
Despite current limited understanding of the synaptic vesicle

release process, a probabilistic model that captures the essential
elements of that process can still be built to study the effect of various
sources of randomness on synaptic transmission. Rosenbaum et al.
(3) recently constructed such a model to study how variability in
vesicle dynamics affects information transfer from one neuron to
another. They found that the depletion of docked vesicles at higher
rates of arrival of action potentials makes the synapse act as a high-
pass filter from a signal processing point of view. Motivated by
Rosenbaum et al.’s (3) model of the presynaptic vesicle release
process, we here build a probabilistic model that includes four
stochastic subprocesses involved in synaptic vesicle release: the
stochastic process that generates the presynaptic spike density SðtÞ,
the randomness of the interspike intervals in the presynaptic spike
train, the randomness in vesicle docking, and the probabilistic
nature of vesicle release. Based on this presynaptic model, we
use optimal linear filter theory to determine the best possible
linear response of the postsynaptic neuron to each vesicle release

event with the aim of reconstructing desired signals derived
from SðtÞ. This optimization approach contrasts with that of
Manwani and Koch (4), in which biophysical details are used to
formulate a model of the postsynaptic response. Instead, we ask
what the best response is given the goal to reconstruct some as-
pect of the input signal SðtÞ. For example, if the function of this
synapse is to simply relay and preserve the original presynaptic
signal SðtÞ, then our model answers the question of how various
sources of randomness in the vesicle release process affect the
theoretical capability of the synapse in the reconstruction of SðtÞ.
As another example, if this synapse serves as an edge detector,
then our model can be used to study how various sources of
randomness in the vesicle release process affect the reconstruction
of the derivative of SðtÞ. In both cases we find that a smaller prob-
ability of release per docked vesicle, such as 0.1, is preferable to a
larger probability of release, such as 0.5 or 1.
More generally, we provide a systematic framework, based on

a cascade of stochastic models of the presynaptic vesicle docking
and release processes coupled with optimal linear filter theory,
to address how various sources of randomness in synaptic
vesicle release affect synaptic transmission between two neu-
rons. We believe that our model framework can be further ex-
tended or modified to incorporate biophysical details of the
synaptic vesicle release process, or by changing the objective
function used in the optimal filter theory, to study various issues
in synaptic transmission.

The Presynaptic Model of Synaptic Vesicle Release
We first build a model of stochastic vesicle release in the pre-
synaptic neuron.
A key assumption of our model is that we allow for an unlimited

number of docking sites. Let vesicle docking occur by a homoge-
neous Poisson process with mean rate α0, so that α0 is the prob-
ability per unit time that the number of docked vesicles increases
by one. Note that α0 is the rate at which the total number of
docked vesicles in the entire synapse increases in the absence of
vesicle release. In fact, if a given neuron makes multiple synapses
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onto a given postsynaptic neuron, then, under the assumption of
our model, these synapses may be regarded as one large model
synapse with a parameter α0 that is the sum of the individual α0’s.
Let presynaptic action potentials occur by a stochastic process

with mean rate sðtÞ> 0, so that sðtÞ is the probability per unit time
of the occurrence of action potentials in the presynaptic neuron
[i.e., sðtÞ is the presynaptic spike density]. Of course, the rate sðtÞ does
not fully characterize the statistics of the spike train. We consider
some particular cases later. Denote the time of the kth presynaptic
action potential by Tk, k= 1,2, . . . Later, we shall regard sðtÞ as a
sample of a stochastic process SðtÞ, but when we write lowercase
sðtÞ, we are conditioning on SðtÞ= sðtÞ, for all t. The vesicle docking
process and the process that generates action potentials are in-
dependent of each other, regardless of whether we condition on S;
this is a consequence of the assumption of an unlimited number of
docking sites. Otherwise, vesicle release by action potentials would
increase the rate of docking by making more sites available.
When an action potential occurs in the presynaptic neuron, each

vesicle that is docked has a probability p0 of being released, this
choice being made independently for all of the vesicles that hap-
pen to be docked at that moment. Note that p0 is not the same as
pr, which is commonly used to refer to the probability of vesicle
release for the entire synapse (6). In fact, pr is the probability that
at least one vesicle is released when an action potential occurs,
whereas p0 is the probability of release per docked vesicle when an
action potential occurs. Hence, pr = 1− ð1− p0Þn, where n is the
number of docked vesicles when the action potential occurs.

The Expected Rate of Synaptic Vesicle Release
Using the above model of the presynaptic vesicle docking and
release processes, we first study how p0, the probability of release
per docked vesicle when an action potential occurs, affects the
expected rate of synaptic vesicle release. In this section only, we
assume that the presynaptic action potentials occur by an in-
homogeneous Poisson process with a given mean rate sðtÞ.
Let V ðtÞ be the expected number of vesicles that dock during

ðt0, tÞ, and let RðtÞ be the expected number of vesicles that are
released during ðt0, tÞ. Then V ðtÞ−RðtÞ is the expected number of
vesicles that are docked at time t, and the expected rate of vesicle
release (dR=dt) satisfies the differential equation

dR
dt

= p0sðtÞ
�
V ðtÞ−RðtÞ�, Rðt0Þ= 0. [1]

On the right-hand side of Eq. 1, the product of ðV ðtÞ−RðtÞÞ and
p0 gives the expected number of vesicles released when a single
action potential arrives in the presynaptic neuron at time t. Fur-
ther multiplying this product by the spike density sðtÞ gives us the
expected rate of vesicle release, dR=dt, at time t.
If we differentiate Eq. 1 with respect to time on both sides and

make use of dV=dt= α0, we get

d2R
dt2

= p0
ds
dt

�
V −R

�
+ p0s

�
α0 − dR

dt

�
,

=
1
s
ds
dt

dR
dt

+ p0s
�
α0 − dR

dt

�
.

[2]

Let r= dR=dt, then Eq. 2 becomes

dr
dt

=
r
s
ds
dt

+ p0sðα0 − rÞ. [3]

Dividing both sides by sðtÞ [recall that sðtÞ> 0] and rearranging
the terms, we see that Eq. 3 can be written simply as

d
dt

�r
s

�
= p0ðα0 − rÞ. [4]

Although the above derivation is informal, Eq. 4 is rigorously
correct given our assumptions, including the assumption of a
Poisson spike train; it can be derived, for example, from the
master equation for the process by taking first moments to get
expected values.
To our knowledge, Eq. 4 is new. In its linearized form, however,

it is closely related to the theory of Rosenbaum et al. (3). Eq. 4
shows that during any time interval in which the spike density sðtÞ
is constant, the expected rate of vesicle release rðtÞ approaches the
mean rate of vesicle docking α0. However, if sðtÞ jumps, Eq. 4
shows that the variable r=s must be continuous, so rðtÞ also jumps
proportionally, which shows that the stochastic vesicle release
process provides a synaptic mechanism through which the Weber–
Fechner principle (7) in the sensory system can be realized.
Plotted in Fig. 1 are the probability per unit time of an action

potential in the presynaptic neuron [blue curve, also referred to as
the presynaptic spike density sðtÞ] and the corresponding expected
rate of vesicle release [red curve, rðtÞ] under three values of p0: 1,
0.5, and 0.1. For all three cases, the expected rate of vesicle re-
lease exponentially approaches the vesicle docking rate α0 when
the presynaptic spike density sðtÞ remains constant. The rate
constant for the approach to the steady level α0 is sðtÞ p0. In par-
ticular, the rate constant is larger during the transient following
the upward jump in sðtÞ and smaller during the transient following
the downward jump. When p0 is large, the rate of vesicle release
converges rapidly back to α0 whenever there is a jump in sðtÞ. In
the extreme case, when p0 = 1, the time constant of the expo-
nential approach is equal to the mean interspike interval after the
jump in rate, and this means in practice that the transient is too
fast to be detected by the postsynaptic neuron in the presence of
noise. In contrast, when p0 is small, it takes longer for the rate of
vesicle release to get close to α0, and this makes it easier for the
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Fig. 1. Effect of probability of release per docked vesicle (p0) on the
expected rate of vesicle release (r) for a spike train generated by an in-
homogeneous Poisson process with mean rate sðtÞ. Results for p0= 1, 0.5, and
0.1 are plotted in Top, Middle, and Bottom, respectively. sðtÞ is plotted in
blue, and rðtÞ is plotted in red. Parameters used: sðtÞ= 10  s−1 for 0≤ t < 2  s
and 4  s< t ≤ 6  s, sðtÞ= 20  s−1 for 2  s≤ t ≤ 4  s; α0 = 1  s−1.
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transient to be detected. An example of this phenomenon can be
seen in Fig. 2. Note in particular that the unfiltered output in the
case of p0 = 1 shows essentially no semblance of the original signal,
and that hints of the original signal begin to appear in the un-
filtered output as p0 is reduced.
Note that in our model, any steady level sðtÞ= constant leads

eventually to the same vesicle release rate α0; this is because, in
any steady state, the rate of vesicle release must equal the rate of
vesicle docking. This result is a general feature of our model, and
is not dependent on the Poisson assumption used in this section; it
is a consequence, however, of our assumption that there is an
unlimited number of docking sites available. The functional sig-
nificance of this feature of our model is that the model synapse
is completely insensitive to the steady level of stimulation and
communicates only transient changes in the level of stimulation to
the postsynaptic neuron. A similar but less extreme insensitivity to
low-frequency signals would occur if we assumed a limited number of
docking sites (SI Materials and Methods) (3).

Synapse as an Optimal Filter
So far we have only discussed the effect of randomness on the
expected rate of vesicle release. In this section, we address the

theoretical capability of a postsynaptic neuron in using the time
series of vesicle release events to estimate the instantaneous rate
of action potentials in the presynaptic spike train SðtÞ, or the time
derivative of SðtÞ; the ability of the synapse to do so involves not
only the expected rate of vesicle release but also the noise in the
vesicle docking and release processes and the noise in the sto-
chastic processes for generating the presynaptic spike density
and the spike train.
We consider the optimal filtering of the rate of synaptic vesicle

release dR=dt, where RðtÞ is the number of vesicles that have been
released during ðt0, tÞ. From here on, we regard the presynaptic
spike density sðtÞ as a realization of a stochastic process SðtÞ. Note
that RðtÞ is a continuous-time, nondecreasing, integer-valued time
series determined by the entire stochastic vesicle release process
that includes four sequential subprocesses: the randomness in the
presynaptic spike density SðtÞ, the randomness of interspike in-
tervals in the presynaptic spike train, the randomness in vesicle
docking, and the probabilistic release of docked vesicles when an
action potential arrives in the presynaptic neuron.
Let xð · Þ and yð · Þ describe filters that are applied to dR=dt and

SðtÞ, respectively. The outputs of these filters are

f ðtÞ=
Z∞
t0

xðt− t′Þ dR
dt

ðt′Þdt′ [5]

and

gðtÞ=
Z∞
t0

yðt− t′ÞSðt′Þdt′. [6]

The filtered output f ðtÞ is the actual output signal produced by
the postsynaptic neuron, whereas gðtÞ is the desired output signal
that we prescribe. f ðtÞ can be thought of as the postsynaptic
membrane potential. Note that f is actually a sum, because
dR=dt is a sum of Dirac delta functions at the action potential
times weighted by the numbers of vesicles released at those
times. gðtÞ gives different desired output signals for different
choices of yð · Þ. For example, if yðtÞ is the Dirac delta function
δðtÞ, then gðtÞ gives the presynaptic spike density SðtÞ itself, and if
yðtÞ is the derivative of δðtÞ, then gðtÞ gives the derivative of SðtÞ.
Note also that we do not impose any causality constraint on

the optimal filter xð · Þ; i.e., xðtÞ can take nonzero values for all t
because we are idealizing the postsynaptic neuron as an observer
who can record the vesicle release events and process them at
leisure to reconstruct the desired signal. It is well known in op-
timal filter theory that such an ideal observer can be approxi-
mated by a real observer whose task is to produce the desired
signal after some specified delay. The approximation improves as
the delay increases (8).
The actual postsynaptic neuron, of course, does not have this

luxury. In future work we shall consider the causal case in which
xðtÞ= 0 for t< 0.
The point of view here is that we are given yð · Þ, and we seek

xð · Þ to make f ðtÞ and gðtÞ as close as possible. In defining the
error, however, we ignore the mean values. Thus, we let

eðtÞ=
Z∞
t0

xðt− t′Þ d
~R
dt

ðt′Þ dt′−
Z∞
t0

yðt− t′Þ~Sðt′Þ dt′, [7]

where ~RðtÞ=RðtÞ−E½RðtÞ� and ~SðtÞ= SðtÞ−E½SðtÞ�, in which E½ · �
means the expectation of the corresponding random variable.
Two remarks are of importance here. First, the optimization

problem is not fully specified until we define the stochastic
processes that generate the presynaptic spike density SðtÞ and

Desired signal: S(t) (presynaptic spike desnity)

Filtered output Unfiltered output

p0 = 1

p0 = 0.1

p0 = 0.5

Fig. 2. Effect of probability of release per docked vesicle (p0) on the syn-
apse’s ability to estimate the presynaptic spike density SðtÞ. In this numerical
experiment, the goal of the synapse is to simply relay and preserve the
presynaptic spike density SðtÞ, plotted in the topmost frame. We repeat this
experiment for p0= 1, 0.5, and 0.1; results are shown in two columns: (Left)
estimation fðtÞ of SðtÞ from Eq. 5 (filtered output), obtained by applying the
optimal filter to the rate of vesicle release dRðtÞ=dt; (Right) instantaneous
rate of vesicle release (unfiltered output), defined (13) by Nk=ðTk − Tk−1Þ,
where Nk is the number of vesicles released at the kth action potential, and
Tk is the time of the occurrence that action potential. Note that the optimal
filter is different for each p0 (see SI Materials and Methods for the shape of
the optimal filter). The design of the optimal filter is based upon the sta-
tistical properties of the ensemble of the presynaptic spike density, the spike
generation, and the vesicle docking and release processes, but not upon
the particular presynaptic spike density SðtÞ used in the experiment. Data
shown are for a time duration of 20 s, with s1 = 10  s−1, s2 = 20  s−1, ν12 = ν21 =
10  s−1, α0 =1,000  s−1. All panels in this figure cover the time interval (65 s, 85 s).
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interspike intervals. The second remark is that we seem to have
a separate optimization problem for each time t at which we
choose to minimize the error. This difficulty will disappear,
however, if we take the limit t0 → −∞ and also assume that SðtÞ is
generated by a stationary stochastic process.
The mean square error E½e2ðtÞ� is minimized when xð · Þ sat-

isfies the following equation (Materials and Methods):

Z∞
−∞

xðt− sÞφRRðsÞds=
Z∞
−∞

yðt− sÞφRSðsÞds, [8]

in which

φRR

�
t″− t′

�
= lim

t0→−∞
E

"
d~R
dt

ðt′Þ d
~R
dt

�
t″
�#

, [9]

φRS

�
t″− t′

�
= lim

t0→−∞
E

"
d~R
dt

ðt′Þ~S�t″�
#
. [10]

Taking Fourier transforms on both sides of Eq. 8, we get

x̂= ŷ
φ̂RS

φ̂RR
, [11]

in which x̂, ŷ, φ̂RR, φ̂RS are the Fourier transforms of their respec-
tive original variables, φ̂RR is known as the auto power spectral
density of d~R=dt, and φ̂RS is known as the cross-power spectral
density of d~R=dt and ~S.
Therefore, to find the optimal filter xð · Þ, we need to evaluate

the expressions on the right-hand sides of Eqs. 9 and 10; this can
be done semianalytically for some specific choices of the sto-
chastic processes for vesicle docking and release by first finding
the right-hand sides of Eqs. 9 and 10 conditioned on SðtÞ and
then taking a numerical average over a sufficiently large number
of samples of SðtÞ. The optimal filter can also be obtained en-
tirely numerically by simulating the stochastic vesicle release
process for a sufficiently large number of samples of SðtÞ.
Once we obtain the optimal filter xð · Þ for the synapse, we can

evaluate the mean square error E½e2ðtÞ� over the ensemble of the
presynaptic spike density SðtÞ. E½e2ðtÞ� measures the accuracy of
the estimation of a desired signal from the rate of vesicle release
events and is a property of the stochastic processes for gener-
ating SðtÞ, interspike intervals, vesicle docking, and vesicle re-
lease. The filtering property of an actual synapse is determined
by various factors, such as the shape of postsynaptic potentials
and the molecular mechanisms of exocytosis of synaptic vesicles (9).
The perspective we adopt here is to provide a theoretical

upper bound on how well the synapse can possibly perform in the
estimation of a desired signal in the mean square sense under
optimal linear filter theory. Using this method, we can address
how various sources of randomness in synaptic vesicle release
affect the fidelity of synaptic transmission.

A Small p0 Enhances Synaptic Transmission
In this section, we show that a small value of p0, the probability of
release per docked vesicle when a presynaptic action potential
occurs, enhances the fidelity of synaptic transmission. Recall that
the determination of the optimal filter is not possible until we
specify the stochastic processes that generate the presynaptic
spike density SðtÞ and interspike intervals.
We assume that the presynaptic spike density SðtÞ is generated

by a dichotomous jump process, i.e., a process with two discrete
levels: s1 and s2 with 0< s1 < s2. Let Sðt0Þ= s1, and we define ν12 to
be the probability per unit time that SðtÞ jumps up from s1 to s2,

and ν21 to be the probability per unit time that SðtÞ jumps down
from s2 to s1.
We assume that the presynaptic spike train fTkg∞k=1, where Tk

is the time of the kth action potential, is generated using the
following two steps: first, generate a provisional spike train
f~Tkg∞k=1 such that the interspike interval is chosen from a pre-
scribed distribution and has a mean of one unit of time, i.e.,
let ~Tk = ~Tk−1 +Dk, where T0 = t0 and the Dk are independent,
identically distributed random variables with mean μ= 1. Second,
rescale the time variable by SðtÞdt= dt′, where t′ is the old time
variable in the provisional spike train and t is the new (physical)
time variable. Then our desired spike train fTkg with a time-
dependent spike density SðtÞ, under the new time variable t, is
given by

ZTk

t0

SðtÞdt= ~Tk, k= 1,2, . . . [12]

This rescale of time variable accelerates time when the spike
density is high and decelerates time when the spike density is
low so that under the new time variable the neuron has an
instantaneous spike density SðtÞ. This way of generating synaptic
spike times from the spike density is also known as the “faithful
copy” property introduced by Knight (10) and analyzed by Siro-
vich (11) (see also ref. 12). Experimental evidence of neurons
that follow the faithful copy property is also presented in ref. 11.
A faithful copy neuron allows the user to generate a spike train
with expected spike rate equal to SðtÞ, independent of the user’s
choice of the shape of the interspike interval distribution. In the
examples used in this section, we assume that the interspike
intervals in the provisional spike train are normally distributed,
i.e., we choose Dk ∼Nðμ, σÞ, where Nðμ, σÞ is the normal distri-
bution with mean μ= 1 and SD σ = 0.01, such that the intervals
Dk always happen to be positive numbers. A spike train gener-
ated by an inhomogeneous Poisson process with mean rate SðtÞ is
another special case of the output of a faithful copy neuron, but
such a spike train is too irregular for the performance of the
optimal filter to be satisfactory, especially if the goal is to esti-
mate the derivative of SðtÞ.
We simulate numerically the stochastic synaptic vesicle release

process defined above at different values of p0. A direct simu-
lation of the vesicle docking and release processes can be com-
putationally prohibitive because one needs to keep track of the
status of each individual vesicle. Instead, we simulate the vesicle
docking and release events using an efficient method relying on
our theory that the number of vesicles released at each action
potential conditioned on the spike times is independent and
Poisson distributed (Materials and Methods). For each p0, we
calculate the optimal estimations of two different desired sig-
nals: the presynaptic spike density SðtÞ and the damped deriva-
tive (defined below) of SðtÞ. Results are shown in Figs. 2 and 3,
respectively.
The filtered outputs in Fig. 2 clearly show the gradual im-

provement of the estimation of the presynaptic spike density SðtÞ as
p0 is lowered. Note that the square bumps are already present at
p0 = 0.5; such bumps are not easy to discern at p0 = 1. In Fig. 3, a
good estimation of the damped derivative of the presynaptic spike
density also emerges at p0 = 0.5. Note that because SðtÞ is discon-
tinuous at the jump times, we have defined the damped derivative
of SðtÞ by removing frequency components higher than the mean
frequency of jump events in SðtÞ, which is 1 Hz in these examples,
so that the damped derivative of SðtÞ is bounded and continuous.
Fig. 4 plots the mean square error E½e2ðtÞ� as a function of p0 in

the estimation of SðtÞ (blue solid curve) and in the estimation of
the damped derivative of SðtÞ (red dashed curve). As p0 ap-
proaches 0 (but not reaching 0), E½e2ðtÞ�monotonically decreases
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for both cases. A smaller value of E½e2ðtÞ� indicates a more ac-
curate estimation of the desired signal.
The perspective adopted in this paper is that we do not pre-

sume the biophysical details of a synapse’s postsynaptic response
to the presynaptic vesicle release events, but instead we use op-
timal linear filter theory to address the ability of our idealized
postsynaptic neuron to estimate a desired signal derived from the
presynaptic rate of arrival of action potentials as a function of
time, given that we know the statistical properties of the ensemble
from which the presynaptic rate of arrival of action potentials as a
function of time has been drawn. We have shown in this paper
how the optimal filter is calculated, and that a lower probability of
release per docked vesicle upon arrival of a presynaptic spike
leads to a more accurate estimation of two kinds of desired sig-
nals; we believe that this result goes a long way to explain why
synaptic vesicle release is a random process.

Materials and Methods
Derivation of the Optimal Linear Filter. Our goal is to find an optimal linear
filter xð · Þ that minimizes the mean square error

E
�
e2ðtÞ	= Z

∞

t0

Z∞
t0

xðt − t′Þ  x�t − t″
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If xð · Þminimizes E½e2ðtÞ�, then for arbitrary δxð · Þwe have, to first order in δxð · Þ,
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Because δxð · Þ is arbitrary, we must have

Z∞
t0

x
�
t − t″

�
E

"
d~R
dt

ðt′Þd
~R

dt

�
t″
�#

dt″=
Z∞
t0

y
�
t − t″

�
E

"
d~R
dt

ðt′Þ~S�t″�
#
dt″. [15]

Note that δxð · Þ here is a perturbation to xð · Þ, not to be confused with the
Dirac delta function δðtÞ used previously.

Now take the limit t0 → −∞, and make the assumption that there exists
functions φRR and φRS, each of one variable, such that
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Then Eq. 15 becomes
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It is easy to check that Eq. 18 holds for all ðt, t′Þ if and only if it holds for t′= 0.
Thus, E½e2ðtÞ� is minimized when xð · Þ satisfies Eq. 8.

Simulation of the Vesicle Docking and Release Processes. Under the assumption
that vesicle docking occurs by a homogeneous Poisson process, we show that
Nk, the number of vesicles that are released at the kth action potential, are
independent and Poisson distributed, conditioned on the presynaptic spike
times fTkg∞k=1. This fact allows us to simulate the vesicle release events in an
efficient manner without the need to directly simulate the docking and release
process by tracking the status of each individual vesicle.

To see this fact, let us first define Rjk (j≤ k) to be the number of vesicles
released at the kth action potential that docked during the time interval
ðTj−1, TjÞ. Recall that Tj is the time of the jth action potential, presumed to be
given. Then Nk =

Pk
j=1Rjk.

The process that generates the numbers Rjk for a fixed j can be described as
follows: first, choose D from Poisson distribution with mean μ= α0   ðTj − Tj−1Þ.
Second, let each of the D vesicles independently undergo a branching process
such that each unreleased vesicle has a probability of p0 to be released
whenever an action potential occurs. For each individual vesicle, suppose there
are K possible outcomes; there are K −1 action potentials under consideration
and the K possible outcomes are release on any one of those, and nonrelease.

S(t) (presynaptic spike density)

Desired output: damped derivative of S(t)

Filtered output Unfiltered output

p0 = 0.1

p0 = 0.5

p0 = 1

Fig. 3. Effect of probability of release per docked vesicle (p0) on the synapse’s
ability to estimate the damped derivative of the presynaptic spike density, plotted
in the second frame. Layout of panels and parameter values are as in Fig. 2.
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Fig. 4. Effect of probability of release per docked vesicle (p0) on the mean
square error [E½e2ðtÞ�] in the estimation of the presynaptic spike density SðtÞ
and its damped derivative. The units of E½e2ðtÞ� are s−2 in the case of esti-
mation of SðtÞ and s−4 in the case of estimation of the damped derivative of
SðtÞ. E½e2ðtÞ� is obtained numerically by simulating the stochastic vesicle re-
lease process for 2,500 independent sample paths, each of which lasts 100 s.
Parameter values are as in Fig. 2.
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Let pk be the probability of the kth outcome, and Mk be the number of in-
dividual vesicles that are released on the kth action potential (k= 1,2, . . . ,K − 1),
or not released (outcome K). Then,
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k=1pk =1 and
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Noting that

μm = μm1μm2 . . . μmK , [20]

e−μ = e−μðp1+p2+...+pK Þ = e−μp1e−μp2 . . . e−μpK , [21]

we have
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where PrðMk =mkÞ= ðμpkÞmk

mk !

e−μpk ; this shows that Mk is Poisson distrib-

uted with mean μpk, and that M1,M2, . . . ,MK are independent random

variables. Therefore, for each j, fRjkg∞k=j are independent and Poisson dis-
tributed with

E
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Note that the random variables Rjk are also independent for different j,
because different j refers to different cohort of vesicles, and both docking
and release are independent for different vesicles. Because the sum of in-
dependent, Poisson-distributed random variables is a Poisson-distributed
random variable with its mean equal to the sum of the means of the original
Poisson-distributed random variables, we conclude that fNkg∞k=1 are independent
and Poisson distributed. Also,

E½Nk �=
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E
�
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Hence, given the presynaptic spike times fTkg∞k=1, the number of vesicles
released at the kth action potential can be simulated in an efficient manner
by drawing a number from Poisson distribution with its mean defined by the
above Eq. 24.
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