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Abstract

We propose a method for assessing an individual patient’s risk of a future clinical event using 

clinical trial or cohort data and Cox proportional hazards regression, combining the information 

from several studies using meta-analysis techniques. The method combines patient-specific 

estimates of the log cumulative hazard across studies, weighting by the relative precision of the 

estimates, using either fixed- or random-effects meta-analysis calculations. Risk assessment can be 

done for any future patient using a few key summary statistics determined once and for all from 

each study. Generalizations of the method to logistic regression and linear models are immediate. 

We evaluate the methods using simulation studies and illustrate their application using real data.
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1. Introduction

The concept of meta-analysis dates back to when Fisher [9] proposed a method to combine 

p-values from several studies to obtain an overall significance test. In addition to hypothesis 

testing, meta-analyses techniques are used to combine estimates from several studies to get 

an overall estimate. Examples using clinical trials include the meta-analyses to assess 

therapeutic benefit performed by the Early Breast Cancer Trialists’ Collaborative Group [8] 

and the Colorectal Cancer Collaborative Group [4]. Meta-analysis methods have also been 

applied to risk assessment studies [3,19].

In clinical settings, the inference of standard meta-analysis is to a patient population. 

However, in the era of personalized medicine, we are often interested in assessing an 

individual patient’s risk of a particular clinical event or outcome. This objective calls for 

another approach. The information relevant to the individual patient is likely to vary among 

studies, depending on the joint distribution of the covariates in each study. Suppose, for 
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example, that we are trying to assess the risk of post-surgical cancer recurrence based on a 

patient’s tumor grade and tumor size. If the individual patient being assessed has a large 

tumor, a study having a substantial number of patients with large tumors will be more 

informative than a study that has primarily smaller tumors.

Hence, when using multiple studies to assess the risk of a clinical event for an individual 

patient, it is sensible to account for the amount of information that each study provides for 

the individual. We refer to this method as ‘patient-specific meta-analysis’. We develop the 

method in Sections 2.1–2.5 for multivariate Cox proportional hazards regression applied to 

time-to-event data that may be right-censored, with the usual assumption that, conditional on 

the covariates, censoring is independent of the event time. Generalizations to logistic 

regression analysis of a binary endpoint and linear models for a continuous numerical 

outcome are given in Section 2.6. Simulation studies examining the performance of both 

fixed-effect and random-effect estimators and confidence intervals (CIs) are described in 

Section 3. The motivation for this work was the development of a multivariate risk 

assessment tool for the recurrence of breast cancer based on two large studies. The studies 

and the results of the analysis using methods described here are described in Section 4 and 

in more detail by Tang et al. [16].

2. Methods

Suppose we wish to estimate the risk that a specific outcome or event occurs by a specified 

time t0 for an individual patient with vector of covariates z based on Cox proportional 

hazards regression [5]. Suppose further that we have a set of K studies of the relevant patient 

population with time to this event, possibly right-censored, as an endpoint. Denote the study 

sample sizes by n1, n2, …, nK and the observed covariate vector for patient i = l, 2, …, nk in 

study k by . Let β̂
k = (βk̂1, β̂

k2, …, β̂
kp)T represent the vector of 

proportional hazards regression maximum partial likelihood parameter estimates in study k, 

and let V̂
k be its estimated covariance matrix.

Given a patient with covariate vector z, our approach will be to estimate the patient-specific 

log cumulative hazard at time t0 for each study combine the estimates across studies using 

the meta-analysis principle of weighting each estimate by the inverse of its variance, then 

transform the result to obtain a risk estimate.

2.1 Estimating the patient-specific log cumulative hazard for each study

Let  if patient i in study k is in the risk set at time t and 0 if not, and let N̄(k)(t) 

denote the number of events in study k in the interval [0, t]. The Breslow [2] estimator of the 

baseline cumulative hazard function at time t0 for study k is 
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and a consistent estimator of its variance is

(see [17]). Tsiatis [18] showed that the Breslow estimator and the estimator of its variance 

are consistent under the mild regularity condition that Ez{z exp(βTz)} is uniformly bounded 

in a neighborhood of β. Now consider an individual patient with covariate vector z. The 

proportional hazards regression estimator of the cumulative hazard at time t0 is 

. Tsiatis [18] derived a consistent estimator for the variance of 

Λ̂(k)(t0;z), which can be written as 

(1)

where

(2)

(see Appendix A.1). The log cumulative hazard at time t0 is estimated consistently by 

 and, using the delta method, the variance of the 

estimate is consistently estimated by

(3)

2.2 Meta-analysis combination of the patient-specific estimates

If the available studies can be reasonably assumed to be equal in the background level of 

risk after having accounted for differences between study populations in the distributions of 

the covariates (that is, if a study patient with specified covariate values would have the same 

risk regardless of the study in which the patient participated), we can use the fixed-effects 

meta-analysis linear combination that weights each study by the inverse-variance of its 

patient-specific estimate of log cumulative hazard, that is 

(4)
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which has variance consistently estimated by

(5)

As shown in, for example, Hedges and Vevea [10], the linear combination (4) minimizes the 

estimated variance (5). It weights more precise estimates more heavily than less precise 

ones. Since the survival function is always equal to the exponential of the negative 

cumulative hazard function, the risk of occurrence of an event by time t0 is estimated 

consistently by 

(6)

with an asymptotic 100(1 − α)% CI given by 

(7)

where Φ−1 is the inverse cumulative distribution function of the standard normal 

distribution.

If we believe that there is a variation among the studies in the level of risk after accounting 

for the covariates, and if we have a sufficient number of studies to reasonably estimate this 

inter-study variation, a random-effects meta-analysis estimate of the log cumulative hazard 

at time t0 can be derived from the estimates for the individual studies, using the method of 

Paule and Mandel [12] as adapted by DerSimonian and Kacker [6]. The combined estimate 

is 

(8)

where  and τ̂² (z), an estimate of inter-study variability in the 

log cumulative hazard, is the unique solution to the estimating equation 

(9)

where . This is essentially the method of 

moments, the solution τ2 = τ̂2(z) being the inter-study variance estimate for which the sum 

in Equation (9) is equal to the expected value of a chi-square random variable with K − 1 

degrees of freedom, which this sum should approximately follow if the weights Wk(τ2) are 

the true variances of the ρ̂
k(z). The solution to Equation (9) can be found using Newton–

Raphson iteration [6]; if the solution is negative, we set τ̂2(z) = 0. Rukhin et al. [15] showed 
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that τ̂2(z) is an approximate restricted maximum likelihood estimator (over the parameter 

space τ2 ≥ 0). We can rewrite Equation (8) as , where 

 are weights that sum to one. The estimator ρ̂(z) is 

asymptotically normal with variance approximately equal to .

However, the variance estimator  does not account for variability in the estimate of 

inter-study variation τ̂2(z) and thus underestimates the variance of ρ̂(z). Using the second-

order delta method, a consistent variance estimator of ρ̂(z) that accounts for the variation in 

the estimator τ̂2(z) is 

(10)

where D1(z) and D2(z) are the first and second derivatives of ρ̂(z) with respect to τ̂2(z). 

Closed form expressions for , D1(z) and D2(z) are given in Equations (A.1)–(A.3) 

in Appendix A.3.

If the solution to Equation (9) is a negative number, we set . The risk of the 

event occurring by time t0 is estimated using Equation (6), with CI given by Equation (7), 

substituting ρ̂(z) from Equation (8) and σ̂2(z) from Equation (10) into both equations.

2.3 Key summary statistics

The patient-specific meta-analysis risk assessment can be made for any future patient with 

arbitrary covariate vector z using the following key summary statistics:

1. The baseline cumulative hazard estimates , k = 1, 2, …, K.

2.
The estimated variances of the baseline cumulative hazard estimates .

3. The proportional hazards regression parameter estimate vectors β̂
k and their 

estimated covariance matrices V̂
k.

4. The vectors γk defined by Equation (2).

2.4 Martingale extension estimate of the baseline cumulative hazard

The estimate of the baseline cumulative hazard becomes unstable near the end of patient 

follow-up when the risk set is small. In case a particular study has few patients followed up 

through the time t0 at which we are estimating the risk, we can consider extrapolating the 

cumulative hazard from a time tS = t0 − δ at which patient follow-up is sufficient to produce 

a reliable Breslow estimate. There are various ways to do this, but if the hazard appears to be 

constant over time near tS (as could be assessed by plotting the baseline cumulative hazard 

estimate as a function of time, as in Figures 1 and 2), a simple way is to assume that the 

hazard in the interval [tS, t0] is the same as the hazard in the interval [tS − δ, tS]. An estimate 

of the baseline cumulative hazard at time t0 is then given by
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As illustrated in Figure 2, this procedure linearly extends the cumulative hazard function 

from the estimated value at tS to time t0. Using the counting process formulation of survival 

analysis, we can write

The difference between the right-continuous event counting process N̄(k)(t) and the 

cumulative hazard is a martingale over the filtration generated by the histories of the 

counting process and the at-risk processes , i = 1, 2, …, n [17]. Since martingale 

increments are uncorrelated, the variance of the cumulative hazard estimate is consistently 

estimated by

The log cumulative hazard at time t0 can then be estimated by 

, with estimated variance 

, where 

 and

(see Appendix A.2).

2.5 Risk assessment when not all studies have the same patient subpopulations

Until now, we have assumed that all K studies have samples of patients from a common 

population. We now allow the possibility that some of the K studies also have patients from 

special subpopulations. For example, if we have a set of cancer studies, all studies might 

have cancer stage 1 patients, but some studies might have stage 2 patients as well. We will 

refer to the subpopulation that all the studies have in common as the ‘common 

subpopulation’ and subpopulations that only some of the studies have as the ‘special 

subpopulations’.
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We can use the data from all the patient subpopulations to estimate the risk for patients in 

the common subpopulation if we make the following assumption:

Assumption A: Within each study, the multivariate relationship between the covariates and 

clinical outcome is the same in each of the subpopulations (that is, there is no interaction 

between the covariates and subpopulation). 

This assumption can be tested in the studies with special subpopulations using a likelihood 

ratio test comparing a model that allows for covariate-by-subpopulation interaction to one 

that does not. A meta-analysis test of this assumption can be made by summing the 

likelihood ratio chi-square statistics across studies and referring the sum to a chi-square 

distribution with the summed degrees of freedom. If the test of interaction of covariates with 

subpopulation gives no indication of a violation of Assumption A, we can include patients 

from all the subpopulations in the meta-analysis calculations using indicator variables that 

take a value of 0 for patients in the common subpopulation and 1 for patients in the special 

subpopulations. We then estimate the risk for any specific patient who belongs to one of the 

common subpopulation by setting all the indicator function values equal to 0.

As long as at least one study enrolled patients from all the subpopulations of interest, we can 

also make use of all the studies in estimating risk for patients in the special subpopulations if 

we make the following additional assumption:

Assumption B: If patients from all the subpopulations had been enrolled in all the studies, 

the hazard for the event in question would have been related to subpopulation the same way 

in all the studies. 

Assumption B cannot be tested using the data; rather, it must be argued on grounds of 

clinical and biological considerations, for example, on the basis of study inclusion and 

exclusion criteria, enrollment period, or patient characteristics. If Assumption B is 

reasonable, then the risk assessment calculation can be done for patients in the special 

subpopulations using the key summary statistics described in Section 2.3. Suppose that 

among the p covariates, there are q that are indicators for special subpopulations and c = p − 

q that are common to all studies. Let S1 be the subset of studies that have only the common 

subpopulation of patients and S2 be the subset of studies that have one or more special 

subpopulations, so that S1 ∪ S2 = {1, 2, …, K}. Consider a specific patient whose c × 1 

vector of the common covariates is zC and whose vector of indicator variables for the special 

subpopulations is I = (I1, I2, …, Iq)T. Write the covariate vector as , 

where zC = (z1, z2, …, zc)T, and define , where 0q denotes a q × 1 vector of 

zeroes. Then, as shown in Appendix A.4, the log cumulative hazard accounting for 

membership in the special subpopulations as specified by I1, I2, …, Iq is consistently 

estimated by 

(11)
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where , for the fixed-effects meta-analysis 

 and , and for the 

random-effects meta-analysis

Similar to Equations (1) and (3), the variance of  is consistently estimated by

For the fixed-effects meta-analysis, the variance of ρ̂(z) is consistently estimated by 

. For the random-effects meta-analysis, without 

accounting for the variability in τ̂2(zC0), the variance of ρ̂(z) is approximately 

. Accounting for the 

variability in τ̂2(zC0) using the second-order delta method gives the estimate 

(12)

where now D1(z) and D2(z) are the first and second derivatives of ρ̂(z) with respect to 

τ̂2(zC0). Closed form expressions for D1(z), D2(z) and  are given in Equations 

(A.4)–(A.6) in Appendix A.4.

The risk of an event occurring by time t0 can be estimated by r̂(z) = 1 − exp[− exp {ρ̂(z)}] 

with asymptotic 100(1 − α)% CI (1 − exp[− exp{ρ̂(z) − Φ−1(1 − α/2)σ̂(z)}], 1 − exp[− exp{ρ̂

(z) + Φ−1(1 − α/2)σ̂(z)}]). When estimating the risk for a patient in the common 

subpopulation, all of the special subpopulation indicators are 0, so this estimate and its CI 

reduce to the previous calculations (6) and (7).

2.6 Application to other types of endpoints and analysis methods

Patient-specific meta-analysis methods can be applied in analysis settings other than 

proportional hazards regression of a time-to-event endpoint.

2.6.1 Logistic regression—For a binary outcome analyzed using multivariate logistic 

regression, let the log odds estimator from study k for a patient with covariate vector z be 

denoted by , where z includes the intercept term, and its estimated variance by 
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, where V̂
k is the estimated covariance matrix of the regression parameter 

estimate vector β̂
k. The meta-analysis estimate of the log odds ρ̂(z) and its estimated 

variance σ̂2(z) are computed from Equation (8). The patient-specific meta-analysis risk 

estimate is r̂(z) = 1/[1 + exp {−ρ̂(z)}] with level α CI (1/[1 + exp{−ρ̂(z) − Φ−1(1 − α/2)σ̂

(z)}], 1/[1 + exp{−ρ̂(z) + Φ−1(1 − α/2)σ̂(z)}]). The key summary statistics needed to 

estimate the risk for any future patient are each study’s regression parameter estimate vector 

β̂
k and its estimated covariance matrix V̂

k.

2.6.2 Linear models—For a continuous numeric response variable y analyzed by linear 

regression or the analysis of covariance, let  be the estimated response variable 

value for a patient with covariate vector z, where ȳk is the mean response variable in study 

k, with estimated variance , where  is the residual error 

variance and z̄k is the mean covariate vector in study k. The patient-specific meta-analysis 

estimate of the response variable is 

, where τ̂2(z) is estimated as 

above. A level α CI for y is (ŷ(z) − Φ−1(1 − α/2)σ̂(z), ŷ(z) + Φ−1(1 − α/2)σ̂(z)).

3. Simulation studies

Much of the method derivation above is based on asymptotics. In particular, the delta 

method estimate of the variance of the meta-analysis estimate accounting for the variability 

in the inter-study variance estimate τ̂2(z) is asymptotically valid as the number of studies 

becomes large. There are usually only a few studies in a meta-analysis. Accordingly, we 

conducted a simulation study to evaluate the performance of the estimates and CIs with 

smaller sample sizes and numbers of studies.

We simulated data for three covariates z = (z1, z2, z3)T having a multivariate normal 

distribution with mean vector μz = (0,0,0)T and covariance matrix

Time-to-event data were simulated using the exponential distribution. The distribution for 

patient i having simulated covariate vector zi had intensity parameter (hazard) equal to βTzi, 

where β = (0.2, −0.3, 0.4)T. Random censoring of event times was introduced using 

independent, exponentially distributed censoring times. To achieve specified expected 

numbers of events NE with a total sample size N, the intensity parameter for the censoring 

time distribution was set to λC = {(1 − r)/r}λE, where r = NE/N and λE is the time-to-event 

exponential distribution intensity. Tsiatis’ [18] regularity condition for consistency of the 

Breslow estimator and its variance estimator is clearly satisfied for the multivariate normal 

covariates (see Appendix A.5). The simulations considered a total of 12 studies with the 

following expected number of events/total sample sizes (using martingale extension of the 
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specified percentage of time): 100/1000, 70/500 (10%), 80/700, 30/300, 60/600, 80/800 

(20%), 40/400, 90/900, 45/550 (10%), 40/350, 75/750 (10%) and 60/650. Simulations were 

conducted for scenarios of 2–12 studies taken in order from the preceding list.

First, 10,000 simulations were performed for each scenario, without inter-study variation in 

the baseline log hazard. Using both the fixed-effects patient-specific meta-analysis and 

random-effects patient-specific meta-analysis calculations, we estimated the risk at a 

specific time for covariate vector values (0,0,0), (1,1,0), and (2,2,−2) and computed 95% 

CIs. The first vector value is typical of the sampling distribution N(μz, Σz), with all values at 

the population mean; the second is unusual, with the values of two covariates each set at 1 

standard deviation (SD) above the mean although they are negative correlated; the third is 

highly unusual. The probability of coverage of the true risk by the 95% CI and the median 

bias of the estimator as a percentage of the true risk were computed.

Next, inter-study variation in the log hazard was introduced by adding a normally distributed 

random variable pk ~ N(0, τ2) to the baseline log hazard in study k in each iteration of the 

simulation. We ran 10,000 simulations for τ =0.1, 0.2 and 0.3 and each number of studies. In 

each iteration, the risk at a specific time was estimated and a 95% CI computed using the 

random-effects patient-specific meta-analysis, and the coverage probability and median 

percentage bias of the estimator were computed. The values of τ = 0.1, 0.2 and 0.3 represent 

3–4%, 6–9% and 9–13%, respectively, of the true log cumulative hazard at the covariate 

values (0,0,0), (1,1,0) and (2,2,−2). With 10,000 iterations, the standard error of the 

estimated coverage probability when the true coverage probability is 95% is 0.2%, so the 

coverage probability estimates are accurate to within ±0.4% (95% CI).

The results for the simulations without inter-study variation (Figure 3) show coverage 

probabilities very close to the nominal 95% for the fixed-effects patient-specific meta-

analysis calculations and little bias in the estimator (within ±2%). Applying the random-

effects patient-specific meta-analysis in this setting gives slightly conservative CIs. Bias is 

small (again within 2%) and tended to be negative.

In the results for the simulations incorporating inter-study variation (Figure 4), coverage 

probabilities were close to the nominal 95%, and slightly higher than nominal when inter-

study variation was small, when six or more studies were included in the meta-analysis 

calculations. However, when there were five or fewer studies, coverage probabilities were 

sometimes notably lower than the nominal value for larger values of inter-study variation. 

Bias remained within the ±2% range.

4. Example application

We now give an example application of patient-specific meta-analysis methods. In this 

application, the objective was to estimate individual node-negative, estrogen receptor (ER)-

positive breast cancer patients’ risk of distant recurrence of cancer within 10 years after 

surgery. The covariates were the Oncotype DX® Recurrence Score® (RS, a tumor tissue 

genomic assay), tumor grade (well, moderately or poorly differentiated), tumor size in cm 

and the patient’s age. These covariates were pre-specified; these were chosen because they 

are known prognostic factors for breast cancer. Data were available from two studies of RS 
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as a prognostic score in ER-positive breast cancer patients treated with hormonal therapy: 

National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trial B-14 [11] and 

the TransATAC study [7]. The primary endpoint in both studies was time from surgery to 

distant recurrence of breast cancer. Patients in NSABP B-14 were node-negative (N0) and 

treated with tamoxifen; patients in TransATAC were randomized to receive either tamoxifen 

or anastrozole. TransATAC included N0 patients, patients with one to three positive nodes 

(N1–3) and patients with four or more positive nodes (N4+). There were 102 primary 

endpoint events among 647 patients from NSABP B-14 and 137 events among 1088 patients 

from TransATAC. RS was included in the multivariate analysis using a two degree-of-

freedom natural spline described by Royston and Parmar [14].

The patient population in this analysis had one common subpopulation consisting of N0 

tamoxifen patients, and five special subpopulations: (1) N0 anastrozole patients, (2) N1–3 

tamoxifen patients, (3) N1–3 anastrozole patients, (4) N4+ tamoxifen patients and (5) N4+ 

anastrozole patients. Likelihood ratio tests using the TransATAC data showed no evidence 

of interaction of either randomized treatment or nodal status with the covariates RS, tumor 

grade, tumor size or age, so the data from both treatment groups and all three nodal status 

subpopulations were used in the analysis of TransATAC.

Recurrence risk at 10 years was to be assessed, but patient follow-up in the TransATAC 

study was limited after 9 years. Therefore, the martingale extension estimate of the baseline 

cumulative hazard at 10 years for TransATAC was computed, assuming that the hazard 

between 9 and 10 years was the same as the hazard between 8 and 9 years. The 10-year 

baseline cumulative hazard estimate for NSABP B-14 is shown in Figure 1; the calculation 

of the martingale extension estimate at 10 years for TransATAC is shown in Figure 2. The 

calculation appears reasonable, as the observed hazard is approximately constant starting at 

6 years.

Results of the multivariate Cox regression analysis are shown in Table 1. Patient-specific 

meta-analysis cumulative hazard estimates were computed using the fixed-effects meta-

analysis estimator. Estimates of the log cumulative hazard from the individual studies and 

the patient-specific meta-analysis for hypothetical patients with various covariate values are 

shown in Table 2. The relative precision of the individual study estimates vary with the 

covariate values, influencing the weight of each study in the calculation. The precision of 

the estimate from each study is determined by where the specified patient covariate values 

fall in the joint distribution of the covariates in each study. Of course, the meta-analysis 

variance is always lower than the individual study variances. The patient-specific meta-

analysis estimate of risk and its CI are also shown in Table 2.

Assumption B (Section 2.5) seemed reasonable for the relative efficacy of tamoxifen versus 

anastrozole treatment based on the similarity between studies of the enrollment criteria and 

patient population characteristics. In particular, since both studies were in early stage, ER-

receptor positive breast cancer, it seemed reasonable that if eligible B-14 patients had been 

randomized to anastrozole or tamoxifen, a similar treatment effect would have been 

observed in B-14 and TransATAC. Accordingly, the risk of distant recurrence was estimated 

for some hypothetical N0 patients with planned anastrozole treatment. The results, including 
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a comparison to the risk assessment with planned tamoxifen treatment, are shown in Table 

3. The CIs with anastrozole treatment are slightly wider than with tamoxifen treatment since 

in total there are fewer anastrozole- than tamoxifen-treated patients, and thus less 

information for the risk assessment.

5. Discussion

The simulation results suggest that the random-effects meta-analysis calculation based on 

asymptotics can be safely used if there are at least six studies in the analysis. With five or 

fewer, the coverage probabilities may be lower than nominal for some covariate values if 

inter-study variation is substantial.

We used all the available studies in early stage ER-positive breast cancer that had the end-

point distant recurrence, the specified covariates and sufficient endpoint events to support 

the multivariate analysis (at least 10 events per covariate). As with any meta-analysis, using 

all available relevant studies helps to reduce bias. We kept all the pre-specified covariates in 

the model for each study, even though some were not statistically significant when the 

models were fit to the study data. Retaining all the pre-specified covariates produces valid 

CIs and generally more accurate predictions than dropping non-significant covariates or 

using step-wise selection procedures [1,13].

We prefer to use log cumulative hazard estimates for proportional hazards regression (or log 

odds ratio estimates for logistic regression) rather than risk estimates for the inverse-

variance meta-analysis calculation because the variance of the log cumulative hazard 

estimators does not depend on the value of the estimate. The risk estimator’s variance does 

depend on the value of the risk estimate, so the inverse-variance principle would 

inappropriately weight small risk estimates more heavily than large ones, producing a biased 

estimate.

Access to the full data set from each study is not required to perform the patient-specific 

meta-analysis calculations: the key summary statistics listed in Section 2.3 suffice for 

proportional hazards regression (as do those listed in Section 2.6.1 for logistic regression 

and Section 2.6.2 for linear models). However, because not all these statistics are commonly 

reported in the literature, a limitation of the patient-specific meta-analysis method is that it 

normally requires the cooperation of the owners of the data from the various studies in order 

to compute the key summary statistics. No pooling of study data is required, though, as the 

summary statistics are computed separately for each study. Once calculated, the key 

statistics can be used to compute the patient-specific meta-analysis risk estimate for any 

future patient without recourse to the original study data.

Although the calculations could be done, the effectiveness of these method for assessing risk 

would be diminished if the same important prognostic covariates were not available across 

all the studies used in the patient-specific meta-analysis (apart from indicators for special 

populations as discussed in Section 2.5). We recommend using these methods primarily 

when the same covariates are available across all the studies.
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Finally, although we have developed the patient-specific meta-analysis method for risk 

assessment, the same methodology can be used to construct patient-specific meta-analysis 

estimates of any asymptotically normally distributed quantity assessed across several 

studies. For example, the magnitude of a treatment effect in an individual patient as 

measured by, depending on the endpoint, a treatment effect log hazard ratio from a 

proportional hazards regression, a treatment effect log odds ratio from a logistic regression 

or a treatment effect estimated from a linear model, could be estimated using patient-specific 

meta-analysis. The key principle of combining estimates across studies based on the amount 

of patient-specific information in each study still applies.
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Appendix

A.1 Asymptotic variance of Λ̂(k) (t0; z)

Tsiatis’s [18] consistent estimate of the variance of the estimated cumulative hazard Λ̂(k) (z; 

t0) for an individual patient with covariate vector z is

where

and . Defining

the vector qk can be rewritten as
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Thus we have

which is Equation (1).

A.2 Asymptotic variance of the martingale extension estimate Λ̂*(k) (t0; z)

Using the martingale extension estimate , 

the variance of Λ̂*(k) (t0; z) is estimated consistently by

where

and

A.3 Estimate σ̂2(z) of variance of patient-specific meta-analysis estimate ρ̂(z) 

accounting for variation in the estimate of inter-study variability τ̂2(z)

The partial derivative of the objective function F with respect to ρk̂(z) is
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Since the ρ̂
k(z) are stochastically independent of each other, we can apply the delta method 

to estimate the variance of F(τ̂2(z)) by

Rukhin et al. [15] showed that the derivative of the objective function F(τ2) with respect to 

τ2 is . Since τ̂2(z) is the solution to F(τ2) = 0, 

a consistent estimate of the variance of τ̂2(z) is thus given by

If we obtain τ̂2(z) = 0 because the solution of the estimating equation is a negative number, 

we set . The first derivative of ρ̂(z) with respect to the estimate τ̂2(z) is

Dropping, for the moment, the indications of dependence on z and τ̂(z), rewrite D1 as

The second derivative of ρ̂ is thus
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We will assume that the distribution of τ̂2, which is the solution to the estimating Equation 

(9) in the main text, is approximately normal. Using the second-order Taylor expansion of ρ̂ 

as a function of τ̂2 about the true inter-study variance τ2

the variance of ρ̂ due to the variability of the estimator τ̂2 can be approximated by

By the symmetry of the normal distribution, and since the kurtosis of a normal variate with 

variance σ2 is 3σ4, this equals

Approximating the first and second derivatives D1 and D2 by their values at τ̂2, we have the 

delta method approximation

for the portion of the variance of ρ̂ that is due to the variability in the estimate τ̂2.

Since τ̂2(z) is the estimator of inter-study variation, it is asymptotically uncorrelated with the 

estimator of the mean value ρ̂(z). Hence, applying the delta method, we can estimate the 

variance of ρ̂(z) accounting for the variation in the estimate τ̂2(z) by

Crager and Tang Page 17

J Appl Stat. Author manuscript; available in PMC 2015 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is Equation (10). From the derivations above, we have

(A.

1)

(A.2)

and

(A.

3)

A.4 Risk assessment when not all studies have the same patient 

subpopulations

Write the covariate vector as  where zC = (z1, z2, …, zc)T, and 

decompose the regression parameter estimate vector β̂
k for study k into  for 

k ∈ S1 and  for k ∈ S2, where 0q denotes a q x 1 vector of zeroes. First, 

compute the patient-specific meta-analysis log cumulative hazard estimate for a patient with 

the same values of the common covariates zC and all the special subpopulation indicator 

functions set to 0, that is, I1= I2 = ··· = Iq = 0. Write out this estimate as 

, where ρ̂
k(zC0) is the log 

cumulative hazard estimate for study k, having estimated variance , and the wk are 

the meta-analysis weights for this configuration of covariates. For the fixed-effects meta-

analysis, the weights are , and for the random-effects 

meta-analysis
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where τ̂2(zC0) is the estimate of inter-study variation in the log cumulative hazard when the 

covariate vector is zC.

Next, determine the relative weights  among the subset S2 of studies that have special 

subpopulations. For the fixed-effects meta-analysis we have 

, and for the random-effects meta-analysis

Finally, combine the estimated additional contributions to the log cumulative hazard due to 

the special subpopulations with the ‘baseline’ cumulative hazard estimate based on the 

common covariates. The log cumulative hazard accounting for membership in the special 

subpopulations as specified by I1, I2,…, Iq is consistently estimated by

where . This is Equation (11).

For the estimate of log cumulative hazard for patients in one of the special subpopulations, 

rewrite

where

Note that
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is the ratio of the weight for study k in the subset S2 to its weight in the full set of studies S1 

∪ S2. This ratio should be relatively stable, so dependence of  on τ̂2(zC0) and  should 

be minor. Thus, similar to the result above, the first derivative of ρ̂(z) with respect to τ̂2(z) is 

approximately

(A.4)

the second derivative is approximately

(A.

5)

and the variance of τ̂2(zC0) can be approximated by

(A.

6)

These are the closed form expressions for the terms in Equation (12).

A.5 Regularity condition for simulation study distributions

For a single covariate, Tsiatis’ [18] regularity condition for the consistency of the Breslow 

estimator and its variance estimator is that E{z exp(zβ)} is bounded in a neighborhood of β. 

The covariates in the simulation studies are normally distributed. For a standard normal 

variate z, we have

which is uniformly bounded in any finite interval. The generalization to a normal deviate 

with mean μ and SD σ follows by considering the linear transformation z′ = σz + μ. 

Completing the square as above, we have
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which is still bounded over any finite interval of β. The multivariate case with K covariates 

having arbitrary mean vector and covariance matrix follows by conditioning on the each 

subset of K − 1 covariates, after which the remaining covariate is univariate normal.
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Figure 1. 
Baseline cumulative hazard estimate for NSABP B-14. The black line is the Breslow 

baseline hazard function estimate. The arrow shows the estimated cumulative hazard at 10 

years.
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Figure 2. 
Baseline cumulative hazard estimate for TransATAC. The black line is the Breslow baseline 

hazard function estimate. The two rectangles in the upper right corner are of identical 

dimension. The arrow shows the martingale extension estimate of the cumulative hazard at 

10 years.
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Figure 3. 
Results of simulation study without inter-study variation. Results for the fixed-effects meta-

analysis calculations are in the first row; results for the random-effects meta-analysis 

calculations are in the second row. Coverage probabilities of 95% CIs (left column) and 

median bias of the risk estimator as the percentage of the true risk (right column). 

Simulations for various covariate values, numbers of studies.
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Figure 4. 
Results of simulation study for random-effect meta-analysis calculations. Coverage 

probabilities of 95% CIs (left column) and median bias of the risk estimator as the 

percentage of the true risk (right column) for various covariate values, numbers of studies 

and amounts of inter-study variation.
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