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Although typically identified in early childhood, the social com-
munication symptoms and adaptive behavior deficits that are
characteristic of autism spectrum disorder (ASD) persist through-
out the lifespan. Despite this persistence, even individuals without
cooccurring intellectual disability show substantial heterogeneity
in outcomes. Previous studies have found various behavioral assess-
ments [such as intelligence quotient (IQ), early language ability, and
baseline autistic traits and adaptive behavior scores] to be predictive
of outcome, but most of the variance in functioning remains unex-
plained by such factors. In this study, we investigated to what extent
functional brain connectivity measures obtained from resting-state
functional connectivity MRI (rs-fcMRI) could predict the variance left
unexplained by age and behavior (follow-up latency and baseline
autistic traits and adaptive behavior scores) in two measures of out-
come—adaptive behaviors and autistic traits at least 1 y postscan
(mean follow-up latency = 2 y, 10 mo). We found that connectivity
involving the so-called salience network (SN), default-mode network
(DMN), and frontoparietal task control network (FPTCN) was highly
predictive of future autistic traits and the change in autistic traits
and adaptive behavior over the same time period. Furthermore,
functional connectivity involving the SN, which is predominantly
composed of the anterior insula and the dorsal anterior cingulate,
predicted reliable improvement in adaptive behaviors with 100%
sensitivity and 70.59% precision. From rs-fcMRI data, our study
successfully predicted heterogeneity in outcomes for individuals
with ASD that was unaccounted for by simple behavioral metrics
and provides unique evidence for networks underlying long-term
symptom abatement.
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Although typically identified in childhood, the social commu-
nication symptoms that are characteristic of autism spectrum

disorder (ASD) persist throughout the lifespan (1, 2). On average,
individuals with ASD show smaller age-related improvements in
adaptive behaviors, including daily living skills critical for in-
dependent living, than do typically developing (TD) peers (2–4).
The burden of prolonged clinical symptom expression, coupled
with limited adaptive behaviors, leads to a relatively poor prog-
nosis for a majority of adults with ASD. For example, only 12% of
adults with ASD achieve “very good” outcomes, defined by a high
level of independence (5). Adolescence and young adulthood are
poorly understood in ASD. Although there seems to be a great
deal of change during this time, the nature of this change varies
across studies, with a handful of studies reporting a decline in
functioning (2, 3, 6), others reporting general improvement (7, 8),
and still others reporting a quadratic course of autistic symptoms
and adaptive functioning where the trajectory peaks in late ado-
lescence (9) or the late 20s (10) and begins to fall subsequently.
Predictors of positive outcomes in ASD include higher intelli-

gence quotient (IQ) (11–13), language ability (9, 14), less severe
ASD symptoms (15), and stronger adaptive behaviors (16, 17).
However, there is substantial variability in outcome even among

individuals with ASD without cooccurring intellectual disability
(7, 13, 17, 18). Age, IQ, and language ability accounted for as
much as 45% of the variance in outcome measures in a sample
composed of predominantly individuals with both ASD and
intellectual disability (11). Others reported more modest num-
bers for these predictors, with IQ predicting 3% of variance in
outcome and language ability predicting 32% of variance in
outcome (14). A study that included only individuals with ASD
without cooccurring intellectual disability found age and IQ as
weaker predictors, predicting 6–28% of various adaptive be-
havior subscales (6). Although these previous studies have been
successful in predicting these outcomes using behavioral measures,
in most cases, the majority of the variance in outcomes remains
unexplained. Thus, it remains difficult to identify individuals with
ASD who may struggle to achieve independence during adulthood
and who may benefit from additional intervention.
In the present study, we explored whether a functional neuro-

imaging-based measure of brain connectivity, termed resting-state
functional connectivity MRI (rs-fcMRI), can predict variance in
behavioral outcomes in young adults with ASD beyond that ex-
plained by cognitive or behavioral measures. Functional con-
nectivity strength in individuals with ASD has been found to
predict an ASD diagnosis (19–21) and to correlate with many
aspects of cognition and behavior that also predict outcome, in-
cluding IQ (21, 22), and ASD symptomatology using the Autism
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Diagnostic Observation Schedule (21–23), the Autism Diagnostic
Interview-Revised (20), and the Social Responsiveness Scale (SRS)
(19, 22, 24). As such, brain measures may explain additional var-
iance in behavioral outcomes. One previous study has shown that
combining functional MRI (fMRI) data with behavioral data in-
creased predictive power for categorical language outcomes in
early developing ASD (25). Brain-derived data has also added
explanatory power to predictive models of depression (26), dys-
lexia (27), alcoholism (28), and reading and math ability (29, 30).
We tested whether rs-fcMRI data acquired in late adolescence

and early adulthood [time 1 (T1)] could predict behavioral out-
comes at least 1 y after the imaging data were acquired [time 2 (T2)].
We defined behavioral outcomes with a measure of predominantly
social autistic traits (SRS) and a measure of adaptive functioning
[Adaptive Behavior Assessment System-Second Edition (ABAS-II)].
Using an approach that controlled for nuisance variables (e.g.,
variable duration between time 1 and time 2) and variables known
to strongly predict outcome (e.g., age and baseline score on out-
come measure), we performed regressions to investigate whether
and to what extent the remaining variance in outcome could be
predicted by baseline functional connectivity in networks known to
be involved in ASD.

Results
The mean follow-up latency between the behavioral measures was
2 y, 10 mo and 2 y, 11 mo for the ABAS (n = 27) and SRS (n =
29), respectively. ABAS and SRS scores both generally improved
from time 1 (ABAS mean = 71.96, SRS mean = 75.89) to time 2
(ABAS mean = 81.93, SRS mean = 71.97) (Fig. 1A). An increase
in ABAS score indicates an improvement in adaptive behaviors;
a decrease in SRS score indicates an improvement in autistic
symptoms. The difference in ABAS scores was significant (P <
0.001), but the difference in SRS scores was not (P = 0.14).
Age and follow-up latency accounted for 23.01% of the variance

in T2 ABAS and 43.15% of variance in T2 SRS. When controlling
for these effects using an analysis of covariance (ANCOVA), T2
ABAS scores were still significantly different from T1 ABAS
scores (P < 0.001), and the improvement in SRS scores remained
nonsignificant (P = 0.14). Age, follow-up latency, and T1 score
accounted for an initial 26.05% of variance inΔABAS and 40.63%
of variance in ΔSRS (Fig. 1 B and C). Although large amounts of
variance in outcome were explained by these variables, the ma-
jority of variance in outcome remained unexplained. ΔSRS and
ΔABAS scores shown in Fig. 1 have been converted to reliable
change indices (RCIs), allowing us to estimate a confidence in-
terval of true change. The RCI takes into account the SE of the
measurement obtained from test–retest reliability and yields a
pseudo–z-statistic. Thus, if jRCIj ≥ 1.96 for a particular measure,
we can say that the individual showed a reliable change on that
measure beyond the two-tailed 95% confidence interval. For
ΔABAS, 12 out of 27 individuals (44.44%) showed RCIs beyond
the 95% confidence interval, and, for ΔSRS, 12 out of 29 indi-
viduals (41.38%) had RCIs beyond the 95% confidence interval.
Given the prevalence of significant RCIs in our sample, we next
sought to investigate the predictive power of the rs-fcMRI data.
Rs-fcMRI scans were acquired at time 1, and, for each subject,

we obtained a region X region correlation matrix (considered a
measure of “intrinsic functional connectivity”) using 264 regions
of interest (ROIs) (31). These regions were previously charac-
terized as belonging to 1 of 13 functional networks, and we have
previously shown that 3 of the 13 [default-mode network (DMN),
frontal-parietal task control network (FPTCN), and salience
network (SN)] were particularly informative for distinguishing
individuals with ASD from TD individuals (19) (see Materials and
Methods for a full description). To increase statistical power and
reduce overfitting, we restricted our analysis to these three net-
works. We examined, separately, whether baseline (time 1) func-
tional connectivity within a network or across a pair of networks

A B

C

Fig. 1. Outcomemeasures show change over time. (A) Adaptive Behavior Assessment System (ABAS) General Adaptive Composite standard scores (Left; n = 27)
and Social Responsiveness Scale (SRS) sum t-scores (Right; n = 29) are shown for each participant at each time point. Higher ABAS scores indicate an im-
provement in adaptive behaviors whereas lower SRS scores indicate improvement in social functioning. (B) Histograms representing the distribution of scores
for each of the four outcome measures. ΔSRS and ΔABAS (the change between time 1 and time 2 SRS and ABAS, respectively) have been converted to reliable
change indices. (C) The same outcome measures are shown after linear effects of baseline score (ΔSRS and ΔABAS only), age, and follow-up latency have been
removed. Note that these outcome measures retain considerable variability after this initial regression. These final measures are those that are predicted by the
brain-based statistical models (Table 1 and Fig. 2).
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could predict any of the remaining variance in behavioral outcomes
at time 2. It is important to note that the amount of variance
explained above by the behavioral models was determined by an r2

value obtained from typical multiple linear regression. Due to
concerns about overfitting, the brain-based regression results will
be presented as empirically determined r2 values from leave-one-
out cross-validation (LOOCV) with ridge regression. The amount
of variance explained using these two methods (multiple linear
regression vs. ridge regression with LOOCV) is not directly com-
parable. In addition, the r2 values presented for the brain-based
regressions will be presented as the amount of variance explained
in the residual outcome measures and not the amount of total
variance explained in the uncorrected outcome measures.
Using LOOCV with ridge regression, rs-fcMRI data from time

1 significantly predicted additional variance in three of the four
behavioral outcome measures (time 2 SRS, ΔSRS, and ΔABAS,
but not time 2 ABAS). The full results from the brain-based re-
gressions are reported in Table 1. Time 2 SRS scores were best
predicted by connectivity within the frontoparietal task control
network (FPTCN–FPTCN connectivity, r2 = 0.1439, P < 0.03).
ΔSRS was best explained by intra-FPTCN connectivity (r2 =
0.3351, P < 0.001). Finally, ΔABAS was best explained by intra-SN
connectivity (r2 = 0.3181, P < 0.001). ΔABAS was also significantly
predicted by DMN–SN connectivity (r2 = 0.3062, P < 0.001) and
DMN–FPTCN connectivity (r2 = 0.0679, P < 0.003). Scatter plots
showing the predicted vs. actual outcome scores are shown in Fig. 2.
None of the rs-fcMRI regressions improved when other nuisance
variables, such as IQ or the number of time points censored due
to motion or global signal intensity, were included as additional
features. Measures of comorbid anxiety, depression, and atten-
tion deficit hyperactivity disorder (ADHD) as assessed by the
Child Behavior Check List (32) or the Adult Behavior Check List
(33) before the scan were available for all but one of the partic-
ipants. Including the presence of any comorbidities as additional
features in the regression did not improve predictive accuracy.
An important follow-up question to the above analysis is whether

these models are accurately predicting the reliable changes in ABAS

and SRS scores present in >40% of individuals or whether they are
predicting only the fluctuations within the SE of the measurement.
To answer this question, we turn to the regressions for the ΔSRS
and ΔABAS scores.
As stated above, 12 out of 27 individuals showed RCIs beyond

the 95% confidence interval (jRCIj ≥ 1.96) for the ABAS. In all
cases, this change was an improvement (increase) in ABAS score.
Green dashed lines in Fig. 2 denote the threshold for significant
improvement, and green data points represent participants that
passed this threshold. For several regressions, the brain data were
successful in predicting this reliable improvement. Intra-SN con-
nections and SN–DMN connections predicted a reliable im-
provement in ABAS with 100% sensitivity (70.59%/66.67% and
63.16%/53.33% precision/specificity, respectively). Sensitivity can
be understood as the ability of the statistical model to correctly
identify all of the true positives (significant RCI values). Precision,
also called positive predictive value, is a complementary measure
defined as the proportion of positive estimates by the model that
are true positives and can be understood as the ability of the model
to not label a scan as positive when the true label is negative
(nonsignificant RCI value). Lastly, specificity can be understood as
the ability of the model to correctly identify all of the true nega-
tives. DMN–FPTCN connections predicted ABAS improvement
with 83.33% sensitivity (62.50% precision; 60.00% specificity). For
ΔSRS, 12 out of 29 individuals had RCIs beyond the 95% confi-
dence interval. Nine of the 12 individuals showed a reliable de-
crease in SRS scores (i.e., decrease in autistic traits; green data
points in Fig. 2). Intra-FPTCN predicted this change with only
44.44% sensitivity (80.00% precision; 95% specificity). Three of
the 12 individuals showed a reliable increase in SRS scores (i.e.,
increase in autistic traits; red data points in Fig. 2), but intra-
FPTCN connectivity failed to correctly predict decline in each case.

Discussion
Brain-based statistical models predicted significant variance in
clinically relevant outcome measures for individuals with ASD.
Furthermore, this variance was unique from and beyond that
which is explained by age, regression to the mean over time, and
duration between testing times. On the timescale of several years,
we observed that a measurable number of the individuals with
ASD in our sample displayed significant change in behavioral
measures of predominantly social autistic traits (SRS) or adaptive
functioning (ABAS). Simple measures of functional connectivity
obtained at rest using rs-fcMRI at the time of the first behavioral
assessment significantly predicted both SRS scores at a later date
(time 2) and the change in SRS and ABAS scores over time
(ΔSRS and ΔABAS). Furthermore, several of the rs-fcMRI re-
gression models showed high sensitivity (83–100%) in predicting
reliable improvement in ABAS scores.

Predicting Outcomes in ASD. In line with previous studies, we ob-
served a general tendency for core measures of impairment in
ASD to show modest improvements during adolescence and
early adulthood (4, 7, 8, 34–36) [for a review, see Seltzer et al.
(18)]. In our own study, we found that time 2 ABAS scores but
not time 2 SRS scores were significantly improved from mean
time 1 scores. In contrast to our findings, several recent studies
have found that samples of individuals with ASD without in-
tellectual disability actually show an age-related decline in adap-
tive behaviors as measured by the Vineland Adaptive Behavior
Scales (VABS) (2, 3, 6, 37). This difference could be due to our
choice of the General Adaptive Composite scores from the ABAS
rather than the VABS, or that we used longitudinal data rather
than performing a cross-sectional study. Szatmari et al. (9) addi-
tionally reported a quadratic shape to adaptive behavior and au-
tism symptoms with a peak in functioning in late adolescence (9).
Taylor and Seltzer (10) report related findings with the peak oc-
curring in the late 20s (10).

Table 1. Amount of residual variance explained (r2) for each
outcome measure using functional connections between
functional networks

Outcome measures DMN FPTCN SN

T2 SRS
DMN 0 0 0
FPTCN — 0.1439* 0
SN — — 0

T2 ABAS
DMN 0 0 0.017
FPTCN — 0 0
SN — — 0

ΔSRS
DMN 0.0228 0 0
FPTCN — 0.3351* 0
SN — — 0

ΔABAS
DMN 0 0.0679* 0.3062*
FPTCN — 0 0
SN — — 0.3181*

Rows and columns designate the networks from which features were de-
rived (e.g., DMN–DMN designates all intra-DMN connections, and DMN–FPTCN
designates all pairwise across-network connections between DMN and FPTCN).
*P < 0.005. Only the upper triangle of the symmetric result matrix is shown.
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Also in concordance with previous studies, we observed sub-
stantial heterogeneity in individuals’ trajectories (13, 17, 18). Ap-
proximately 44% of participants in our study showed significant
change in ABAS scores, and 41% showed significant change in
SRS scores.
Previous attempts to predict outcomes for adolescents with

ASD from measurements of behavior have found several factors
to be important. IQ and early language ability are perhaps the
most consistent predictors of outcome in studies that included
individuals with and without cooccurring intellectual disability
(1, 2, 5, 6, 11, 12, 14–16, 18, 37, 38). However, the range of vari-
ance explained by IQ and language ability varies widely. Billstedt

et al. (11), for example, found that IQ, sex, and attainment of
speech before age 5 y of age predicted 45% of variance in a mea-
sure of social interaction (11). Howlin et al. (14), on the other hand,
found that IQ predicted only 3% of variance in a composite out-
come score whereas language ability as measured by the Peabody
Picture Vocabulary Test predicted 32% of variance in outcome
(14). Studies of individuals with ASD without intellectual disability
found that IQ may be a weak predictor of adaptive behavior as
well (3, 37, 39). In line with the latter studies, we found that in-
cluding IQ as an additional feature in our brain-based regression
models did not improve outcome prediction. Our study included
exclusively males without an intellectual disability. If we had had a

Fig. 2. Functional connectivity involving three networks previously defined in Power et al. (31) (Center Left) including the salience network (SN, black),
default-mode network (DMN, red), and the frontoparietal task control network (FPTCN, yellow), predict significant variance in ΔABAS (Top Left, Top Right,
and Center Right; n = 27), ΔSRS (Bottom Right; n = 29), and T2SRS (Bottom Left; n = 29). In all scatter plots, the true outcome value is on the horizontal axis
and the predicted outcome value is on the vertical axis. The line of equality, representing a perfect prediction, is shown as a solid black line. For ΔABAS and
ΔSRS plots, green dashed lines represent the thresholds for a reliable change index (RCI) beyond the two-sided 95% confidence interval of the measure in the
direction of symptom improvement. Green data points are those that have an actual RCI beyond this threshold. For ΔSRS, red dashed lines represent the two-
sided 95% confidence interval threshold for worsening of symptoms, and red data points are those that have an actual RCI beyond the threshold. The
r2 values represent residual variance explained after accounting for behavioral measures (see Results). (Center Left) Reproduced from ref. 31, with
permission from Elsevier.
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more heterogeneous sample (e.g., including females and individ-
uals with intellectual disability), we might have found IQ and
gender to be strong predictors as well.
Our strongest results were not from predicting future scores

but rather from predicting the change in scores over time. We
found that baseline SRS, age, and follow-up latency explained
almost 41% of the variance in ΔSRS. After accounting for those
variables, rs-fcMRI data were able to predict nearly 34% of
the remaining variance or roughly 20% of the total variance
in ΔSRS. We know of only one other study that has tried to
predict the magnitude of change in SRS scores longitudinally.
Constantino et al. (36) collected SRS scores at two time points
and found that, whereas the two scores had a high intraclass
correlation, a linear regression model using baseline SRS, age,
and familial loading of Pervasive Developmental Disorder pre-
dicted only 11% of variance in the change in SRS scores over
time. The lower r2 value in their study is likely due to the much
more heterogeneous sample in their analysis, including children.
We also found that baseline scores, age, and follow-up latency
predicted a significant portion (26%) of the variance in change in
adaptive behaviors, ΔABAS. Functional connectivity data then
predicted about 32% of the remaining variance, equating to
roughly 23.5% of the total variance. To our knowledge, no others
have attempted to directly predict the magnitude of change of
adaptive behaviors. Several studies have modeled the trajectories
of adaptive behaviors over time using various numbers of groups
and functions (13, 40), and one study predicted the rate of
change in vocational and educational activities in adults with
ASD (41). The aim of these studies was often to identify pre-
dictors of trajectory group membership or identify the best
model among many alternatives. Consequently, the performance
of the regressions is rarely put in terms of variance explained. A
related study, however, did directly predict change in malad-
aptive behaviors over time. Shattuck et al. (42) found that base-
line measures predicted 36% of variance in the change in
maladaptive behaviors and that age, intellectual disability, lan-
guage ability, and sex accounted for an additional 7% of the total
variance (42). Together, our results indicate that functional brain
imaging data provide a marked increase in predictive power over
using behavioral data alone.
A recent study of ASD outcomes by Lombardo et al. (25) cor-

roborates this claim. The authors showed that fMRI data collected
during an auditory language task on infants and toddlers, who
later developed ASD, predicted a categorical language outcome
1 y postscan [68% accuracy, area under the curve (AUC), 69%].
The predictive power of the fMRI measures was comparable with
that of time 1 behavioral measures (68% accuracy, 69% AUC),
and combining the two modalities provided the best predictive
power (80% accuracy, 81% AUC). Another study also reported
significantly predicting ASD symptom severity using rs-fcMRI,
but they did not report the amount of variance explained by their
models (43). Previous studies with other populations, including
individuals with depression (26), dyslexia (27), alcoholism (28),
and academic difficulties (29, 30), have further shown that brain-
based features can add additional predictive power to behavioral
measures. For example, using a similar cross-validation procedure,
Supekar et al. (29) were able to predict individuals’ responses to
math tutoring above and beyond the variance explained by be-
havior using structural and functional MRI data collected before
tutoring. Hippocampal gray matter volume predicted 20.25% of
the variance in individuals’ math improvement, and connectivity
between the basal ganglia and hippocampus predicted 56.25% of
the variance. Myers et al. (30) found that white matter morphom-
etry, in conjunction with baseline behavioral measures, predicted
56% of the variance in reading impairment at a later date.

Functional Networks That Predicted Outcome. To aid in feature se-
lection, the networks that we investigated (SN, DMN, and FPTCN)

were selected a priori as those that distinguish individuals with
ASD from TD individuals (19). We focused foremost on creating
restricted but highly predictive models rather than conducting an
unbiased search for the most informative features. Such an ex-
ploratory analysis is an important future direction for this line of
work. It is possible that other networks or another combination of
networks could have performed similarly or better. Nonetheless,
our approach yielded valuable information regarding the predictive
power of specific networks.
The SN, in particular the anterior insula and anterior cingu-

late, has been repeatedly shown to be involved in ASD (19, 20,
24, 44). This network is thought to integrate bottom-up attention
and top-down executive control to mediate interactions between
other large-scale networks, such as the FPTCN and DMN, and to
assign value to stimuli for later processing (45). The nodes of the
SN have been implicated in disparate tasks ranging from social
processing (46–48) to purely cognitive tasks (49). Intra-SN con-
nections and SN–DMN connections were highly predictive of
change in ABAS general adaptive composite (GAC) score (r2 >
0.3)—a domain-general measure of adaptive behavior.
The DMN, which includes the anterior and posterior temporal

lobes, the temporoparietal junction, the medial prefrontal cortex,
and the precuneus, has been thought of as a “social brain” net-
work involved in theory of mind and self-referential cognition (24,
48, 50). It is perhaps surprising that this network was not pre-
dictive of SRS scores, a measure of predominantly social traits.
Rather, the DMN’s connections with the SN and the FPTCN
were predictive of more general improvement measured by the
ABAS (51).
Given the broad nature of the ABAS, it is difficult to ascribe

specific functions of these networks to their predictive power.
Hearteningly, however, there is evidence that some of these re-
gions may be predictive of other outcomes in ASD populations.
The study by Lombardo et al. (25) of prospective language
outcomes in ASD also showed that activity in the anterior insula
and anterior cingulate of the SN, as well as medial prefrontal
cortex and portions of the superior temporal cortex included in
the DMN, correlated with future language ability using partial
least squares correlation.
We did additionally assess outcome with a more specific mea-

sure of social autistic traits in ASD: the SRS. This measure does
also include an “autistic mannerisms” subscale that taps into the
restricted and repetitive behavior symptoms characteristic of ASD.
T2 SRS and ΔSRS scores were significantly predicted by the
FPTCN—a network that is most often associated with nonsocial
reasoning, as well as cognitive and task control (48, 52, 53). How-
ever, these connections had poor sensitivity in predicting reliable
improvements in SRS (44.44% sensitivity) and failed to accurately
predict any of the reliable declines of SRS. In Fig. 2, one can see
that intra-FPTCN connectivity underestimated ΔSRS scores and
accurately estimated only individuals who had a nonsignificant
RCI (jRCIj < 1.96).

Limitations and Future Studies. Our study has four key limitations
that ought to be addressed in future research. First, although we
have a comparably sized cohort (n = 31) to prior longitudinal
studies of outcome in ASD, we have a relatively small sample
size for the machine learning methods we used. Having fewer
participants limits us to performing LOOCV rather than a more
conservative and less variable model evaluation procedure, such as
3- or 10-fold cross-validation or separate training and test sets.
Additionally, the ratio of features to participants makes a whole-
brain connectivity regression model difficult. Data-driven feature
selection in a small sample can be quite unstable and unreliable;
thus, we were limited to choosing networks previously implicated
in ASD. Future studies using a larger sample size could leverage
more statistical power to make more generalizable claims about
outcomes for individuals with ASD without intellectual disability
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and the features that are most informative. Second, we have only
two time points in our design. Behavioral studies with multiple
data-collection time points (7, 13, 42) found that some participants
show nonmonotonic functions of improvement or decline over
time and cyclical change in impairment. Having more time points
in a future study would allow us to also investigate the stability of
change in symptoms. Third, the data were not originally collected
with a longitudinal analysis in mind so behavioral assessments did
not occur in fixed intervals. This variable follow-up latency could
have affected the magnitude of change in outcome measures in a
manner that was not accounted for by our linear correction.
Fourth, we have a relatively homogeneous sample of adolescent
and young adult males with ASD without cooccurring intellectual
disability. It is unclear how our results would generalize to cohorts
that include comorbid intellectual disability or females. Despite
these limitations, this study highlights the potential clinical value
of following individuals longitudinally for both behavioral and
neuroimaging studies.
Additionally, we were not able to collect information regarding

treatments and interventions received by the participants in this
study between the follow-up periods. One important line of future
work would be to harness such information to identify “brain
types” that are most responsive to treatments.

Conclusions
Resting-state functional connectivity predicted significant variance
in longitudinal measures of ASD social symptomatology and
adaptive behavior even after effects of age, baseline score, and
follow-up latency were removed. The performance of these models
reflects an ability to predict, with high sensitivity, a meaningful
behavioral change beyond the SE of the measurement. These
findings provide evidence for networks that underlie changes in
social and adaptive behavior and suggest that including brain data
may improve the prognostic power of clinical assessments.

Materials and Methods
Ethics approval for this study was granted by the NIH Combined Neuroscience
Institutional Review Board under protocol number 10-M-0027. The clinical
trial number (clinicaltrials.gov) for this protocol is NCT01031407.

Thirty-one previously described male adolescents and young adults with
ASD without intellectual disability (mean age = 17.93 y, SD = 3.39 y) took
part in the study. Participants were recruited from the Washington, DC
metropolitan area and met Diagnostic and Statistical Manual-IV and -5 di-
agnostic criteria as assessed by an experienced clinician. The participants
received the Autism Diagnostic Interview (ADI or ADI-R) (54, 55), the Autism
Diagnostic Observation Schedule (ADOS, modules 3 or 4) (56), or both, ad-
ministered by a trained, research-reliable clinician. All scores from partici-
pants with ASD met cutoff for the category designated as “broad autism
spectrum disorders” according to criteria established by the National In-
stitute of Child Health and Human Development/National Institute on
Deafness and Other Communication Disorders Collaborative Programs for
Excellence in Autism (57). IQ scores were obtained for all participants. All
full-scale IQ scores were >80 (Wechsler Abbreviated Scale of Intelligence, 29
ASD participants; Wechsler Adult Intelligence Scale-III, 2 ASD participants).

Scores on the SRS (58), an informant-based rating scale used to assess
social and communication symptoms quantitatively, and the ABAS-II (59),
an informant-based rating scale used to assess adaptive functioning, were
obtained from parents for all ASD participants at the time of scanning [time
1 (T1)]. At least 1 y postscan, participants were contacted again to obtain
follow-up scores on these two scales [time 2 (T2)], with an average of 2 y,
11 mo between SRS assessments and 2 y, 10 mo between ABAS measures. T2
behavioral scores were successfully obtained for 27 participants on the ABAS
and 29 participants on the SRS (Table 2 and Fig. 1). Informed assent and
consent were obtained from all participants and/or their parent/guardian in
accordance with a National Institutes of Health Institutional Review Board
approved protocol.

Outcome Measures. Regressions were performed to predict four separate
outcome measures: T2 SRS sum t-scores (T2SRS), T2 ABAS general adaptive
composite (GAC) standard scores (T2ABAS), the difference between T2 and T1
SRS sum t-scores (ΔSRS), and the difference between T2 and T1 ABAS GAC

standard scores (ΔABAS). Effects of age, variable duration between test times
(hereby referred to as follow-up latency), and baseline score were removed
from ΔSRS and ΔABAS by multiple linear regression. These residual ΔSRS and
ΔABAS were then converted to reliability of change indices (RCIs) by dividing
the score by each measure’s SE of measurement derived from test–retest
reliability (51, 58). This procedure yields pseudo–z-statistics for determining
the significance of change. Effects of age and follow-up latency were also
removed by the same method from T2 SRS and T2 ABAS (Fig. 1C). Regressions
using the rs-fMRI data were performed on the residual outcome scores. This
procedure, similar to a hierarchical regression, allowed us to determine how
much unique variance is explained by the rs-fcMRI data after accounting for
age, follow-up latency, and simple regression to the mean.

fMRI Acquisition. Functional MRI data were collected using a GE Signa 3T
whole-bodyMRI scanner at the NIH Clinical Center NMR Research Facility. For
each participant, a high-resolution T1-weighted anatomical image (MPRAGE)
was obtained (124 axial slices, 1.2-mm slice thickness, field of view = 24 cm,
224 × 224 acquisition matrix). Spontaneous brain activity was measured
during functional MRI using a gradient-echo echo-planar series with whole-
brain coverage while participants maintained fixation on a central cross and
were instructed to lie still and rest quietly (repetition time = 3,500 ms, echo
time = 27 ms, flip angle = 90°, 42 axial interleaved slices per volume, 3.0-mm
slice thickness, field of view = 22 cm, 128 × 128 acquisition matrix, single-
voxel volume = 1.7 mm × 1.7 mm × 3.0 mm). Each resting scan lasted 8 min,
10 s for a total of 140 consecutive whole-brain volumes. A GE eight-channel
send–receive head coil was used for all scans, with a sensitivity encoding
(SENSE) factor of 2 used to reduce gradient coil heating during the session.

fMRI Preprocessing. fMRI data were preprocessed in accordance with pipe-
lines recommended by Jo et al. (60) using the AFNI software package (61).
The first four echo-planar image volumes were removed from the resting
scan, and the remaining volumes were subsequently despiked to remove
large transient fluctuations. Retroicor (62) and respiration volume per time
(RVT) (63) regressors were created from cardiac and respiration measures.
Volumes were then slice time-corrected, coregistered to the anatomical scan,
resampled to 2.0-mm isotropic voxels, smoothed with an isometric 6-mm
full-width half-maximum Gaussian kernel, normalized to reflect percent
signal change, and transformed into the standardized Talairach and Tour-
noux (64) volume for the purposes of group analyses. We applied the basic
ANATICOR procedure (65) for removing nuisance artifacts from the echo-
planar image data as follows: The anatomical scan was segmented into tis-
sue compartments using Freesurfer (66). Ventricle and white-matter masks
were created and eroded. Masks were then applied to the volume-regis-
tered echo-planar image data before smoothing to yield pure nuisance time
series for the ventricles, as well as local estimates of the blood oxygen level-
dependent signal in white matter that were averaged within a 15-mm radius
sphere. All nuisance time series were detrended with fourth-order polyno-
mials before least-squares model fitting to each voxel’s time series. Nuisance
variables for each voxel included the following: an average ventricle time
series, a local average white-matter time series, twelve parameter estimates
for head motion and the first derivatives of head motion, RVT, and Retro-
icor. The predicted time course of these nuisance variables was then sub-
tracted from the full voxel time series to yield a residual time series to be
used in correlation analyses. The residuals were bandpass filtered (0.01–0.1 Hz)
and censored simultaneously. This latter procedure removed time points

Table 2. Demographic and behavioral outcome variables

Variable Mean SD

Age at scan 17.93 3.39
IQ 112.61 15.74
ADOS: soc + comm 11.61 4.62
T1 scores

SRS 75.9 12.77
ABAS-II 71.96 13.56

T2 scores
SRS 71.97 14.59
ABAS-II 81.93 14.53

Follow-up latency, y
SRS 2.96 1.28
ABAS-II 2.85 1.11

soc + comm, social and communication symptoms.
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in which gross head motion exceeded 0.3 mm or in which >10% of brain
voxels were determined to be outliers. Such global signal intensity outliers
were determined using AFNI’s 3dToutcount, which removes trend terms
from the time series before setting a threshold based on the median ab-
solute deviation. Spatial alignment and Talairach transformation were vi-
sually inspected to ensure proper registration to the template brain. All
participants had <10% of the total time frames removed due to motion or
global intensity changes.

Connectivity Measures and Feature Matrices. A set of 264 spherical regions of
interest (ROIs) (5-mm radius) described in Power et al. (31) were used to
create fMRI time course correlation matrices for subjects’ processed echo-
planar image (EPI) time series. Time courses were extracted and averaged
within each region. Linear correlations were computed between the aver-
age time courses of each region in an ROI set and Fisher transformed. Fisher
transformed r values were then z-transformed within subject to remove the
effects of global levels of correlation.

In the Power et al. ROI set, each region is associated with 1 of 13
functional networks (31). In our previous study (19), we found that con-
nections involving regions from several of these networks were highly
informative in classifying scans from ASD and typically developing indi-
viduals. The four networks that were the most common among the top 25
regions were the default-mode network (DMN), frontoparietal task con-
trol network (FPTCN), the salience network (SN), and the cingulo-opercular
network (CON). Because the scans used in the present analysis constituted
a subset of the scans used in our previous study, we sought to ensure that
our choice of networks was robust and not biased by previous analyses.
We repeated the region ranking procedure described in Plitt et al. (19)
using only scans not presented in the current study. DMN, FPTCN, SN, and
the sensory/somatomotor-hand network were the top networks in this
repeated analysis. CON failed to survive replication. Because the DMN,
FPTCN, and SN replicated across both procedures, we will focus only on
these three networks.

To further aid in feature selection, we performed separate regressions
using correlation values either within each network (e.g., all DMN–DMN
correlations) or across a pair of networks (e.g., all DMN–FPTCN correlations).

In each case, this process yielded an Ns × Nf feature matrix, F, where Ns =
the number of subjects and Nf = the number of features (Fisher-transformed
correlation values). For each regression, F has an associated label vector, L,
containing the clinical scores for each subject. Subjects’ time 1 behavioral
scores were used to create an additional feature matrix.

Multivariate Brain-Based Regression to Predict Outcome Measures. To deter-
mine whether functional connectivity can predict future clinical scores, we
implemented a simple large-scale regression algorithm, ridge regression,
using Scikit-learn (67). Due to our clinical sample size and to obtain the
highest possible estimates of regression accuracy, we chose to use leave-one-
out cross-validation (LOOCV). In LOOCV, data from all but one participant
(the “training set”) is used to predict the label for the left-out participant
(the “test set”), repeating the process for all subjects.

To further reduce overfitting, during each fold of cross-validation, we
applied univariate feature selection to choose the 100 best features to keep
in themodel before model selection and fitting [see Dosenbach et al. (68) for
a similar approach]. After univariate feature selection, hyperparameters
were chosen based on the training set by a grid-search method using
stratified-fivefold cross-validation. The final model chosen by grid-search
was fit to the training set and subsequently tested on the “test” sample
from the first split of the data. This procedure was repeated for all folds of
the first-level cross-validation procedure to determine the overall perfor-
mance of the machine-learning regression. This method resulted in a two-
level cross-validation procedure similar to that described in Plitt et al. (19).
This nested cross-validation is recommended to achieve unbiased estimates
of hyperparameters (69).

For each algorithm, we report an empirical r2 value derived from LOO
cross-validation. The significance of this r2 value was determined using
permutations tests. In this test, the label vector, L, that contains each sub-
ject’s actual clinical scores is randomly permuted many times, and the same
cross-validation described above is performed after each permutation. We
performed 1,000 permutations to build a null distribution for each cross-
validation metric. If the cross-validation metrics achieved with the true data
are greater than 95% (P < 0.05) of those achieved during the permutations,
then we accept the performance of the classifier as significantly greater
than chance.
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