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microRNAs (miRNAs) can act as oncosuppressors or oncogenes,
induce chemoresistance or chemosensitivity, and are major post-
transcriptional gene regulators. Anaplastic lymphoma kinase (ALK),
EGF receptor (EGFR), and V-Ki-ras2 Kirsten rat sarcoma viral onco-
gene homolog (KRAS) are major drivers of non-small cell lung
cancer (NSCLC). The aim of this study was to assess the miRNA
profiles of NSCLCs driven by translocated ALK, mutant EGFR, or
mutant KRAS to find driver-specific diagnostic and prognostic
miRNA signatures. A total of 85 formalin-fixed, paraffin-embed-
ded samples were considered: 67 primary NSCLCs and 18 matched
normal lung tissues. Of the 67 primary NSCLCs, 17 were echino-
derm microtubule-associated protein-like 4–ALK translocated
(ALK+) lung cancers; the remaining 50 were not (ALK−). Of the
50 ALK− primary NSCLCs, 24 were EGFR and KRAS mutation-neg-
ative (i.e., WT; triple negative); 11 were mutant EGFR (EGFR+), and
15 were mutant KRAS (KRAS+). We developed a diagnostic classi-
fier that shows how miR-1253, miR-504, and miR-26a-5p expres-
sion levels can classify NSCLCs as ALK-translocated, mutant EGFR,
or mutant KRAS versus mutation-free. We also generated a prog-
nostic classifier based on miR-769-5p and Let-7d-5p expression
levels that can predict overall survival. This classifier showed bet-
ter performance than the commonly used classifiers based on mu-
tational status. Although it has several limitations, this study
shows that miRNA signatures and classifiers have great potential
as powerful, cost-effective next-generation tools to improve and
complement current genetic tests. Further studies of these miRNAs
can help define their roles in NSCLC biology and in identifying
best-performing chemotherapy regimens.
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Non-small cell lung carcinoma (NSCLC) includes adenocar-
cinomas and squamous cell carcinomas (1), which mainly

are treated surgically, although chemotherapy is used both pre-
operatively (neoadjuvant chemotherapy) and postoperatively
(adjuvant chemotherapy), with or without radiotherapy (2, 3).
The best-characterized oncogenes that drive NSCLC are anaplastic
lymphoma kinase (ALK), EGF receptor (EGFR), the V-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog (KRAS), the proto-
oncogene receptor tyrosine kinase MET, and the recently iden-
tified receptor tyrosine kinase of the insulin receptor family
ROS1. Knowledge of their mutational status is of key importance
in choosing the most efficient chemotherapy regimen (4).
Recent clinical trials have shown that patients presenting with

NSCLCs driven by EGFR and ALK gene rearrangements benefit
from chemotherapies based on specific tyrosine kinase inhibitors
(TKIs), such as EGFR-TKI and crizotinib, respectively. Despite
the wide number of recently developed drugs, none targets mutant
KRAS, although the inhibition of the downstream signaling
component Ras-Raf-Erk seems to be a possible approach (2, 5).

microRNAs (miRNAs) are small, noncoding RNAs that are
deregulated in malignancies (5) and can act as oncogenes or
oncosuppressors (6); their deregulation also can induce chemo-
resistance or chemosensitivity in cancer cells (7, 8). Our group
reported several tissue- and tumor-specific miRNA profiles and
showed that different miRNA signatures can distinguish “hid-
den” subgroups within a single study class. Here we report the
specific miRNA profiles of NSCLCs presenting with three well-
studied driver mutations—ALK, EGFR, and KRAS—and the
newly developed prognostic and diagnostic classifiers based on
miRNA expression.
Numerous recent scientific reports show that the use of miRNAs

as biomarkers has great potential because of their stability in
tissues and bloodstream and also because their detection is rel-
atively easy and can be performed by most laboratories, without
particular expertise.
miRNA detection is feasible and cost-effective and thus rep-

resents an excellent diagnostic–prognostic tool to support more
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established techniques (9). Generating miRNA signatures and
classifiers can point basic researchers towards targets for
investigations that can maximize the usefulness of informa-
tion concerning diagnostic and chemotherapeutic outcomes in
NSCLC patients.

Results
ALK-, EGFR-, KRAS-Driven NSCLCs Have Different miRNA Profiles. The
major aims of this project were to define the miRNA expression
profiles of NSCLCs driven by three different oncogenes and to
find predictors of mutational status and treatment outcome. The
starting study cohort consisted of 85 RNAs extracted from for-
malin-fixed, paraffin-embedded (FFPE) samples: 67 primary
NSCLC-derived RNAs from patients with a median age of 63 y
and 18 lung tissues from healthy counterparts. Full demographic
characteristics of the patient cohort are presented in Table 1 and
in Table S1. Each of the 67 lung cancers was driven by trans-
location of ALK (ALK+), by mutant EGFR (EGFR+), or by mu-
tant KRAS (KRAS+); 17 were echinoderm microtubule-associated
protein-like 4 (EML4)-ALK translocated lung cancers (ALK+); the
remaining 50 were not (i.e., ALK−). Within the ALK− subcohort,
24 were EGFR− and KRAS− (i.e., WT, also referred to as “triple
negative”); 11 were EGFR+, and 15 were KRAS+. Further mo-
lecular characteristics of these subsets are presented in Table S2.
All 85 samples passed the quality control and were run on
the Human v2 miRNA Expression Assay from the NanoString
nCounter system.

Hierarchical clustering represented in the heat map in Fig.
1A shows 397 miRNAs differentially expressed in the whole set
of 67 samples. These data show that miRNA expression profiles
cluster separately into normal, EML4-ALK translocated (ALK+),
and ALK− subgroups; furthermore within the ALK− group, the
three subclasses WT, mutant EGFR (EGFR+), and mutant
KRAS (KRAS+) also cluster differently. A full list of deregulated
miRNAs associated with each heatmap and comparison is given
in Dataset S1.
The Venn diagram shown in Fig. 1B clearly emphasizes the

specificity of the deregulated miRNAs associated with each
driver-mutation cancer subgroup: only two miRNAs are com-
monly deregulated in all three comparisons (center of the dia-
gram), miR-570-3p and miR-376-3p. The high number of
uniquely dysregulated miRNAs present in the ALK+ vs. mutant
EGFR (n = 81) and ALK+ vs. mutant KRAS (n = 29) compari-
sons (blue and yellow sections, respectively) further underline
the uniqueness of the ALK-driven miRNA profile. The com-
parison of mutant EGFR vs. mutant KRAS is distinguished by
only eight miRNAs, making these two classes much more ho-
mogeneous than the ALK+ class (see Dataset S2 for a full list of
the miRNAs in the different sections of the Venn diagram).
Fig. 1C shows differential clustering of 117 miRNAs in ALK+

(n = 17) vs. ALK− (n = 50) tumors. Further analysis of clustering
by mutational status between these datasets is presented in Fig. 1
D–F. The comparison between the ALK+ and EGFR+ samples
shows that 196 miRNAs are differentially expressed in the two
groups (Fig. 1D). The heat map in Fig. 1E was generated by the
clustering of 106 miRNAs from ALK+ and KRAS+ tumors. A
relatively small pool of 78 miRNAs clearly divides mutant
EGFR- and mutant KRAS-driven lung cancer, as shown in the
heat map in Fig. 1F. In conclusion, this analysis shows that
miRNA profiling can be a powerful predictor of mutational
status in NSCLC. ALK+ cancers have an miRNA profile distinct
from that of tumors driven by the other oncogenes and also
appear to be a very heterogeneous group, judging by the large
number of miRNAs differentially dysregulated in the ALK-driven
cancers. This observation suggests that miRNA-definable sub-
classes within the ALK subgroup might be an interesting future
challenge requiring a larger cohort of ALK-driven NSCLCs.

Diagnostic Classifier.Aiming to identify a lung miRNA expression
signature predictive of ALK, EGFR, and KRAS mutational sta-
tus, we used the Conditional Inference classification Trees
(CTree) implemented in the Bioconductor package party (10);
the prediction accuracy of the classification algorithm was esti-
mated using 10-fold cross-validation (11).
We identified a signature comprising three miRNAs: miR-

1253, miR-504, and miR-26a-5p. This classifier based on miRNA
expression levels can distinguish mutation-free (WT) NSCLCs from
translocated ALK-, mutant EGFR-, or mutant KRAS-driven
NSCLCs with an accuracy of 0.79 [95% confidence interval (CI)
0.67–0.88] and a multiclass area under the curve (AUC) of 0.692.
The highest performances are reached in the classification of the
three main cancer drivers as shown by the CTree in Fig. 2A. The
histograms represent the driver-specific positive prediction rates
of the model: 87.5%, 87.5%, 66.7%, and 100% of the observa-
tions in that node are classified as ALK+, mutant EGFR, WT,
or mutant KRAS, respectively (also see the confusion matrix in
Dataset S3A). The predictor’s performance in the 10-fold cross-
validation is summarized in Dataset S3B.
Fig. 2B shows the Kaplan–Meier plot of overall survival (OS)

considering only the oncogenic driving alterations as stratifica-
tion criteria, the Concordance Probability Estimate (CPE) is 0.69
(95% CI 0.68–0.70), and the Akaike’s Information Criteria
(AIC) is 88.75. The stratification represented in Fig. 2B is well
known to clinicians who see daily that mutant EGFR and ALK+

cancer patients have a better response to chemotherapy (mostly

Table 1. Demographic characteristics of the NSCLC study group
(n = 67 patients)

Patient characteristics No. of patients % of total

Median age in years (range) 63.5 (33–79)
M/F 37/30 55.2/44.8
TNM stage
I 13 19.4
IIA-B 18 26.9
IIIA-B 35 52.2
IV 1 1.5

Histology
Adenocarcinoma 60 89.5
Adenosquamous 1 1.5
Squamous 4 6.0
Other* 2 3.0

Grading
1/2/3 2/37/28 3.0/55.2/41.8

Adjuvant therapy
Yes 24 35.8
No 43 64.2

Type of adjuvant therapy
Chemotherapy alone 12 50.0
Radiotherapy alone 6 25.0
Chemo- and radiotherapy 6 25.0

Biological characteristics
EGFR WT† 24 35.8
EGFR mutated 11 16.4
Exon 19 10 90.9
Exon 21 1 9.1
KRAS mutated‡ 15 22.4
ALK+§ 17 25.4

Overall survival in months (range) 34.4 (3.2–60.8)

No data are available on smoking status. TNM, tumor/node/metastasis.
*Other histology included patients with clear cell carcinoma.
†EGFR WT included patients with EGFR WT and KRAS WT and ALK− (also
called “triple negative”) NSCLC.
‡Codon 12 exclusively.
§Defined by break-apart FISH assay.
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using pemetrexed and the TKI crizotinib, respectively) than do
patients presenting with mutant KRAS cancers, for which, at
present, there are no targeted drugs.

Prognostic Classifier. We then applied the same CTree method to
identify an miRNA expression signature predictive of outcome
and evaluated its potential.
The CTree in Fig. 2C shows the prognostic signature consisting

of two miRNAs, miR-769-5p and let7d-5p, whose expression was
significantly correlated with survival (Fig. 2D). miR-769-5p alone,
when its expression is ≥2.825, distinguishes samples belonging to
the prognostic category group A with best survival probability. To
distinguish the prognostic category group B, with a medium sur-
vival rate, from group C, with a low survival rate, the expression
level of miR-769-5p must be <2.825, and that of let-7d-5p must be
<9.495 and ≥9.495. The Kaplan–Meier curves in Fig. 2D show
statistically different OS for the three groups (Mantel–Cox test, P <
0.0001). The Cox model built using this classification has a CPE
equal to 0.82 (95% CI 0.76–0.88), suggesting that our miRNA pre-
dictor has better discriminatory power than the mutational status-
based predictor represented in Fig. 2B. Notably, 35% of patients were
classified as high risk (group C), and the 2-y Kaplan–Meier estimates

of OS using two miRNAs as classifiers of prognostic and mu-
tational status differed substantially in this group (23% vs. 40%,
respectively) as well as in the low-risk group A (100% vs. 90%).
The absolute difference in OS between the low- and high-risk

groups was 77% with the two-miRNAs signature stratification
compared with 41% with mutational stratification. The AUC
ranged from 0.79 to 0.91 across time for the prognostic classifier
based on two miRNAs and from 0.61–0.71 across time for the
mutational status model (red and green lines, respectively, in Fig.
S1). The higher AUC of the prognostic model based on two
miRNAs suggests its better performance. Similar conclusions
were reached using the global model fit criterion (AIC) and
discrimination measure (CPE), with the prognostic classifier
based on two miRNAs achieving a better global model fit, lower
AIC (68.02 vs. 88.75), and higher CPE in discrimination (0.82 vs.
0.69) for this population. Both the AIC and CPE show that the
prognostic classifier based on two miRNAs achieved the best fit
and discrimination for this population (Dataset S3C).

Validation
This study has two major limitations: the difficulty of collecting
an external validation cohort and the impossibility of performing

Fig. 1. Identification of miRNAs differentially expressed in different driver mutations. The heat maps represent relative miRNA expression as indicated in the
green-to-red key bar at the top. Samples are shown in columns; miRNAs are shown in rows. Color-coded bars above the dendrograms identify the different
study subgroups. (A) Heat map showing miRNA profiling of the whole cohort (n = 85) and their different clustering. (B) Venn diagram showing miRNAs
commonly and specifically deregulated in drivers. (C) Heat map showing the miRNAs differentially deregulated in ALK+ and ALK− samples. (D) Heat map
showing the miRNAs differentially deregulated in ALK+ and mutant EGFR samples. (E) Heat map showing the miRNAs differentially deregulated in ALK+ and
mutant KRAS samples. (F) Heat map showing the miRNAs differentially deregulated in mutant EGFR and mutant KRAS samples.
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a full in silico validation because of the absence of publicly
available data of NSCLCs with proved mutational status
profiled for miRNAs.
The Cancer Genome Atlas (TCGA) has incomplete information

on both mutational status and miRNA profiling of NSCLCs [lung
adenocarcinoma (LUAD) dataset] (12), which we summarize in
Dataset S4, Tab1.
TCGA has only three ALK-translocated, 28 mutant EGFR, and

66 mutant KRAS samples profiled for miRNAs (Dataset S4, Tab2);
these numbers represent a relatively small validation dataset for
our signatures. Further analysis of the TCGA miRNA profile
showed that miR-1253 expression levels are absent in these sample
subsets (Dataset S4, Tab3), probably because they were excluded
by the TCGA analysis cut off. The absence of hsa-mir-1253 TCGA
expression data precludes the prognostic validation of the classifier
we generated, because this miRNA represents its first decisional
node. The value of the miRNA signatures is based on the pool of
miRNAs taken together; considered singly, they might not be sig-
nificant enough to be selected as a feature in the predictor. With
these limitations in mind, we proceeded with various feasible in
silico validation approaches.

Diagnostic Validation. We ran the diagnostic classifier (without
miR-1253 and the corresponding discrimination for ALK+ sam-
ples) on 105 TCGA samples with unknown mutation status
profiled for miRNA (Dataset S4, Tab4). The diagnostic miRNA

signature classified the cohort as 65% WT, 15% mutant KRAS,
and 20% mutant EGFR, slightly higher than the percentages in
recent epidemiological studies (40%, 15%, and 10%, respectively)
(Dataset S4, Tab5) (13).
We then validated the miR-504 and miR-26a-5P expression

pattern in the TCGA mutant EGFR and mutant KRAS subsets.
The χ2 test was used to investigate the relationship between di-
chotomized miRNA expression and mutational status in the
TCGA LUAD dataset. The association between miR-504 (but not
miR-26a expression) and mutant EGFR was confirmed: a high
level of miR-504 expression was associated with EGFR mutations
[odds ratio 2.86 (95% CI 1.07–7.71), P = 0.04], although low levels
of miR-26a-5p were not significantly associated with the mutant
KRAS or WT phenotype.

Prognostic Validation. The validation of the prognostic signature
on the TCGA dataset presented some other difficulties because
of the heterogeneity of the two cohorts in terms of OS: in the
TCGA dataset, 20 of 76 patients (26%) died with a median
survival time of 261 mo, whereas in the cohort we collected 13 of
43 patients (30%) died with a median survival of time 1,002 mo.
Furthermore, in the LUAD dataset the only three patients with
ALK-EML4 fusions had a limited follow-up period (141 and
162 mo), and all three were alive at last follow-up.
The miRNA signature predicting outcome was tested on a set

of 89 samples (with unknown mutational status, miRNA profiling,

Fig. 2. Prognostic and diagnostic miRNA signatures. (A) CTree representation of the diagnostic classifier based on three miRNAs that is able to distinguish
the three different drivers and the WT status. (B) Kaplan–Meier plot of OS considering only the oncogenic driving alterations as stratification criteria.
(C) CTree representation of the prognostic signature based on two miRNAs. (D) Kaplan–Meier plot of OS identified by the expression levels of two miRNAs as
shown in C.
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and follow-up; see Dataset S4, Tab4), and the predictor was able
to distinguish a group with worst prognosis (as group C), even
though the trend shown by the curves seems similar to that seen
for groups A and B in Fig. 2D (the difference between group A
and group B is not statistically significant).
In the NSCLC study cohort we used, the univariate Cox pro-

portional hazards regression model correlated 57 miRNAs to the
OS of patients; for each we dichotomized the cohort using the
median miRNA expression as cutoff (all results are presented in
Dataset S5). We then generated Kaplan–Meier survival curves,
finding 14 miRNAs that significantly (log-rank test < 0.05) split
the cohort into high-risk vs. low-risk subpopulations.
We determined whether miRNAs are independent prognostic

factors by performing a multivariate Cox proportional hazards
regression analysis to the OS and mutational status (with mu-
tational status and miRNA expression as covariates). We found
43 miRNAs associated with OS independently of the mutational
status; 10 of those miRNAs improved risk stratification beyond
the information provided by traditional classificator based on
mutational status only.
We then tested the prognostic value of the aforementioned

miRNAs in the TCGA LUAD dataset (Dataset S5). We vali-
dated the prognostic value of six miRNAs in the univariate
model (hsa-miR-1287, hsa-miR-181c-5p, hsa-miR-200a-3p, hsa-
miR-200b-3p, hsa-miR-29c-3p, and hsa-miR-9-5p), but only hsa-
miR-181c-5p identified high-risk and low-risk subpopulations in
both cohorts. In addition, we also validated hsa-miR-141-3p, hsa-
miR-200a-3p, and hsa-miR-200b-3p as independent prognostic
factors and possibly as prognostic biomarkers in NSCLC.

miRNA Expression Validation. Last, considering that we generated
the miRNA profiling starting from FFPE samples, opening the
possibility of applying our classifiers to the large numbers of
archival specimens present in pathology laboratories, we wanted
to validate the miRNA expression data. We aimed to validate
the expression of a pool of miRNAs that are well expressed
across all the subgroups of the dataset by performing real-time
quantitative PCR (TaqMan qRT-PCR assay) on the RNAs used
for profiling. In a subset of samples randomly chosen based on
RNA availability, we tried to validate six miRNAs (hsa-mir-518-5P,
hsa-mir-520-5P, hsa-mir-520h, hsa-mir-548d-3P, hsa-mir-548q, and
hsa-mir-549, plus two normalizers). Five of the six miRNAs pre-
sented an expression level across the subtypes reflecting the one
detected by NanoString technology; box plots representing this
qRT-PCR–based validation are shown in Fig. S2.

Discussion
miRNAs are well-known key players in downstream oncogenic
pathways, behaving as oncogenes or oncosuppressors in many
types of cancer. They also have been clearly identified as mod-
ulators of chemosensitivity and chemoresistance in several
cancer models (7, 8, 14). Their central role in tumorigenesis and
their stable and long-lasting presence in tissues and body fluids
underlie the increased efforts and interest in defining their roles
as possible next-generation biomarkers.
Here we show that the miRNA expression profiles of the co-

hort representing translocated ALK-, mutant EGFR-, and mu-
tant KRAS-driven NSCLCs are clearly different; the expression
clusters of the different cancer groups show that each driver
subgroup is recognizable by a specific miRNA subset. The het-
erogeneity of the miRNA profile in the ALK+ study group also
suggests the possible presence of miRNA-definable subclasses
within this subclass, representing opportunities both for un-
derstanding ALK-driven tumor biology and for new insights for
chemotherapeutic development.
We have generated a three-miRNA classifier based on miR-

1253, miR-504, and miR-26a-5p expression levels that can cat-
egorize samples as ALK+, mutant EGFR, or mutant KRAS.

Because the presence of a targetable driver mutation (EGFR or
ALK) is of key importance in selecting the best targeted treat-
ment (versus chemotherapy), genetic tests are crucial. To per-
form a genetic test to detect these mutations, a team of highly
trained personnel is needed: the procedure is delicate, expensive,
and time consuming, and results must be read by a pathologist. We
believe that the development of fast prescreening tests to improve
and complement current genomic tests is of great interest; miRNAs
detection is easy, affordable, and does not require particular
expertise. For these reasons miRNAs represent diagnostic bio-
markers. Although we are aware that our three-miRNAs predictor
has only 79% accuracy, we believe it can be improved significantly
by testing our signature in other independent study cohorts; un-
fortunately we were unable to collect such cohorts or to find them
available online, mainly, but not only, because of difficulties in
collecting ALK-translocated samples.
Considering the OS of the patients, we built another classifier

based on the expression levels of only two miRNAs: miR-769-5p
and Let-7d-5p. Knowing the expression levels of these two
prognostic miRNAs, we can predict good, medium, or poor
survival. This newly developed miRNA-based prognostic classi-
fier has shown an improved ability to discriminate both high-risk
(with a 2-y OS <50%) and low-risk groups as compared with the
commonly used predictor based on mutational status only. In
conclusion, this classifier could represent a useful tool in clinical
settings for selecting the optimal chemotherapy regimen.
Further studies of these miRNAs should be pursued to define

their roles in these driver-specific cancers, in particular in mu-
tant KRAS-driven NSCLCs that still lack specifically designed
chemotherapies.
In NSCLC, the chromosome inversion inv (2) (p21;p23) gener-

ates the EML4-ALK fusion protein (the N-terminal regions of the
EML4 protein fused with the 3′ end of ALK kinase) and results in
the constitutive activation of this kinase in cancer cells (15–17).
Because of the very limited presence of ALK+mutations in NSCLCs
(4–7%), we were not able to find a validation set for this study.
Ongoing clinical trials recruiting ALK+ patients (i.e., the Alchemist
Lung Cancer Trials; www.cancer.gov/researchandfunding/areas/
clinical-trials/nctn/alchemist) may be valuable sources of samples
in the future, but such samples are not yet available.
Currently, publically accessible data repositories have no NSCLC

miRNA data associated with mutational status in a number that
could allow us any complete in silico validation.
To our knowledge, this research is the first complete miRNA

profiling of three well-known NSCLC-driver mutations; the data
will be freely available for the researchers (Gene Expression Om-
nibus accession no. GSE72526), integrating the patchy NSCLC data
available on TCGA database.
We are aware of the limitations of our study, and we hope that

the publication of this research containing several interesting
findings will encourage high-quality data sharing and the pub-
lishing of reports replicating and validating our data. The pre-
dictors/signatures generated represent a previously unreported,
useful, cost-effective way to complement the gold-standard tech-
niques such as FISH to maximize patient outcome and also pro-
vide an engine to boost research on the role of these miRNAs in
responses to commonly used chemotherapy regimens in NSCLC.

Materials and Methods
Sample Inclusion Criteria. A total of 88 samples were collected. Three samples
(two WT and one translocated ALK) did not pass the RNA quality control and
were eliminated from further analysis. Of the remaining 85 samples, 67
primary NSCLC-derived RNAs and 18 normal counterpart tissues (see Table 1
and Tables S1 and S2) were collected at the Tuscan Tumor Institute (ITT),
Livorno, Italy and University Hospital of Pisa, Pisa, Italy. The investigation
was conducted in accordance with the ethical standards, the Declaration of
Helsinki, and national and international guidelines on research with human
subjects, The Ohio State University IRB protocol no. 2005C0014 (C.M.C.), and
study 94 protocol LIVONCO2013-03 (F.C.). Each of the 67 lung cancers was
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driven by translocated ALK, mutant EGFR, or mutant KRAS; 17 were EML4-
ALK translocated lung cancers (ALK+); the remaining 50 were not (i.e., were
ALK−). Within the ALK− subcohort, 24 were EGFR− and KRAS− (WT; i.e., triple
negative); 11 were mutant EGFR (EGFR+); 15 were mutant KRAS (KRAS+). In
the present study all patients had resectable disease, and all patients un-
derwent surgery with radical intent. Thirty-two patients (48%) had patho-
logical N2-stage disease, and only one patient presented with stage IV
disease because of the presence of a single adrenal metastasis, a condition
suitable for surgery. The seventh edition of the lung cancer TNM classifica-
tion and staging system was used. Adjuvant chemotherapy was offered
according to international guidelines and was delivered to the patients
(44%) who were candidates for adjuvant treatment. The remaining patients
were considered unsuitable for adjuvant therapy.

RNA Extraction and NanoString nCounter Assay. Total RNAs were isolated from
FFPE tissues using the RecoverAll kit (Ambion) following the manufacturer’s
protocol. About 100 ng of total RNA per sample was processed with the
Human v2 miRNA Expression Assay from the nCounter system (NanoString)
based on MiRBase v. 18 in the Nucleic Acid Shared Resource of The Ohio
State University.

Data Analysis. The NanoStringmiRNA panel detects 800 endogenous miRNAs,
five housekeeping transcripts [β-actin (NM_001101.2), β-2 microglobulin
(NM_004048.2), GAPDH (NM_002046.3), RPL19 (NM_000981.3), and RPLP0
(NM_001002.3)], and six positive and eight negative proprietary spike-in
controls. Unlike traditional hybridization microarrays, NanoString does not
associate targets with spatial coordinates; instead, the system generates
copy numbers of target-specific molecular barcodes attached to detection
probes, theoretically eliminating position-dependent effects. Raw data,
which are proportional to copy number, were log-transformed and nor-
malized by the quantile method after application of a manufacturer-sup-
plied correction factor for several miRNAs. Data were filtered to exclude
features below the detection threshold (defined for each sample by a cutoff
corresponding to approximately twice the SD of negative control probes
plus their mean) in at least 20% of the samples.

Using R/Bioconductor and the filtered dataset, linear models for micro-
array data analysis (Limma) was used with a contrast matrix for the studied
comparisons. P values were used to rank miRNAs of interest, and correction
for multiple comparisons was done by the Benjamini–Hochberg method.
Raw data that were above background and the corresponding quantile-
normalized data also were imported into Multi-Experiment Viewer. The
samples were clustered hierarchically by Pearson correlation distance and
average linkage.

The miRNA microarray expression data were submitted to the Gene Ex-
pression Omnibus dataset (accession no. GSE72526). All fold-changes asso-
ciated with these analyses were represented in log2 scale (logFC), and only
data with an adjusted P value <0.05 were considered statistically significant.

Results of statistical analysis are expressed as mean ± SD unless indicated
otherwise. GraphPad Prism version 5.0 was used for graphic purposes.

OS curves were done according to Kaplan–Meier method. Censoring occurred at
the date of death from any cause or at the time of the last known follow-up.
Comparisons of outcomes between subgroups were performed using the log-rank
test. The Cox proportional hazard model was used for univariate and multivariate
analyses of prognostic factors. The performances of the “driving alteration” model
andmiRNA signature for OS were compared by ameasure of global fit (AIC) and by
a measure of discrimination (CPE) along with its 95% CI (18–20). Low AIC values
indicate better fit, and high CPE values indicate better discrimination. The area under
the receiver operator characteristic curve (ROC) over time is shown as the AUC (21).

To develop an miRNA signature of OS, we used the Recursive Partitioning
algorithm implemented in the Bioconductor package party. Recursive par-
titioning is a fundamental tool with good performance in data mining. It
helps us explore the structure of a set of datawhile developing easy-to-visualize
and simple decision rules for predicting a categorical outcome (classification
tree). To assess the performance of the CTree predictor, we used the caret, CPE,
and risksetROC packages.

Mutations Status Detection. ALK translocation was detected by FISH on tu-
mor sections obtained from paraffin-embedded tumor blocks with the use
of a commercially available break-apart probe specific to the ALK locus (Vysis
LSI ALK Dual Color, Break Apart Rearrangement Probe; Abbott Molecular)
according to the manufacturer’s instructions on all NSCLC samples. Tumor
samples were scored by three independent investigators (including G.A. and
G.F.) blinded to the clinicopathological characteristics of the patients and to
immunohistochemical results, according to the score proposed by Kwak
et al. (22). Mutational profiling of EGFR (exons 18–21) was performed as
previously reported (23). Pyrosequencing assays were performed for se-
quence analysis of KRAS (codons 12 and 13) (24). See SI Materials and
Methods for the full details of the protocols for detecting mutational status.
Full details of the mutations detected in each case are reported in Table S2.

qRT-PCR. cDNA was reverse transcribed from 10 ng of total RNA of each
sample using specific miRNA primers from the TaqMan MicroRNA Assays and
reagents from the TaqMan MicroRNA Reverse Transcription Kit (Life Tech-
nologies). Subsequently, in the PCR step, PCR products were amplified from
cDNA samples using the TaqManMicroRNAAssays together with the TaqMan
Universal PCRMasterMix. All assays were performed in triplicate according to
the manufacturer’s instructions.
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