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Epistatic interactions can frustrate and shape evolutionary
change. Indeed, phenotypes may fail to evolve when essential
mutations are only accessible through positive selection if they
are fixed simultaneously. How environmental variability affects
such constraints is poorly understood. Here, we studied genetic
constraints in fixed and fluctuating environments using the
Escherichia coli lac operon as a model system for genotype–
environment interactions. We found that, in different fixed en-
vironments, all trajectories that were reconstructed by applying
point mutations within the transcription factor–operator inter-
face became trapped at suboptima, where no additional im-
provements were possible. Paradoxically, repeated switching
between these same environments allows unconstrained adap-
tation by continuous improvements. This evolutionary mode is
explained by pervasive cross-environmental tradeoffs that re-
position the peaks in such a way that trapped genotypes can
repeatedly climb ascending slopes and hence, escape adaptive
stasis. Using a Markov approach, we developed a mathematical
framework to quantify the landscape-crossing rates and show that
this ratchet-like adaptive mechanism is robust in a wide spectrum of
fluctuating environments. Overall, this study shows that genetic con-
straints can be overcome by environmental change and that cross-
environmental tradeoffs do not necessarily impede but also, can
facilitate adaptive evolution. Because tradeoffs and environmental
variability are ubiquitous in nature, we speculate this evolutionary
mode to be of general relevance.
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It is widely believed that epistatic interactions can direct evo-
lutionary change (1–7). Epistasis has been implicated in shaping

RNA (8) and protein (4, 6, 7, 9) sequences, sensing (5) and
translation (10) functions, and developmental programs (11) and
speciation (12–14). Phenotypes may be difficult to evolve not be-
cause they are impossible biochemically or physically, but because
essential mutations are mutually dependent and must be fixed
together to be selected positively (5, 15–17). How such genetic
constraints can be overcome has been considered previously:
population expansion or subdivision can limit negative selection
and maintain less fit phenotypes (18, 19), and large populations
and long waiting times can enable the joint fixation of multiple
mutations (20), whereas recombination can join mutant alleles
(21–23). Other mechanisms include drift (24–26), partial pene-
trance (27), and nonheritable lifetime plasticity (28, 29). However,
how the constraining effects of such genetic interactions are af-
fected by environmental variability remains poorly understood. It
has been shown that mutational effects (30–33) and epistasis itself
(34, 35) can depend on the environment, that bacterial resistance
evolution can be contingent on the rate of antibiotic increase (36),
and that adaptation in silico can be accelerated by environmental
change (37–40). These observations suggest that the effects of
environmental variability may go beyond merely producing vari-
able selective pressures that favor certain phenotypes but also,
could be involved in controlling phenotype accessibility and stasis.

To investigate how environmental variability affects genetic con-
straints, we focused on a model system for genotype–environment
interactions, the lac regulatory system of Escherichia coli. Its
physiology has been studied extensively: in the presence of lactose,
expression of the lac genes allows E. coli cells to import and
metabolize lactose, whereas in the absence of lactose, repression
of these genes limits physiological costs (41, 42). The ability to
regulate lac expression relies on the binding of the lac repressor to
the lac operator DNA sequence upstream of the coding region
(Fig. 1A). We surmised that the coevolution of such protein–DNA
interfaces could be severely constrained by epistatic interactions,
such that some genotypes are inaccessible by positive selection in
single-mutation steps. In lock–key recognition, mutating either
lock or key is expected to lead to recognition loss (2, 15). At the
same time, mutating both lock and key may produce a different,
better-matching pair. Indeed, the lac transcription factor phylog-
eny suggests extensive historic adaptation of the repressor–oper-
ator interface and reveals multiple homologous repressors that
bind specifically to their cognate operator (43, 44). Furthermore,
the lock–key recognition of the lac regulatory system is a highly
specific function that is confined to a limited number of residues,
which restricts the range of adaptive solutions. Indeed, extensive
mutational analysis of the lac repressor–operator interface has
shown that just two repressor residues and four operator bases
control binding specificity (Fig. 1 A and B) (45, 46). Moreover, in
contrast to phenotypes that are affected by many unknown mu-
tations, one can identify the genetic interactions between muta-
tions in controlling residues that are key to genetic constraint.
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Results
Trajectories Are Not Accessible in Constant Environments.Wemutated
sites in the lac operator DNA and the multimeric lac repressor
that control binding specificity (Fig. 1 A and B) and measured the
expression level of the downstream lac genes in two contrasting
conditions (Methods). We quantified the ability to repress the lac
genes, R, as the inverse of the measured lac expression level in the
absence of inducing ligand (Methods and Fig. 1C). The ability to
express the lac genes, E, was quantified by the measured lac ex-
pression level in the presence of ligand (Fig. 1C). Note that the
repression ability (R) is, thus, not the inverse of the expression
ability (E). We constructed four lac repressor–operator variants
that have been predicted (45–48) to display binding: PK:agga, PS:
acca, MK:acca, and YQ:tggt, where the first two letters indicate
the controlling repressor residues and the last four letters indicate
the controlling operator bases (Fig. 1 A and B). We focused on the
latter two variants, because they displayed substantial fold changes
between the induced and noninduced expression levels (R•E was
6 and 55, respectively), with E being approximately equal but
R being about 20-fold lower for MK:acca. The MK:acca genotype
is, thus, able to regulate lac expression but can improve repression
ability by mutating the repressor (MK to YQ) and operator (acca
to tggt).
We investigated the interaction between noncognate pairs by

swapping around the two operators. The ability to repress (R)
was found to be low (i.e., expression in the absence of ligand was
high) for MK:tggt and YQ:acca (100- to 200-fold lower than for
the cognate pair YQ:tggt). These data were consistent with the
reciprocal sign epistasis hypothesized for lock–key interactions:
changing either of the binding partners alone leads to binding
loss, but changing the other partner as well restores it. This
notion was supported by the overall expression levels for MK:
tggt and YQ:acca, which were high and unresponsive to ligand
(R•E = 1). However, although the presence of reciprocal sign
epistasis is required, it is not sufficient to constrain phenotypes

on suboptima (15). Indeed, the repressor and operator modifi-
cations both involve multiple mutations, and their one by one
fixation in particular order (1) could confer continuous im-
provements in repression ability.
To test the accessibility of trajectories considering all possible

orders of all essential mutations, we constructed the remaining
intermediate genotypes between MK:acca and YQ:tggt. In total,
6! = 720 direct trajectories can be taken along the 26 = 64
genotypes. Whether a mutation is positively selected, and thus
accessible, depends on the sign rather than the magnitude of the
associated fitness change. Fitness and phenotypic changes have
the same sign when the phenotype–fitness relation is monotonic.
In the environment without ligand, for instance, a trajectory is
then not accessible when it contains mutations that decrease R.
Below, we first consider this case of monotonic phenotype fitness
relations, and later, we relax this assumption to also consider a
range of nonmonotonic relations.
Analysis showed that all trajectories contain depressions in

both R and E (Fig. 2 and Fig. S1). The depressions are at least
two mutations wide and peak at a width of five mutations,
whereas the involved decrease is at least 3-fold and reaches up to
∼100-fold. Thus, none of the trajectories to YQ:tggt are acces-
sible by fixing mutations one by one in either of two environ-
ments. Although this analysis concerns only direct trajectories (i.e.,
without mutational reversions), allowing for reversions did not
open up accessible trajectories in either of the environments (SI
Results, sections S6). Overall, these data indicate that higher-order
genetic interactions (i.e., epistasis involving multiple mutations)
limit optimization of the lac regulatory phenotype in each of
two environments.

Changing Environments Allows Gradual Optimization. How does en-
vironmental variability affect these constraints? We first explore
this question with individual trajectories starting with MK:acca.
For instance, R can be increased through an operator mutation
(MK:acca to MK:tcca) in the environment without ligand but then

Fig. 1. Repression and expression ability of lac repressor–operator mutants.
(A) Schematic representation of the E. coli lac system. β-Galactosidase (LacZ)
and the lac permease (LacY) are coregulated by the repressor LacI. Expression
is induced by IPTG. Red lines correspond to mutated positions. (B) The multi-
meric lac repressor in green bound to its operator DNA. Red indicates mutated
positions responsible for specific repressor–operator binding. Y and Q are the
mutated amino acid residues on positions 17 and 18 in the DNA binding helix
of the lac repressor, and 4 and 4′ g–c and 5 and 5′ t–a are the mutated base
pairs in the operator DNA. We note that the genotype represented here is YQ:
tggt. (C) Characterization of 64 lac repressor–operator variants. The starting
and final sequences are indicated by white and black circles, respectively. R is
the inverse of the measured expression level in the absence of IPTG. E is the
measured expression level in the presence of IPTG (Methods).

Fig. 2. Genetic constraints in constant environments. (A) The valley width
is the number of mutations required to increase repression or expression
ability above the previous suboptimum in a given mutational trajectory. For
each trajectory, the widest valley is tabulated. The horizontal bar indicates
one mutation. (B) Valley width in repression ability for all direct 720 muta-
tional trajectories from MK:acca to YQ:tggt. (C) Valley width in expression
ability. (D) The valley depth is the fold decrease in repression or expression
ability within the valleys of a given trajectory. For each trajectory, the deepest
valley is tabulated. Note that the widest and the deepest valleys for a given
trajectory do not necessarily coincide. (E) Valley depth in repression ability for
all direct 720mutational trajectories fromMK:acca to YQ:tggt. (F) Valley depth
in expression ability. Welch’s t tests were performed to determine the statis-
tical significance of differences in measured repression and expression ability
values (Methods).
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remains trapped, because the other mutations yield no ad-
ditional improvements (Fig. 3 A and B and Fig. S2). However,
switching to the other environment opens up various trajectories
that increase E, such as the repressor mutation MK:tcca to
MQ:tcca. After additional increase in E (MQ:tcca to MQ:tgca),
the system becomes trapped again on a suboptimum. Concomi-
tantly, note the low R for this genotype (Fig. S2A), which indicates
an overall weakened binding between these LacI and operator
variants. Switching back to the first environment now allows escape
by a compensatory mutation that provides access to YQ:tggt by
reestablishing binding and increasing R. We found that a significant
fraction of the direct trajectories (21%) becomes accessible in this
manner (Figs. S1 and S3). Accessibility was afforded by diverse
patterns of environmental change, although not by all (Table S1).
Interestingly, the number of accessible trajectories starting in the
environment E [with isopropyl-β-d-1-thiogalactopyranoside (IPTG)]
outnumbered the accessible trajectories starting in the envi-
ronment R (without IPTG; 92 vs. 56), although the main im-
provement is made in R. Overall, these findings indicate that
mutational pathways that fail to confer gradual optimization in
either constant condition can do so when alternating between
these same conditions.

Ratchet Mechanism That Exploits Tradeoffs. The above findings
cannot be understood from environmental interactions that alter
the magnitude of mutational effects, because they would affect
only the depth of constraining valleys. Rather, they indicate the
importance of cross-environmental tradeoffs, in which increases
in R occur at the expense of decreases in E, and vice versa, in-
creases in E lead to decreases in R (Fig. 3 B and C). Such
tradeoffs are also referred to as GxE interactions (49) and can
give rise to higher-order GxGxE (34) and sign environmental
epistasis (36). In the lac repressor–operator system, cross-envi-
ronmental tradeoffs between E and R were pervasive (55% of all
mutational steps in the direct trajectories) (Fig. S4) and can be
understood mechanistically. For example, a low but significant
level of repression can be maintained in the presence of inducer
through residual binding (50). We found for several genotypes
(22 genotypes) that the induced expression level is significantly
lower than the highest measured level for the involved operator
(Fig. 1C), consistent with residual binding of induced repressors

reducing expression. Mutations that increase (decrease) the overall
repressor–operator affinity in both environments will increase
(decrease) both the repression ability without inducer as well as
the residual repression with inducer, leading to opposite effects on
R and E and hence, to cross-environmental tradeoffs (Figs. S4 and
S5). These tradeoffs have consequences for the relations between
constraints in different conditions. We found multiple local op-
tima for each of two environments (3 in R and 13 in E), but none
coincided at the same genotype. This feature allows trajectories to
repeatedly surf ascending slopes and hence, traverse valleys in a
ratchet-like manner: when trapped on a local optimum, the system
can wait for an environmental change that enables repositioning
on a new ascending slope.

Crossing Rates in Variable Environments. To assess the robustness
of this evolutionary mode for different environmental condi-
tions, we extended an evolution model based on a fixed environ-
ment Markov process (51) to include environmental fluctuations
(Methods, Fig. 4 A–C, SI Results, sections S1–S6, and Figs. S6 and
S7). We considered a discrete time Moran process in the strong
selection weak mutation regime (52), in which mutational re-
versions are allowed and trajectories can be of arbitrary length
(Methods) (53). Here, we first assume fitness and selection to be
proportional to phenotype (E and R) and then, test different
nonlinear and nonmonotonic phenotype–fitness relations (SI
Results, section S7 and Fig. S8). Consistent with the observed
constraint in fixed conditions (Fig. 2), we found that the rate to
evolve to YQ:tggt from MK:acca (crossing rate kc) is null for
either constant environment (Fig. 4D, fraction of time in envi-
ronment E of 0 or 1). However, kc is consistently above zero
when the environmental fluctuation rate kf is lower than the
mutation rate km (Fig. 4D, blue and green lines) and maximized
when kf = km, consistent with previous related work (39). That kc
is maximal when kf = km can be understood as follows: for kf >>
km, there is an effective averaging over the two environments,
resulting in a constrained condition, whereas for kf << km, the
waiting time for an environment-triggered escape is long enough
to allow mutational escape in one of the two environments.
Environmentally triggered escape is, thus, found to be robust to
changes in the ratio between the times spent in the two envi-
ronments (Fig. 4D).

Fig. 3. Escape from genetic constraint in fluctuating environments. (A) Mutational trajectory accessible by continuous improvements in a changing envi-
ronment corresponding to B and C. Red indicates mutated position. Forward arrows indicate mutations conferring increases in repression or expression
ability, and backward arrows indicate decreasing or neutral steps. The two-color bars represent changing environments that confer continuous improve-
ments. Without environmental changes, the system would be trapped at MK:tcca and MQ:tgca, where no additional improvements are possible in the current
environment. (B) Expression and repression ability along the trajectory indicated in A. Data are represented as means (n = 3 or 4) ± SEMs. The trajectory starts
at MK:acca (white circles) and ends at YQ:tggt (large black circles). This trajectory contains a valley in (Upper Right) repression ability (blue line) and (Lower)
expression ability (orange line). (Upper Left) Blue lines indicate mutations that confer improvements in repression ability, and orange lines indicate mutations
that confer improvements in expression ability. The gray area indicates the envelope of all trajectories. (C) Schematic representation of repression and ex-
pression ability along the trajectory indicated in A in the variable environment. Semitransparent lines indicate inaccessible mutations. Gray dotted lines
indicate environmental changes allowing escape from suboptima.
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The above result remained valid for nonlinear phenotype–
fitness relations, reflecting, for instance, expression costs that
make the dependence weaker for higher E (SI Results, section S7
and Fig. S8, rows 1 and 2) (41, 54). The escape mechanism also
remained robust for nonmonotonic phenotype–fitness relations,
in which fitness first increases with increasing E and then de-
creases (Fig. S8, row 3). We found that the mechanism broke
down when E increases do not confer fitness increases at all,
reflecting a scenario in which lac expression costs outweighs the
benefits in the inducing environment (Fig. S8, row 4). However,
the latter is not observed experimentally (41, 42).

Computationally Generated Landscapes. To further probe the re-
quirements for crossing multipeaked landscapes, we considered
computationally generated random landscapes. In constant con-
ditions, mutational trajectories become trapped on these land-
scapes as expected, and hence, the probability to find selectively
accessible paths is low (Fig. S9, absence of cross-environmental
tradeoff). We found that, when we progressively increase the level
of cross-environmental tradeoff (as quantified by the fraction of
mutations having opposite effects in the two environments), the
probability of finding accessible paths increases until practically all
of the landscapes that were generated contained accessible paths
in fluctuating conditions at a tradeoff level of 0.5 or more (Fig.
S9). We note that this value was 0.47 for the experimentally de-
termined landscape. Overall, these results indicated that cross-
environmental tradeoffs are a central ingredient for overcoming
constraining genetic interactions in fluctuating environments by
positive Darwinian evolution.

Discussion
To investigate how environmental variability affects genetic
constraints within evolutionary trajectories, we have system-
atically mapped the genotype–phenotype landscape spanning two
matching pairs of transcription factors and their DNA binding sites.
Consistent with theoretical considerations on the evolution of
molecular recognition, we find that the resulting landscapes in
different contrasting environments are highly rugged: none of the
mutational trajectories between the two pairs are selectively ac-
cessible by fixing one mutation at a time. Landscapes ruggedness
has been studied previously for phenotypes that involve multiple
possible genes and spontaneously evolved mutations (5, 16, 21, 55,
56). Here, we studied a phenotype that has a well-understood
genetic basis, is restricted to one physical site, and hence, is con-
trolled by a reduced set of mutations. The data show that epistatic
interactions between these controlling mutations give rise to dis-
tinct peaks within genotype space.
Rugged landscapes constitute a specific type of genetic con-

straint that is distinct from, for instance, the presence of sign
epistasis, which imposes specific fixation order but does allow
accessible paths (1). Theoretical investigations have considered
how escape from entrapment on suboptimal peaks is enabled;
they addressed limiting negative selection (18, 19), simultaneously
fixing mutations (20), recombination (21–23), and drift (24–26).
These mechanisms do not permit adaptive evolution by positive
selection of single mutations. Here, we find that such gradual
adaptive evolution by positive selection is possible when consid-
ering temporal alternations between different environments, with
cross-environmental tradeoffs as a second essential ingredient.
These tradeoffs are pervasive in the quantified landscapes.
They allow the environmental changes to displace local fitness
peaks in such a way that the system can be ratcheted in an
adaptive manner through fitness valleys by repeatedly climb-
ing locally ascending slopes. We note that, at high mutation
rates, such as for instance those observed in viral evolution,
multiple variants may arise before one sweeps through the
population, resulting in clonal interference and competition
between variants. Although in this case, the sweep time rather

Fig. 4. Landscape crossing in stochastically alternating environments.
(A) Environmental fluctuations and occurrence of mutations (crosses)
(SI Methods and SI Results, section S1). Environments R and E refer to the
environment selecting for repression or expression ability, respectively. (B)
Schematic representation of genotype space. Large white and gray circles
are start and end genotypes, respectively, of mutational trajectories. Ar-
rows indicate increasing repression ability (R; blue) or expression ability (E;
orange); arrow thickness reflects magnitude and hence, transition prob-
ability (SI Methods and SI Results, section S2). Shadowed arrows indicate
one possible path of continuous improvement from the initial to the final
genotypes. The structure of the space is schematic and does not reflect the
actual system. (C) Schematic depiction of the Markov chain method for
computing crossing rates. The probability vector lists all N genotypes, with
the gray scale indicating the probability of populating a genotype at a
given indicated time. Initially, only the beginning genotype is populated.
The N × N environment-dependent transition probability matrices (colored
squares) reflect the arrows in B: a matrix entry at position i,j indicates the
transition probability from genotype i to genotype j. Each matrix multi-
plication yields a novel probability of genotype occupancy after a muta-
tion occurred in a given environment. This illustration is schematic: we use
an (infinite time limit) analytical solution for this process, considering a
range of possible scenarios of environmental fluctuations. (D) Crossing
rate kc as a function of the fraction of time spent in each environment
for different environmental fluctuation rates kf. The unit of time is the
time between two mutations. The red line indicates environment dwell time
<<1, meaning that the environment fluctuates much faster than the time be-
tween mutations. The top green line to bottom blue line indicates environment
dwell times of c = 1, 2, 5, 10, 20, and 50 (i.e., decreasing kf or decreasing
frequency of environmental fluctuation) (SI Methods and SI Results, sec-
tions S3–S6). The crossing rate is the inverse of the mean number of mutations
that are necessary to cross the landscape. The absolute maximum crossing rate
is 0.17 (6−1; corresponding to six mutations being fixed).
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than the time between mutations becomes the relevant time-
scale, the tradeoff ratchet mechanism remains valid in this
regime.
Crossing fitness valleys by positive selection may seem contra-

dictory. However, one must distinguish between the global fitness
of the population and the relative fitness differences between in-
dividuals. When trapped, the relative fitness decreases conferred
by mutations lead to negative selection within the population.
In contrast, the global fitness decreases conferred by envi-
ronmental changes affect the entire population and do not lead
to negative selection. These global fitness decreases open up
possibilities for mutations that confer relative fitness gains
again. These repeated gains do not come completely for free,
because the mechanism does not only drive forward but also
backward: after a global fitness decrease induced by envi-
ronmental change, the positively selected mutations that
opened up point away from the ancestor but also, back to it.
The occurrence of backward mutations does not cancel the
positive selection of this evolutionary mode but merely re-
duces its efficacy. Thus, environmental changes can serve to
overcome fitness decreases that constrain genotypes in con-
stant environments.
The role of tradeoffs in facilitating adaptive change is

notable, because they are typically associated with adaptive
constraint. Tradeoffs can be rationalized mechanistically for
regulatory phenotypes that rely on lock–key molecular recogni-
tion, which has been shown to be important genetic material for
evolutionary novelties (57, 58). Evolutionary optimization in the
presence of tradeoffs can be seen as a sequence of compensatory
mutations; recognition loss caused by mutating one binding part-
ner can be restored by complementary mutations in the other
binding partner. Note that tradeoffs are present more generally in
nature (59, 60) along with environmental fluctuations (61), and
hence, the reported adaptive mechanism is not necessarily limited
to regulatory phenotypes.
Organisms are known to occupy remarkable wide ranges of

contrasting environments. Our findings suggest that the regula-
tory systems that enable these wide environmental niches are
constrained by pervasive (reciprocal) sign epistatic interactions,
resulting in rugged landscapes. An inability to optimize regulatory
responses to environmental change can result in stasis and the
emergence of environmental specialists. However, we find that the
proposed mode of adaptation can overcome these constraints and
facilitate the evolution of generalists that can occupy diverse niches.
Interestingly, such adaptability comes at the cost of weakened en-
vironmental robustness of desirable genotypes. Indeed, the stabi-
lizing selection of such a genotype at the top of a fitness peak can be
disrupted by tradeoffs and environmental change, which together,
can displace peaks. Some environmental robustness may alterna-
tively be afforded by regions in genotype space that are flat in both
environments. However, except for a “neutral chain” (YK:agga-
YQ:agga-MQ:agga-MQ:tgga-MQ:tcga), no other neutral region
was observed in our landscape.
Genetic constraints are commonly regarded as a key factor in

adaptive stasis and major evolutionary transitions, such as for
instance the evolution of sex, multicellularity or symbiosis, and
eusociality (62, 63). Overcoming genetic constraints by tradeoffs
in a fluctuating environment could be relevant to these transi-
tions given its few requirements and their ubiquitous presence.
Additionally, this evolutionary mode may have implications for
clinically or biotechnologically relevant problems, such as the
treatment of infections with multidrug protocols (64–66) and the
evolutionary engineering of antibodies (67). It will be of interest to
test whether this adaptive mode affects the dynamics of experimental
evolution in variable environments.

Methods
Strains.We used E. coli strain BW23473 (68) F−, Δ(argF-lac)169, ΔuidA3::pir+,
recA1, rpoS396(Am), endA9(del-ins)::FRT, rph-1, hsdR514, rob-1, and creC510
(Yale Coli Genetic Stock Collection 7837) for all experiments.

Plasmid. We used a single-copy plasmid that can be induced to a multicopy
plasmid for cloning purposes (pETcoco-2; Novagen) to mimic natural ex-
pression levels. The plac, lacZ, and lacY WT sequences were derived from
E. coli strain MG1655 (Yale Coli Genetic Stock Collection 6300). To facili-
tate the insertion of mutants (see below), the plac region was amplified
until the ninth codon in the coding sequence of lacZ, and a BmtI restriction
site was introduced, whereas the WT amino acid sequence was preserved.
The remaining lacZ and lacY sequence was amplified and inserted in the
polylinker sequence of pETcoco-2 to make pMdV53. Additional information is
in SI Methods.

Mutants. plac operator variants differed in the 4, 5, 5′, and 4′ nucleotide
residues as depicted in Fig. 1 B and C. This O1 operator was made palin-
dromic by the deletion of the central c–g base pair (69). In LacI, amino acid
residues 17 and 18 were altered using optimal codons for the amino acid
variants. Additional information is in SI Methods.

Media. All growth and expression measurements were performed in Mops EZ
Rich Defined Medium (Teknova) with 0.2% glucose as the carbon source and
supplemented with 1 mM thiamine-HCl, 1 mM uracil, and appropriate anti-
biotics. For expression ability measurements, the medium was supplemented
with 1 mM IPTG.

Expression-Level Measurements. Cultures were grown at 37 °C in PerkinElmer
Victor3 and VictorX3 plate readers with 200 μL medium per well in a black
clear-bottom 96-well plate (NUNC 165305). Cells were fixed after the cultures
had reached an OD in the plate reader of at least 0.015 and at most 0.07 by
adding 20 μL fluorescein di-β-D-galactopyranoside fixation solution [109 μM
fluorescein di-β-D-galactopyranoside (MarkerGene Technologies Inc.), 0.15%
formaldehyde, 0.04% DMSO in deionized water]. Fluorescence development
was measured every 8 min (excitation = 480 nm and emission = 535 nm),
and the OD was measured at 600 nm. When cells were not induced with
IPTG during growth, 1 mM IPTG was added to each well immediately be-
fore or after fixation, because the assay is sensitive to the amount of IPTG
present in the medium (7). Analysis of the fluorescence to quantify the
LacZ expression level was as described in ref. 7. Additional information is
in SI Methods.

Statistical Tests. For each genotype, expressionmeasurementswere performed
in either triplicates or quadruplicates. Expression levelsmeasured in one 96-well
plate were normalized to a control genotype on that plate. Throughout all of
the analysis, whenever the values between two genotypes were compared
(either expression or repression ability values or relative fitness values obtained
through the cost–benefit treatment), a two-tailed Welch’s t test was per-
formed to test the null hypothesis that the two genotypes do not have sig-
nificantly different values (hypothesis of neutrality). The null hypothesis was
rejected if the p value obtained from the test was lower than a significant level
of 0.05. If the null hypothesis was not rejected, the mutations distinguishing
the two genotypes were considered neutral (e.g., we would take the condition
fj = fi in Eq. S1 in SI Results, section S2). Otherwise, the values would be con-
sidered to be significantly different, and subsequent computation would be
performed accordingly.

Model for the Evolution Dynamics in Fluctuating Environment. We modeled
the dynamics of evolution in fluctuating environment using a discrete time
Moran process in the regime of strong selection weak mutation and
through a heterogeneous Markov process. Additional information is in
SI Methods.
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