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Coherent driving and freezing of bosonic matter
wave in an optical Lieb lattice

Shintaro Taie,* Hideki Ozawa, Tomohiro Ichinose, Takuei Nishio, Shuta Nakajima, Yoshiro Takahashi
Although kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat,
dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy
causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferro-
magnetism. We report the realization of a “Lieb lattice” configuration with an optical lattice, which has a flat
energy band as the first excited state. Our optical lattice potential has various degrees of freedom in its ma-
nipulation, which enables coherent transfer of a Bose-Einstein condensate into the flat band. In addition to
measuring lifetime of the flat band population for different tight-binding parameters, we investigate the inter-
sublattice dynamics of the system by projecting the sublattice population onto the band population. This mea-
surement clearly shows the formation of the localized state with the specific sublattice decoupled in the flat band,
and even detects the presence of flat-band breaking perturbations, resulting in the delocalization. Our results will
open up the possibilities of exploring the physics of flat bands with a highly controllable quantum system.
INTRODUCTION

Many-body properties of a quantum system show drastic changes
according to the geometry of an underlying lattice structure. One of
the textbook examples is an antiferromagnet on a frustrated lattice ge-
ometry (1), where the geometric frustration prevents spins from Néel
ordering and the system exhibits more nontrivial, correlated ground
states. A dispersionless flat band realized by specific lattice geometry
can also induce frustration of kinetic energy, resulting in a degeneracy
of a macroscopic number of momentum eigenstates. Flat bands play an
important role in the study of itinerant ferromagnetism because the
presence of interaction lifts the bulk degeneracy and chooses the ferro-
magnetic ground state (2–4).

A special type of lattice structure known as a Lieb lattice, also re-
ferred as a decorated square lattice, has a flat band as the second (first
excited) band. It consists of two sublattices: one of them forms a stan-
dard square lattice (the A sublattice in Fig. 1A), and the other lies on
every side of the square. For convenience, we further divide the latter
into the B and C sublattices. The single-particle energy spectrum in the
tight-binding limit (Fig. 1B) has the characteristic flat band and the
Dirac cone on the corner of the Brillouin zone. This Lieb lattice satis-
fies the criteria for the occurrence of Lieb’s ferrimagnetism, which states
that the half-filled spin-1/2 fermions exhibit nonzero magnetization for
a positive on-site interaction (2). Also for bosonic systems, a flat band
proposes a fascinating question of whether condensation is possible in
the presence of kinetic energy frustration. Theoretical investigation pre-
dicts supersolid order for a flat band (5). Here, we also note that a Lieb
lattice naturally has the lowest three bands close to each other, providing
rich interband physics. The structure of the Lieb lattice is identical to the
three-band d-p model, which describes the CuO2 plane of high-Tc

superconductors (6–8).
Ultracold atomic gases in optical lattices have had great success in

realizing controllable quantum many-body systems described by well-
defined theoreticalmodels of interest, such as theHubbardmodel (9, 10).
Besides the simple cubic configuration, increasing experimental efforts
have been made to create and investigate nonstandard optical lattices
that have unique geometric features (11–19). The Lieb lattice or its
one-dimensional (1D) analog (sawtooth lattice) was recently realized
in a photonic lattice (20–22) and polaritonic systems (23). However,
optical lattice realization has definite advantages: simple and strong
interactions, dynamical controllability of system parameters, and
availability of both bosonic and fermionic systems. Above all, it
can be directly connected to essential models containing key physical
concepts.

Here, we demonstrate novelmanipulation anddetection of an atom-
ic Bose-Einstein condensate (BEC) in a flat band by developing a dy-
namically controllable optical Lieb lattice. In particular, we invent a
method for actively engineering the population and phase on each
lattice site, which enables us to coherently transfer atoms into the flat
band and observe frozen motion of atoms localized on a specific sub-
lattice. In addition, almost arbitrary superposition of band eigenstates
can be prepared, which drives coherent oscillation modes and enables
us to map out the characteristic band structure. Novel controllability of
our system is highlighted by an experiment that controls the localization
and delocalization of an atoms and detects the presence of flat-band
breaking perturbations. This work paves the way to a new regime of
experimental study of flat band physics with cold atoms.
RESULTS

Formation of an optical Lieb lattice
We construct the optical Lieb lattice by superimposing three types of
optical lattices (see Fig. 1, C and D), leading to the potential

V ðx; zÞ ¼ −V ðxÞ
longcos

2ðkLxÞ − V ðzÞ
longcos

2ðkLzÞ−

V ðxÞ
shortcos

2ð2kLxþ fxÞ − V ðzÞ
shortcos

2ð2kLz þ fzÞ−

Vdiagcos
2ðkLðx−zÞ þ yÞ ð1Þ

where z indicates the direction of gravity. Here, kL = 2p/l is a wave
number of a long lattice (with a depth Vlong), for which we choose
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l= 1064 nm.A short lattice (Vshort) is formed by laser beams at 532 nm.
A diagonal lattice (Vdiag) with the wave number

ffiffiffi
2

p
kL is realized by

interference of the mutually orthogonal laser beams at 532 nm along
the x and z directions. Compared to the proposals of Shen et al. andApaja
et al. (24, 25), Eq. 1 lacks a diagonal lattice with x + z spatial dependence.
Although this causes a slightly larger discrepancy from the ideal tight-
binding energy bands, the sufficiently deep lattices can reproduce the
desired energy spectrum including the flat band, as seen in Fig. 1E. In
the following, we specify each lattice depth in unit of long lattice recoil
energy as (slong, sshort, sdiag) = (Vlong,Vshort,Vdiag)/ER

(1064), whereER
(1064) =

ħ2kL
2/(2m) and m is the atomic mass of 174Yb. The motion of free

bosons in the x-z plane is governed by tight-binding Hamiltonian

^
H ¼ −J∑

〈i;j〉

�
^a†i

^aj þ H:c:
�
þ ∑

S¼A;B;C

ES∑
i∈S

^ni ð2Þ

where âi is the annihilation operator on site i and n̂i ¼ âi
†âi. The

nearest-neighbor hopping amplitude J is mainly determined by Vshort,
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whereas the other lattice depths set an energy offsetES of each sublattice.
Excepting the contribution from the zero-point energies of each
potential well, they are approximately given by EA ~ −Vlong

(x) − Vlong
(z),

EB ~ −Vlong
(z) −Vdiag, and EC ~ −Vlong

(x) −Vdiag, which can be indepen-
dently controlled by tuning the lattice depths. In the ydirection,which is
perpendicular to the Lieb lattice plane, the atoms are weakly confined
in a harmonic trap (1D tube configuration), unless otherwise speci-
fied. In addition to each lattice depth, three phase parameters should
be set to fx = fz = 0 and y = p/2 to realize the characteristic three-
sublattice structure of the Lieb lattice depicted in Fig. 1D (Materials
and Methods).

Loading BEC into a flat band by phase imprinting
One of the fundamental properties of flat bands is the localization of the
wave function as a consequence of quantum-mechanical interference of
traveling matter waves. The localization is due to a purely geometric
effect, as we briefly explain below. The Hilbert space for the Lieb lattice
in the tight-binding regime is spanned by themomentum eigenstates of
each sublattice |k, S〉 (S = A, B, C). Nearest-neighbor tunneling induces
the quasimomentum-dependent coupling KAB = −2J cos(kxd/2) between
the A and B sublattices, and similarly KAC = −2J cos(kzd/2) between the
A and C sublattices, where d = 532 nm is the lattice periodicity. The flat
band states are the zero-energy eigenstates cos q|k, B〉 − sin q|k, C〉with
tan q = KAB/KAC, which have no amplitude on the A sublattice. Conse-
quently, a wave packet composed of the flat band states remains local-
ized, as the tunneling from a B site and the tunneling from a C site
destructively interfere on the adjacent A site. We explore this nature
in the following experiments. It is worth noting that the flat band in
the Lieb lattice is mathematically equivalent to “dark states” of laser-
coupled L-type three-level systems in atomic physics (26). In this anal-
ogy, three sublattices correspond to the basis of three levels, tunneling
amplitudes serve as laser-induced coupling, and the energy difference of
each sublattice plays a role in the detuning of laser.

In a Lieb lattice, a flat band is realized as the first excited band; hence,
a BEC loaded adiabatically into an optical Lieb lattice is not populated in
the flat band.However, tunability of our optical Lieb lattice enables us to
coherently transfer the population in the lowest band into the flat band
by phase imprinting (see Fig. 2A). The scheme is easily understood by
considering tight-binding wave functions in each band. At zero quasi-
momentum and in the equal-offset condition EA = EB = EC, a simple
calculation gives j1st〉 ¼ jA〉þ ðjB〉þ jC〉Þ= ffiffiffi

2
p

, |2nd〉 = |B〉 − |C〉,
and j3rd〉 ¼ jA〉 − ðjB〉þ jC〉Þ= ffiffiffi

2
p

from the 1st to the 3rd band, where
we omit themomentum indices from the sublattice eigenstates (see also
section S2). Taking advantage of rich controllability in our lattice
potential, we can smoothly modify these eigenstates. With sufficiently
large Vdiag (equivalently with large EA − EB,C), the lowest Bloch state
has essentially no amplitude in theA sublattice, allowing realization of
the |B〉 + |C〉 state. Next, we apply sudden change in one of the long
lattice,Vlong

(z). This creates the energy difference between the B and C
sublattices, and the relative phase of the condensate wave function
starts to evolve with a period 2pħ/(EC − EB). On the basis of the initial
band structure, this time evolution is a coherent oscillation between
|1st〉 and |2nd〉.

The explicit procedure of loading and detecting a condensate in the
flat band is as follows. We adiabatically load a BEC of 2 × 104 174Yb
atoms into the Lieb lattice with (slong, sshort, sdiag) = (8, 8, 20) and apply
sudden increase of slong(z) to 26.4 for variable duration. At the same time,
we ramp sshort up to 20 to prevent tunneling during the band transfer.
Fig. 1. Optical Lieb lattice. (A) Lieb lattice. A unit cell is indicated by
the green square. (B) Tight-binding energy band structure of the Lieb

lattice. (C) Experimental realization of the Lieb lattice. Black arrows indi-
cate polarizations of the lattice beams. (D) Lattice potential for (slong,
sshort, sdiag) = (8, 8, 9.5) at fx = fz = 0 and y = p/2. (E) Band structures
of the optical Lieb lattice at (slong, sshort, sdiag) = (8, 8, 9.5) (red dashed),
(34, 34, 37.4) (solid black).
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After this sequence, we return the lattice depths to the initial values and
perform adiabatic turning off of the lattice potential to map quasimo-
mentum to free-particle momentum (band mapping) (27, 28). Figure
2B shows the absorption images taken after 14ms of the ballistic expan-
sion, which reveal the interband dynamics of a condensate. At zero qua-
simomentum, atoms in the 2nd and 3rd band are mapped to the same
point of the Brillouin zone. In addition, the finite spread of the conden-
sate makes it difficult to precisely distinguish the population in the 2nd
Brillouin zone from other neighboring zones. Therefore, instead of
plotting the population in the 2nd Brillouin zone, here we count atoms
in the 1st Brillouin zone and show the fraction of atoms in the other
higher bands in Fig. 2C. For momentum space analysis, see section
S3. We fit the data with the function in the form a exp(−t/t) Fth(t) +
b[1 − exp(−t/t)], where Fth(t) is the numerical solution of the single-
particle Schrödinger equation. In fitting the data, we adopt slong(z) during
the band transfer as a free parameter and obtain the best fit with slong(z) =
25.5, close to the expected value of 26.4. Although the oscillations in-
volve nonnegligible contributions from the higher bands, at the half pe-
Taie et al. Sci. Adv. 2015;1:e1500854 20 November 2015
riod of the first cycle, we expect that >75% of atoms are transferred to
the 2nd band. This transfer method is also applicable in the presence of
the lattice confinement along the y axis, though the decay time of the
oscillation t = 86 ± 7 ms is much shorter than the case of a weak har-
monic confinement (1D tube), t = 260 ± 10 ms.

Relaxation dynamics of a flat band
We measure the lifetime of atoms in the 2nd band of the optical Lieb
lattice. After transferring to the 2nd band, we change the depth sdiag of
the diagonal lattice to control the energy gap between the 1st and 2nd
bands. As well as the band gap (29), the lifetime of a quantum gas in the
excited band is strongly affected by the density overlap with the states in
the lower bands (30). As we increase sdiag, the average gap between the
1st and 2nd bands becomes smaller and, at the same time, their density
profiles become similar to each other. In the opposite limit of shallow
sdiag, the band gap increases and two bands have no density overlap,
because the lowest band mostly consists of the A sublattice. We take
a variable hold time in the lattice, followed by band mapping to count
the atom number in the excited bands. Typical absorption images are
shown in Fig. 3A. The decay curves displayed in Fig. 3B show expected
behavior of increasing lifetime with decreasing sdiag. In addition,
increasing the gap makes the dynamics more clearly separate into
two processes: decay of the condensate within the 2nd band (middle
image of Fig. 3A) and decay of atoms into the lowest band (bottom
image).We find that the curve is well fitted by a double exponential with
the form a1 exp(−t/t1) + a2 exp(−t/t2) + b. The fast component t1 shows
only weak dependence on sdiag, whereas the slow component t2 shows
more than 20-fold changes from the smallest to the largest sdiag.We also
extract the lifetime of the condensate in the 2nd band, tc, by counting
atoms on the corner of the 2ndBrillouin zone (Fig. 3A), and find similar
behavior with t1. This implies that the initial fast decay is related to the
decay of the condensate, which involves the decay to the lower band
with faster time constant compared with the noncondensed atoms.

Localization of a wave function in a flat band
As described above, the most intriguing property of a flat band is the
localization of the wave function at certain sublattice sites. In the case of
the Lieb lattice, the wave function of the flat band vanishes on the A
sublattice. Here, we reveal this property by observing the tunneling dy-
namics of a Bose gas initially condensed at the | − 〉 = |B〉 − |C〉 state, and
compare it to the dynamics of the statewith opposite relative phase, | + 〉=
|B〉 + |C〉. To observe real-space dynamics of the system, we perform
projection measurement of the occupation number in each sublattice,
which we call sublattice mapping. In this method, we first quickly
change the lattice potential to ((slong(x), slong(z)), sshort, sdiag) = ((8,14),
20, 0). In this configuration, all three sublattices are energetically well
separated from one another and the lowest three bands consist of the
A, B, and C sublattice, respectively. This maps sublattice occupations to
band occupations, which can then bemeasured by bandmapping tech-
nique. Figure 4A shows the demonstration of this method, in cases
where atoms occupy only one of the sublattices. Note that the popula-
tions in the B and C sublattices are mapped to the 2nd Brillouin zones
for the 1D lattice along the x and z axis, respectively. This is because the
turning off of the diagonal lattice decouples these two directions and the
fundamental bands are labeled by the combination of band indices of
1D lattices.

We prepare the initial state |+〉 by simply loading a BEC into the Lieb
lattice with deep Vdiag. On the other hand, the |−〉 state is obtained by
Fig. 2. Coherent band transfer. (A) Principle of the transferring
method. (B) Absorption images reveal the coherent oscillations be-

tween the |B〉 + |C〉 and |B〉 − |C〉 states. In the upper left image, the first
three Brillouin zones are displayed by white, green, and red lines, re-
spectively. (C) Oscillating behavior of the band population during phase
imprinting in the absence of lattice confinement along the y direction
(blue circles) and with lattice confinement −Vycos

2(2kLy) (red squares).
Solid lines are the fit results using the single-particle solution of the
Schrödinger equations (see main text). Error bars denote SD of three
independent measurements.
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applying the band transfer method to the |+〉 state. After changing the
lattice depths to satisfy the equal-offset conditionEA =EB = EC , dynam-
ics of these initial states is measured by the sublattice mapping. As
shown in Fig. 4B, we reveal qualitatively different behaviors of these
two states: the |−〉 state shows a significant suppression of the A sublat-
tice occupancy, indicating the freezing of the tunneling dynamics to the
A sublattice from the |−〉 state with only a slow decay to theA sublattice,
whereas the |+〉 state exhibits coherent oscillations between the A and
(BC) sublattices. This clearly features the geometric structure of the Lieb
lattice mentioned above. Double-exponential fit to the data for the |−〉
initial state yields t1 = 0.36 ± 0.04ms and t2 = 5.5 ± 0.9ms, indicating that
the leakage to the A sublattice is caused by the decay to the lowest band.

In the Bloch basis, the state |+〉 is expressed as |1st〉 − |3rd〉 and its
time evolution is driven by the band gap DE3,1 which equals 4

ffiffiffi
2

p
J in

the tight-binding limit. After a half-period pħ/DE3,1, the state evolves
to |A〉 = |1st〉 + |3rd〉, leading to coherent tunneling to the A sublattice.
Similarly, it is possible to arrange the initial lattice depths so that the
lowest Bloch state has the maximum overlap with a certain superposi-
tion of |1st〉 and |2nd〉. Sudden potential change to the Lieb lattice drives
oscillation between the B and C sublattices, whose frequency gives the
band gap DE2,1. We fit these data with a damped sinusoidal oscillation
and compare the extracted frequency with the result of single-particle
band calculations (see Fig. 4C). Qualitative behavior is well reproduced,
whereas quantitative discrepancies are found. This is caused by interac-
tions, as we present a systematic study of the density dependence of the
oscillation frequency in section S4.

We further investigate the tunneling dynamics of the |−〉 initial state
by adding the perturbations that destroy the flatness of the second band.
The flatness is robust against the independent change of nearest-neighbor
tunneling amplitudes Jx, Jz along the x and zdirections, and energy offset
EC, just as a dark state in a L-type three-level system persists regardless
of laser intensities and detuning from the excited state. However, if the
energy difference between the B and C sublattices is introduced—the
two-photon Raman off-resonant case—the flat band is destroyed. Note
that the finiteEB−EC induces population in theA sublattice even at k=0.
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On the other hand, the direct diagonal tunneling between the B and C
sublattices, which is another flat-band breaking term existing in our sys-
tem, keeps a dark state at k = 0 provided Jx = Jz. We create the energy
difference by introducing the imbalance ofDslong = slong(x)− slong(z). Figure
4D shows the time dependence of the A sublattice population for the |−〉
initial state. It can be clearly seen that the coherent tunneling dynamics
starts to grow as the lattice parameters deviate from the flat-band condi-
tion Dslong = 0.
DISCUSSION

Here, we have successfully implemented the Lieb lattice for ultracold
atomic gases and observed the characteristic dynamics of a condensate,
including the freeze of the motion in the flat band. This work shows an
important ability of our optical lattice setup to make a connection be-
tween theory and experiment. The highly controllable lattice allows us
to study both a nearly complete flat band where prominent theoretical
works have been established, and intentionally perturbed, imperfect flat
bands that are relevant to real materials. Relatively short lifetime of
atoms in the flat band was observed, although it can be made longer
by increasing the band gap to the lowest band. Using Fermi gases with
the Fermi energy lying at the flat band can avoid the lifetime problem
andwill provide an ideal playground for investigating flat band ferromag-
netism (31–34) and topological phases with artificial gauge fields (35).
MATERIALS AND METHODS

Preparation of 174Yb BEC
After collecting about 107 atoms with a magneto-optical trap with the
intercombination transition, the atomswere transferred to a crossedoptical
trap. Then, we performed an evaporative cooling, resulting in an almost
pure BEC with about 105 atoms with no discernible thermal component.

All of the optical lattice experiments presented in this paper were
subject to additional weak confinement due to a crossed optical dipole
Fig. 3. Lifetime of atoms in the flat band. (A) Absorption images for the lifetime measurement of the 2nd band with three different hold times,
taken after 14-ms time of flight. The diagonal lattice depth is sdiag = 9.5. The first three Brillouin zones are indicated by the white dashed lines. In the
top image, the areas used to evaluate the lifetime of a condensate (tc) are also displayed with the red squares. (B) Decay of the flat band at (slong,
sshort) = (8, 8) and variable sdiag. Solid lines are the fit results with double-exponential curves. Error bars denote the SD of three independent measure-
ments. (C) Lifetime of the flat band. t1,2 are the fast and slow decay time obtained from the data shown in (B), respectively. tc is the e−1 lifetime of
condensates. Error bars represent fitting error.
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trap operating at 532 nm. The Gaussian shape of laser beams for the
trap and lattices imposed a harmonic confinement on atoms, whose fre-
quencies are (wx′, wy′, wz)/2p = (147, 37, 105) Hz at the lattice depths of
(slong, sshort, sdiag) = (8, 8, 9.5). Here, the x′ and y′ axes were tilted from
the lattice axes (x and y) by 45° in the same plane.

Construction of optical Lieb lattice
The relative phases between the long and short lattices (fx, fz) can be
adjusted by changing the frequency difference between these lattice
beams (36). The proper frequencies that realize the Lieb lattice (fx =
fz = 0) were determined by analyzing the momentum distribution of a
174Yb BEC released from the lattice, as in the case of the parameter y of
the diagonal lattice (section S1). The relative phase between the long and
short lattices at the position of atoms depends on the optical path lengths
from common retro-reflectionmirrors, and in general, two phases fx and
fz are not equal. We shifted the frequency of the long lattice laser by an
acousto-optic modulator (AOM) inserted in the path for the z axis to
simultaneously realize fx= fz=0.Optimal frequency differencewas sen-
sitive to the alignment of the lattice beams, and day-by-day calibration of
the phases was needed. Typical drift of the required radio frequency for
the compensation AOM was within 5 MHz.

To stabilize the phase y, we constructed aMichelson interferometer
along the optical path of the diagonal lattice with the frequency-stabilized
507-nm laser. The interferometer had two piezoelectric transducer–
mounted mirrors: one was shared with the lattice laser beam for phase
stabilization, and anotherwas used to shift the phase over the range 10p,
with stabilization kept active. The short-term stability of y was esti-
mated to be ±0.007p. The last few optics in front of the chamber were
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outside of the active stabilization, which caused slow drift of y due to
changes of environment such as temperature. The typical phase drift
was 0.05p per hour, and all measurements of sequential data set was
finished within 20 min of the last phase calibration.

At the proper phase parameters fx = fz = 0 and y = p/2, the
potential depth at the center of each site becomes equal when Vlong =
Vshort = Vdiag. In this condition, however, the energy offset EA became
lower than EB and EC because of the difference in the zero-point
energies. We searched optimal Vdiag by single-particle band calculation
(see also section S2 for the derivation of Hubbard parameters).

Throughout the experiment, the Hubbard parameters were set to
weakly interacting regime.Without a lattice confinement along the y axis,
the typical value of the renormalized on-site interaction (37) was U/J ~
0.02. Evenwith a lattice confinementVy= 10ER

(532), the system remained
superfluid regime U/J = 1.1, well below the critical point for the 2D
Mott transition. To approach the critical point (U/J~15), the lattice depths
should be as deep as (slong, sshort, sdiag) = (34, 34, 37.4) and Vy = 15ER

(532).

Band occupation measurement and sublattice mapping
Tomeasure the quasimomentumdistribution of atoms, we turned off all
the lattice potentials with an exponential form

V tð Þ ¼ V ð0Þexpð−4t=TÞ 0 < t < T
0 t≥T

�
ð3Þ

andT=0.6ms. The dipole trapwas kept constant during bandmapping
to prevent themovement of the trap center due to gravity and sudden-
ly turned off at t = T. Because of the relatively heavy mass of Yb, the
Fig. 4. Tunneling dynamics in the Lieb lattice. (A) Demonstrating the measurement of sublattice occupancy. Here, sublattice mapping technique is
applied to atoms loaded into (left) ((s (x),s (z)), s , s ) = ((8,8), 8, 0), (middle) ((2,8), 8, 19), and (right) ((8,2), 8, 19), corresponding to atoms in A, B,
long long short diag

and C sites, respectively. (B) Measured tunneling dynamics of |+〉 and |−〉 initial states in the Lieb lattice with (slong, sshort, sdiag) = (8, 8, 9.5). Solid lines are the
fits to the experimental data with damped sinusoidal oscillation (for |+〉) and double exponentials (for |−〉). Inset shows dynamics of the |−〉 state for longer
hold times. Error bars denote SD. Illustration of tunneling process for each initial state is also shown on the right-hand side. (C) Frequencies of coherent
intersite oscillations. Solid lines are the calculated band gap between the 1st and 2nd (red) and the 1st and 3rd bands (blue). Error bars denote fitting error.
(D) Bending flat band. Dynamics of the |−〉 state in the presence of imbalance Dslong = slong(x) − slong(z) shows restoration of coherent dynamics. Error bars denote SD.
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existence of harmonic confinement imposed severe restriction on the
choice of mapping time T. We find that T > 1 ms causes considerable
deformation of the distribution, whereas T > 1.5 ms is desirable to
suppress interband transition. Because of this non-adiabaticity, up to
20% of atoms occupying a certain Brillouin zone were detected in its
neighboring zones, depending on the shape of the observed quasi-
momentum distribution.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/10/e1500854/DC1
Section S1. Calibration of the relative phase.
Section S2. Tight-binding model for the optical Lieb lattice.
Section S3. Momentum distributions in coherent band transfer.
Section S4. Effect of interactions on inter-sublattice oscillations of a BEC.
Fig. S1. Phase dependence of a time-of-flight signal.
Fig. S2. Tunneling parameters in the optical Lieb lattice.
Fig. S3. Wannier functions of the optical Lieb lattice.
Fig. S4. Momentum space observation of coherent band transfer.
Fig. S5. Density dependence of oscillation frequency.
Table S1. Initial conditions for the inter-sublattice oscillations.
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