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Abstract

Background—The demonstration of chaperone-like activity in peptides (mini-chaperones) 

derived from α-crystallin’s chaperone region has generated significant interest in exploring the 

therapeutic potential of peptide chaperones in diseases of protein aggregation. Recent studies in 

experimental animals show that mini-chaperones could reach intended targets and alter the disease 

phenotype. Although mini-chaperones show potential benefits against protein aggregation 

diseases, they do tend to form aggregates on storage. There is thus a need to fine-tune peptide 

chaperones to increase their solubility, pharmacokinetics and biological efficacy.

Scope of Review—This review summarizes the properties and the potential therapeutic roles of 

mini-chaperones in protein aggregation diseases and highlights some of the refinements needed to 

increase the stability and biological efficacy of mini-chaperones while maintaining or enhancing 

their chaperone-like activity against precipitation of unfolding proteins.

Major conclusions—Mini-chaperones suppress the aggregation of proteins, block amyloid 

fibril formation, stabilize mutant proteins, sequester metal ions and exhibit antiapoptotic 

properties. Much work must be done to fine-tune mini-chaperones and increase their stability and 

biological efficacy. Peptide chaperones could have a great therapeutic value in diseases associated 

with protein aggregation and apoptosis.

General significance—Accumulation of misfolded proteins is a primary cause for many age-

related diseases, including cataract, macular degeneration and various neurological diseases. 

Stabilization of native proteins is a logical therapeutic approach for such diseases. Mini-

chaperones, with their inherent antiaggregation and antiapoptotic properties, may represent an 

effective therapeutic molecule to prevent the cascade of protein conformational disorders. Future 

studies will further uncover the therapeutic potential of mini-chaperones.
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1. Introduction

The primary function of the eye lens is to focus light on the retina. The lens is composed 

mostly of specialized proteins called crystallins [1]. The three main types of lens crystallins 

are α-, β- and γ-crystallin, which account for nearly 90 percent of the lens proteins. α-

Crystallin is the predominant type [2] and is composed of two types of subunits, A and B, 

which non-covalently associate to form aggregates with an average molecular mass of 800 

kDa. Both αA- and αB-crystallin subunits have chaperone-like activity that helps maintain 

the lens clarity [3, 4]. The other two crystallins, β- and γ-crystallin, have no chaperone 

activity and serve as structural proteins. While lens proteins have very little turnover, they 

do undergo age-related post-translational modifications that lead to aggregation [1, 4]. The 

age-related changes affect the interactions of α-, β- and γ-crystallin that play a role in the 

modulation of lens clarity. The αA-crystallin subunit is more prevalent than the αB subunit, 

in a ratio of 3:1 to 2:1 [4, 5]. The primary structures of αA- and αB-crystallin subunits 

exhibit a high degree of sequence similarity between them and to small heat shock proteins 

(sHSPs) because of the conserved α-crystallin domain in these proteins [6]. The secondary 

structure of α-crystallin is primarily in the form of β sheets. The tertiary and quaternary 

structure of α-crystallin is becoming clearer with the application of modern techniques to 

study the oligomeric structure of the protein [7–9]. Nuclear magnetic resonance studies 

show that the C-terminal regions of αA- and αB-crystallins are more flexible than the N-

terminal regions [10]. The α-crystallin molecule is a dynamic oligomer, with the subunits 

dissociating and reassociating constantly. Under in vitro conditions, the subunits of the α-

crystallin molecule exchange with a new set of subunits in about 4 hours [11]. The binding 

of partially unfolded β- or γ-crystallins to either of the α-crystallin subunits affects the 

subunit exchange [12–14]. Proper subunit interaction between αA- and αB-crystallin is 

clearly necessary to prevent the formation of light scattering aggregates of crystallins, an 

initial age-related change in the lens that could be the first event in the development of 

cataracts [13].

2. α-Crystallin chaperone activity and lens transparency

α-Crystallin chaperone activity, first discovered in 1992 by Horwitz [15], is thought to be 

involved in maintaining lens clarity. α-Crystallin (or its subunits) has been shown to 

suppress the aggregation of proteins partially unfolded by oxidation, heat and other stressors 

[16–18]. Cells expressing α-crystallin have increased thermoresistance [19]. α-Crystallin 

chaperone activity is modulated by low-molecular-weight compounds such as adenosine 

triphosphate (ATP) and glutathione, the concentrations of which are known to change in the 

lens with aging [20]. Modification of α-crystallin by glycation, ultraviolet irradiation and 

deamidation leads to the loss of chaperone activity [12, 21, 22]. The general consensus is 

that in addition to the structural role of α-crystallin in the lens, α-crystallin also functions as 

a chaperone in vivo. The factors that suppress α-crystallin chaperone function are thought to 

accelerate aggregation of other crystallins that are undergoing age-related modifications and 

losing their native structure. Consistent with this hypothesis, aged human lenses indeed 

exhibit decreased chaperone activity, increased crystallin aggregation, light scattering and 

loss of lens transparency [22–24]. Studies of total lens homogenates and whole lenses, as 
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well as αA knockout studies and congenital cataract studies, also argue in favor of the 

importance of α-crystallin chaperone function in the lens [25–29].

Multiple regions in α-crystallin subunits may be involved in chaperone activity [30–33]. 

Studies of congenital cataracts suggest that the structural changes in the mutant proteins 

expressed in congenital cataracts are likely to 1) mask the chaperone site and prevent 

chaperone action, 2) interfere with αA- and αB-crystallin subunit interactions, or 3) make 

the chaperone protein “hyperactive” and unstable, resulting in a chaperone–substrate 

complex that aggregates [18, 28, 34–36]. A number of studies have shown that the structure 

of α-crystallin must remain dynamic, with subunits constantly dissociating and 

reassociating, in order for chaperone activity to be maintained [13, 14, 37]. In support of this 

is an earlier study that showed recovery of chaperone activity in crystallins after cleavage of 

chemically cross-linked protein [38]. However, Augusteyn reported that glutaraldehyde 

cross-linked crystallin shows marginally higher chaperone activity than the native protein 

and attributed the maintenance of surface interaction between crystallin and client protein to 

preservation of chaperone activity [39].

3. Identification of chaperone sites in α-crystallin

Soon after chaperone activity of α-crystallin was reported in 1992, several investigators 

initiated studies to uncover the sequences/regions in the protein responsible for the activity. 

The C-terminal region [40], αA69D [41], the phenylalanine-rich N terminal region [42] and 

αB-R120 [43] were all shown to be important for the chaperone-like activity in α-crystallin 

subunits. Similar to the activity of the GroEL system [44], a strong correlation was found to 

exist between the exposed hydrophobic surface of the protein and chaperone activity of α-

crystallin subunits [44–46]. Early studies demonstrated that heat treatment of α-crystallin 

subunits leads to increased exposure of hydrophobic sites and that the heat-treated crystallin 

exhibits increased chaperone activity. Other methods of perturbation of the α-crystallin 

oligomer structure and increased exposure of hydrophobic patches also result in enhanced 

chaperone activity [47, 48].

Nearly 20 years ago, we set out to begin mapping the hydrophobic sites responsible for 

chaperone activity. We used the hydrophobic probe bis-ANS, photo-crosslinking and amino 

acid sequencing methods to identify the residues located at the chaperone site [30, 49]. We 

found that bis-ANS interacts with residues 50–54 and 79–99 in αA-crystallin and with 

residues 75–103 in αB-crystallin [30, 50]. In related studies we showed that melittin peptide 

interacts with α-crystallin [31] and that this interaction interferes with the chaperone 

function of crystallin [31, 51]. Therefore, we used novel cross linkers to cross-link melittin 

to αA-crystallin and to determine the melittin interaction sites on crystallin. Our approach 

led to the identification of 12RTLGPFYPSR21 and 70KFVIFLDVKHFSPEDLTVK88 

sequences in αA-crystallin as mellitin-binding sites. Reasoning that the hydrophobic site and 

the melittin interaction site on αA-crystallin were one and the same, we synthesized a 19 

amino acid peptide that corresponds to the 70–88 sequence (KFVIFLDVKHFSPEDLTVK) 

in αA-crystallin and demonstrated that this peptide encapsulates the chaperone activity of 

αA-crystallin [31]. Based on our hydrophobic site studies, on the client protein alcohol 

dehydrogenase (ADH) binding studies [52, 53] and on the sequence similarity between αA- 
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and αB-crystallin, we synthesized a 20 amino acid peptide 

(DRFSVNLDVKHFSPEELKVK), corresponding to the 73–92 region in αB-crystallin, and 

with this peptide showed that the 73–92 region is the chaperone site in αB-crystallin [51]. 

We named the synthetic peptides exhibiting chaperone activity “mini-chaperones.” In 

various publications they have been also called “αA-mini-chaperone,” “mini-αA peptide” 

and “mini-αB peptide,” etc. Using pin-array studies, Ghosh and Clark identified additional 

chaperone peptides representing specific regions of αB-

crystallin: 73DRFSVNLDVKHFS85, 113FISREFHR120, 131LTITSSLSDGV142 

and 156ERTIPITRE164 [54, 55]. Of the chaperone peptides identified by pin-array studies, 

one peptide, 73DRFSVNLDVKHFS85, was found to overlap with the mini-chaperone 

sequence identified earlier [51].

4. Synthetic chaperone peptides derived from mini-αA- and mini-αB-

crystallins

Our studies established that both mini-αA70-88 (KFVIFLDVKHFSPEDLTVK) and mini-

αB73-92 (DRFSVNLDVKHFSPEELKVK) peptide chaperones are effective in preventing 

aggregation and precipitation of unfolding proteins, similar to the full-length native α-

crystallin subunits [31, 51]. The mini-chaperone sequence is highly conserved across many 

small heat shock proteins (Table 1) and aligns with the β3 and β4 region in a three-

dimensional (3D) crystal structure of truncated α-crystallin [56, 57]. Substitution of Lys 

with Asp in the mini-αA-peptide increases the peptide’s solubility and chaperone-like 

activity. We have investigated the minimum sequence of the peptide essential for chaperone 

activity, with the intent of developing efficient and powerful chaperone(s) that can be used 

widely for therapeutic purposes, including for cataract, neurodegenerative diseases and other 

protein aggregation disorders. Table 2 lists several αA-crystallin–derived peptides with 

varying degrees of chaperone activity. We found that truncation of the KFVIF sequence at 

the N-terminal region of mini-αA70-88 (mini-αA75-88) completely abolished the chaperone 

activity. The removal of VK from the C-terminus of mini-αA (mini-αAΔ87-88) does not 

affect chaperone function. However, removal of DLTVK from the C-terminal end of the 

peptide (mini-αA70-83) completely impairs the chaperone function [31]. Further, we found 

that substitution of F71 with Arg (mini-αA-F71R) results in complete loss of its function, 

indicating the importance of aromatic residue Phe at the 71st position in αA-crystallin. 

Phe71 is a highly conserved residue in sHSPs, across many species (Table 1). It is well 

documented that the addition of charged amino acids to the peptides can produce 

dramatically different levels of activity [58]. We also attempted to add additional residues at 

either the N- or C-terminal, or both termini, to create chaperone peptides with increased 

activity. The charged amino acids, either DD or RR, were fused at the C-terminal end, and 

the new peptides with additional charged residues DFVIFLDVKHFSPEDLTVKDD and 

DFVIFLDVKHFSPEDLTVKRR showed total impairment of chaperone function. The 

addition of RG residues at the N-terminal and GR residues at the C-terminal end (RG-mini-

αA-GR) resulted in a 50% loss in chaperone activity, whereas addition of VQED residues at 

the C-terminal (mini-αA-VQED) retained the chaperone activity of the original mini-αA 

peptide. We also added a mixture of charged residues (neutral, positively and negatively 

charged residue GRD) at the C-terminal end of mini-αA. To our surprise, the resulting 
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peptide, DFVIFLDVKHFSPEDLTVKGRD (mini-αA-GRD), showed significantly higher 

(25%) chaperone activity than the original mini-αA peptide (Table 2).

In 2008 a correlation was first reported between chaperone-like activity and fibril formation 

of αA-crystallin–derived peptides [59]. In our investigations of fibril formation, we found 

that shaking the mini-αA-chaperone at 900 rpm for several hours leads to amyloid fibril-like 

aggregates. We also found that αA-crystallin–derived peptides αA66-80 and αA67-75 

readily form fibrils at physiological conditions, leading to our suggestion that the αA67-75 

region is the driving force in amyloid-like aggregate formation by αA-crystallin. The 

αA66-80 and αA67-75 peptides contain the core sequence FVIFLD, which has sequence 

similarity to the β-amyloid region involved in fibril formation [60]. Studies have shown that 

lengthening the fibril-forming peptides disrupts the propensity to form fibrils [61, 62]. A 

high degree of flexibility (and lack of structure) of the C-terminal extension in αA-crystallin 

(EEKPTSAPSS) was identified by nuclear magnetic resonance (NMR) [10]. When this 

region is appended to the C-terminal end of the mini-chaperone region, it would therefore be 

expected to have a significant effect in preventing association to form fibrils. To overcome 

the fibril-forming property of mini-αA, we added the hydrophilic water-soluble C-terminal 

extension “EEKPTSAPSS” of αA-crystallin to the mini-αA peptide. Our studies revealed 

that the chimeric peptide (DFVIFLDVKHFSPEDLTVKEEKPTSAPSS, CP1) retains 

chaperone-like activity and displays a strong resistance to fibril formation [61]. However, 

there was no gain of chaperone activity as compared to the original mini-αA peptide. Table 

3 lists the peptides we tested for chaperone-like properties in mini-αB chaperone. None of 

the modified peptides showed better chaperone function than the original mini-αB sequence 

against partially unfolded ADH. We found that deletion of DRFS residues from the N-

terminal side (mini-αB77-92) or deletion of LKVK from the C-terminal side (mini-

αB73-88) of mini-αB abolishes the chaperone function against partially unfolded ADH.

5. Mini-αA-crystallin prevents proteins aggregation and fibril formation and 

rescues mutant crystallin

In the last 15 years, we have tested the mini-chaperone in different ways to compare its 

activity with that of native protein. These experiments investigated the mini-chaperone’s 

ability to prevent aggregation of ADH and citrate synthase (CS) partially unfolded by heat, 

to prevent ultraviolet light–induced γ-crystallin aggregation, and to prevent dithiothreitol 

(DTT)–induced insulin and α-lactalbumin aggregation [31, 63, 64]. Our studies revealed 

that mini-αA-crystallin binds to reduced α-lactalbumin at 2:1 ratios (2 parts mini-αA and 1 

part α-lactalbumin) [64]. The circular dichroism (CD) spectra of the mini-αA–α-lactalbumin 

complex shows loss of α-helix but preserves the β-sheet content, suggesting that mini-αA 

not only binds to the reduced α-lactalbumin but also maintains the molten-globule state of 

the reduced lactalbumin in the complex [64]. We also found that the mini-αA peptide 

prevents fibril formation and toxicity of Aβ-amyloid peptide [65]. We have also identified a 

peptide (αA66-80) derived from αA-crystallin that promotes protein aggregation and forms 

fibril-like structures similar to Aβ-amyloid. In our ADH aggregation assays to determine 

whether the mini-αA suppresses the protein aggregation properties of αA66-80 peptide, we 

found that the rapid ADH aggregation in the presence of αA66-80 peptide is significantly 
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reduced in the presence of mini-αA, suggesting that mini-αA peptide can counteract the 

effect of αA66-80 peptide (Figure 1). Similar to mini-αA peptide, mini-αB peptide was 

found to prevent DTT-induced insulin aggregation [51]. Further, other investigators have 

found that mini-αB73-92 forms fibrils and is an effective therapeutic molecule for 

experimental autoimmune encephalomyelitis [66]. K90-V100 in αB-crystallin has been 

shown to be highly amyloidogenic and cytotoxic and its crystal structure has been 

determined [67].

The cataract-causing αA-crystallin mutant protein (i.e., αA-G98R) is prone to aggregation at 

physiological conditions and fails to chaperone the precipitation of unfolding ADH and 

insulin. We tested the effect of mini-αA on the aggregation of αA-G98R-crystallin and 

found that mini-αA stabilizes the mutant protein from aggregation and rescues the lost 

chaperone function [68]. In other studies, both mini-αA and mini-αB have been shown in 

mice to inhibit selenite-induced cataract [69]. The mechanism by which αA- and αB-

crystallin interact with their client proteins is not yet elucidated because of the difficulty in 

delineating the structure of a large protein complex involving crystallin oligomer and client 

protein, but the availability of mini-chaperone allows investigation of the mechanism of αA-

crystallin chaperone function. In a recent study of the molecular mechanisms of mini-αA 

chaperone function, using the NMR method and γD-crystallin as the client protein, mini-αA 

was found to bind with Phe56, Val132, residues in the Val164 to Leu167 region and along 

the domain interface of γD-crystallin, expanding our understanding of the molecular 

mechanisms of mini-αA chaperone function and its potential as a therapeutic molecule [70]. 

Understanding the critical residues involved in chaperone function in mini-chaperone will 

allow one to design synthetic mimics of mini-chaperones with greater stability.

6. Antioxidant action of mini-αA-chaperone

Antioxidant molecules play an important role in cell biology and human health, preventing 

the accumulation of free radicals and stopping cell damage and cell death mediated by free 

radicals. Previous studies have shown that lens α-crystallins bind Cu(II) and prevent the 

formation of Cu(II)-mediated reactive oxygen species [71–73]. Mini-αA chaperone indeed 

functions like an antioxidant by preventing Cu(II)-mediated oxidation of ascorbic acid [74]. 

We have shown that each molecule of mini-αA binds one Cu(II) molecule, based on the 

isothermal titration calorimetry (Kd 10.72 μM) and nanospray mass spectrometry (Kd 9.9 

μM). Histidine was found to be a critical residue of mini-αA-crystallin involved in Cu(II) 

binding. Substitution of His with Ala in the peptide (corresponding to residue 79 in native 

protein) eliminates the redox-suppression activity. Interestingly, mini-αA mimics the redox-

suppression activity of native α-crystallin and this property of crystallin is in contrast to the 

Aβ-amyloid interaction with Cu(II) where H2O2 is generated [75].

7. Antiapoptotic property of mini-chaperones

Apoptosis is a cascade of events culminating in programmed cell death. It is well established 

that α-crystallin functions like an antiapoptotic agent and prevents apoptosis-mediated cell 

death [28, 76]. Studies of human fetal retinal pigment epithelial cells (hfRPE), challenged 

with H2O2 in the presence and absence of mini-αA- and mini-αB-crystallins, have revealed 
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that the chaperone peptides function like antiapoptotic agents [77]. Both mini-αA and mini-

αB peptides were found to prevent oxidation-induced cell death by inhibiting caspase-3 

activation. To investigate whether the antiapoptotic property of mini-chaperone is applicable 

to other cell lines subjected to oxidative stress, we challenged COS7 and ARPE-19 cells 

with H2O2 in the presence and absence of the mini-αA peptide. We found that the mini-

chaperone protects both COS-7 and ARPE-19 cells from H2O2-mediated cell death (P<0.01) 

as compared to COS7 and ARPE-19 cells not treated with mini-αA peptide [61]. Other 

investigators recently demonstrated in a mouse model of retinal degeneration that mini-αA 

protects RPE cells from sodium iodate (NaIO3)-induced cell apoptosis and retinal 

degeneration [78]. Together these results suggest that the natural protective effect of α-

crystallin chaperone proteins is encapsulated in the peptide chaperones and may offer an 

opportunity to use mini-chaperones as pharmacologic agents.

8. Therapeutic value of mini-chaperones

The many studies carried out thus far show that both αA- and αB-mini-chaperones possess 

the chaperone activity of the parent proteins and are potential candidates for therapeutic 

applications in a variety of conditions. αA- and αB-mini-chaperones may offer protection to 

the retina. One study revealed that hfRPE cells uptake the mini-chaperone peptides rapidly 

via sodium-coupled oligopeptide transporters 1 and 2 and protect the cells from apoptosis 

induced by oxidative stress [77]. In a related study retinal degeneration caused by NaIO3 

was prevented by mini-αA-chaperone [78]. In another study, the peptide chaperone injected 

intraperitoneally was shown to enter into the blood circulation and cross the blood plasma 

membrane to protect the lens from selenite-induced cataract [69]. Furthermore, 

intraperitoneally injected mini-αB-peptide was found to improve clinical symptoms in 

experimental autoimmune encephalitis [66]. A more detailed account of therapeutic value of 

peptide chaperone is provided elsewhere in this issue.

9. The challenges facing the development of peptide chaperones and 

alternatives

While synthetic peptides have been widely proposed for the treatment of different diseases, 

figuring out a way to deliver the peptides into tissues and circumvent the short half-life of 

peptides in the bloodstream (due to the presence of exo- and endopeptidases) is quite a 

challenge to the development of peptide chaperones as effective therapeutic molecules [79, 

80]. Harnessing the power of nanoparticles may be an approach. A recent study of a 

nanoparticle-engineered mini-chaperone peptide, mini-αB73-92, with a high-molecular-

weight carrier, showed that the nanoparticle-engineered mini-chaperone provides enhanced 

protection from oxidative stress and resides for a longer time in retinal cells [81]. Certain 

modifications of amino acids are known to offer resistance to peptidase action. For example, 

use of acetylated amino acids is a well-studied modification that provides resistance to 

peptidase action. Acetylation of mini-chaperone peptide was found to enhance the mini-

chaperone’s resistance to degradation and improve its efficiency in inhibiting stress-induced 

apoptosis in human lens epithelial cells and in Chinese hamster ovary cells [82]. In another 

study of approaches to enhancing the properties of mini-chaperones, substitution of a single 

Asp isomer (D-Asp) was found to alter significantly the activity of αA70-88 peptide [83]. 
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We synthesized a mini-chaperone peptide with D-amino acids to test whether a peptide 

resistant to peptidases retains its chaperone activity and found that D-amino acids enhance 

the chaperone activity of mini-αA by two-fold but not mini-αB (Figure 2). Taken together 

the data clearly show that mini-chaperones could be made more resistant to in vivo 

degradation and this approach might provide additional opportunities to test peptide mini-

chaperones as disease-modifying agents.

10. Concluding remarks

During the last 15 years, it has been well documented that the mini-chaperone peptide is a 

potential candidate molecule for therapeutic use in diseases associated with protein 

aggregation. The concept of mini-chaperones is evolving rapidly, as evidenced by the ever-

increasing number of published studies in this field. The retention of biological activity by 

the mini-chaperones administered intraperitoneally suggests that use of the peptides to treat 

specific conditions is a viable option [69]. Biotechnology companies have started marketing 

mini-chaperone peptides for therapeutic studies. Several strategies are under investigation to 

optimize mini-chaperone peptides, including the addition of non-natural D-amino acid and 

modification of selective residues. Future studies on the effects of mini-chaperone peptides 

in various animal models of proteinopathies will enable the development of mini-chaperone 

peptides as therapeutic agents.
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Highlights

Peptide chaperone derived from α-crystallin has therapeutic potential.

Fine-tuning of peptide chaperone is required to increase stability and biological 

efficacy.

Peptide chaperones could have a great therapeutic value in diseases associated with 

protein aggregation and apoptosis.

Raju et al. Page 13

Biochim Biophys Acta. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 1. 
The efficacy of mini-αA chaperone on αA66-80 peptide accelerated ADH aggregation. (1) 

ADH 150 μg. (2) ADH 150 μg and αA66-80 10 μg. (3) ADH 150 μg and αA66-80 10 μg 

and mini-αA 10 μg. (4) ADH 150 μg and αA66-80 10 μg and mini-αA 20 μg. (5) ADH 150 

μg and αA66-80 10 μg and mini-αA 30 μg. (6) ADH 150 μg and mini-αA 10 μg.

The chaperone activity was measured using the method described earlier [61]
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Fig 2. 
Comparison of mini chaperone activities; synthesized with D-amino acid or L-amino acid. 

ADH aggregation assay was performed to test the efficacy of chaperone like function of 

mini chaperone’s L and D form. (1) ADH 50 μg. (2) ADH 50 μg and D-mini-αB 10 μg. (3) 

ADH 50 μg, L-mini-αB 10 μg. (4) ADH 50 μg, D-mini-αA 10 μg, (5) ADH 50 μg, L-mini-

αA 10 μg. (6) ADH 50 μg, mixed D-mini-αB and D-mini-αA (1:1) 10 μg.
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Table 1

Comparison of chaperone region sequences of α-crystallin with various sHsps.

Protein GenBank Sequence

Homo sapiens [Human] αA-crystallin AAC50900 069 DKFVIFLDVKHFSPEDLTVK 088

Homo sapiens [Human] αB-crystallin NP_001876 073 DRFSVNLDVKHFSPEELKVK 092

Homo sapiens [Human] HspB2 Q16082.2 072 GKFQAFLDVSHFTPDEVTVR 091

Homo sapiens [Human] HspB3 Q12988.2 069 SHFQILLDVVQFLPEDIIIQ 088

Homo sapiens [Human] HspB9 Q9BQS6.1 052 DGFQMKLDAHGFAPEELVVQ 071

Mus musculus [House mouse] αB-crystallin AAH10768 073 DRFSVNLDVKHFSPEELKVK 092

Rattus norvegicus [Norway rat] αB-crystallin NP_037067 073 DRFSVNLDVKHFSPEELKVK 092

Bos taurus [Cow] αB-crystallin AAB95323 073 DRFSVNLDVKHFSPEELKVK 092

Sus scrofa domestica [Domestic pig] αB-crystallin JC5971 073 DRFSVNLDVKHFSPEELKVK 092

Gallus gallus [Chicken] αB-crystallin NP_990507 072 DKFSVNLDVKHFSPEELKVK 091

Rana catesbeiana [Bullfrog] αB-crystallin CAA60594 071 DKFSINLDVKHFSPEELKVK 090

Clarias batrachus [Walking catfish] αB-crystallin AAO24775 070 DRFTINLDVKHFTPEELGVK 089

Danio rerio [Zebrafish] αB-crystallin AAD49096 070 DRFVINLDVKHFSPDELTVK 089

Squalus acanthias [Spiny dogfish] αB-crystallin CYDFAB 075 DKFAIHLDVKHFTPEELRVK 094

Bombyx mori [domestic silkworm] Hsp20.8 AAG30944 073 DKFQVNLDVQHFSPEEISVK 092

Astyanax mexicanus [Blind cavefish] αA-crystallin CAA72158 070 DKFMVYLDVKHFSPEELNVK 089

Homo sapiens [Human] HspB6 AAH68046 072 GHFSVLLDVKHFSPEEIAVK 091

Columba livia [Domestic pigeon] αA-crystallin CAA65411 058 EKFTIMLDVKHFSPEDLSVK 077

Lonomia oblique Hsp3 AAV91362 070 DKFQVNLDVQHFAPEEIAVK 089

Bombyx mori [domestic silkworm] Hsp23.7 BAD74198 088 DKFQINLDVQHFSPDEISVK 107

Caenorhabditis elegans Hsp16.41 AAF60616 052 SKFSVQLDVSHFKPENLKIK 071

Danio rerio [Zebrafish] Hsp25 AAV97950 100 DSWKISLDVNHFSPEELNVK 119

Oryzias latipes [Japanese medaka] αA-crystallin CAA04397 052 DKFTVHWDVKHFSPDELSVK 071

Ostertagia ostertagi Hsp20 CAG25499 062 KKFAVALDVSHFRPEELKVQ 081

Mus musculus [House mouse] Hsp27 AAA18335 096 DRWRVSLDVNHFAPEELTVK 115

* *** * **** *

The alignment was generated by ClastalW2 multiple sequence alignment using default settings. Residues that are highly conserved across the 
species are identified by * at the bottom of the Table.
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