Review Articles

Molecular nature of alpha-globin genes in the Saudi population

I. Francis Borgio, MSc, PhD.

ABSTRACT

الألفا-ثلاسيميا هو اضطراب ناجم عن حذف في جينات الألفا-جلوبين مفردة كانت أو مزدوجة، وقد يكون بسبب أنواع الطفرات الأخرى التي تحدث في سلسلة الألفا-جلوبين. هناكٍّ نوعان شائعان من الألقا-جلوبين وهما HBA2 و HBA1. مؤخراً، تم اكتشاف أن الجين HBA2 قد تم استبداله بواسطة جين أخر فريدٌ من نوعه يسمى HBA12 وذلك في ما يقارب %5.7 من السكان السعوديين. جين الألفا-جلوبين قد ظهر كهدف جزيئي يستخدم كوسيلة في علاج البيتا-ثلاسيميا. وبالتالي، فمن الضروري أن نفهم الطبيعة الجزيئية لجينات الألفا-جلوبين لتساعد في علاج اضطرابات الهيموجلوبين الأكثر انتشاراً في المملكة العربية السعودية مثل أمراض فقر الدم المنجلي (sickle cell disease) وكذلك أمراض الألفا والبيتا-ثلاسيميا مورثة جينية (α and β -thalassemia). وجد أن هناك 32 مختلفة من الألفا-جلوبين قد لوحظت لدى السكان السعوديين. هذا الاستعراض البحثي سيحدد لنا التصنيف الجيني لسلسلة الألفا-جلوبين بناء على أساس الطبيعة الجزيئية لها ولمجموعات معقدة من جينات الألفا-جلوبين ومتغيراتها السائدة في السكان

Alpha-thalassemia (α-thal) is a disorder caused by the deletion of single or double α-globin genes, and/or point mutations in the α -globin genes. There are 2 common types of α-globin genes; HBA2 and HBA1. Recently, it has been discovered that the HBA2 gene is replaced by a unique HBA12 gene convert in 5.7% of the Saudi population. The α-globin genes have been emerging as a molecular target for the treatment of β -thalassemia (β -thal). Hence, it is essential to understand the molecular nature of α -globin genes to treat the most prevalent hemoglobin disorders, such as sickle cell disease, α -thal, and β -thal prevalent in the Kingdom of Saudi Arabia. Thirty-two different α-globin genotypes have been observed in the Saudi population. This review outlines the classification of the α -globin genes on the basis of their molecular nature and complex combinations of α -globin genes, and their variants predominant in Saudis.

> Saudi Med J 2015; Vol. 36 (11): 1271-1276 doi: 10.15537/smj.2015.11.12704

From the Center for Research and Medical Consultation, University of Dammam, Dammam, Kingdom of Saudi Arabia.

Address correspondence and reprint request to: Dr. J. Francis Borgio, Center for Research and Medical Consultation, University of Dammam, PO Box 1982, Dammam 31441, Kingdom of Saudi Arabia. E-mail: fbalexander@uod.edu.sa

Thalassemia (alpha $[\alpha]$ and beta $[\beta]$) and sickle cell disease (SCD) are the most prevalent hemoglobin disorders in the Kingdom of Saudi Arabia. 1-11 Alphathalassemia (α -thal) is a disorder caused by the deletion of single or double α -globin genes, and/or point mutations in the α-globin genes. 10 Alpha-thalassemia phenotype varies from very mild or microcytic hypochromic anemia to a lethal form of hemolytic anemia, depending on the type of molecular defects in α -globin genes.¹⁰ Alpha-globin genes are of 2 types; hemoglobin alpha 1 (HBA1) and hemoglobin alpha 2 (HBA2). The HBA1 and HBA2 genes are located in the p arm (short arm) of chromosome 16 at region one, band 3, and sub-band 3. Altogether there are 4 genes $(\alpha_1 \alpha_2 / \alpha_1 \alpha_2)$ in a person corresponding to 4 \alpha-globin proteins. Out of the 4 α-globin genes, 2 are inherited from the father, and others from the mother. Loss of single or all of these genes results in different types of α -thal. The α -globin protein is a subunit of hemoglobin, which is a larger protein in red blood cells (RBC) that carries oxygen throughout the body. Alpha-globin proteins of HBA2 and HBA1 genes are nearly identical. Alpha-globin protein is subunit of fetal hemoglobin (HbF), which is active only in the human fetus and in the newborn period until roughly 6 months old. Exceptionally, in non-transfusion dependent β-thal cases, HbF is elevated and active throughout life. Reduced synthesis of α-globin protein ameliorates the clinical severity of

Disclosure. Author has no conflict of interests, and the work was not supported or funded by any drug company.

 β -thallassemia. Alpha-globin is an emerging molecular target for treatment of β -thal. Hence, it is essential to understand the different types of globin genes and its variants prevalent in Saudi population.

The α-globin genes in Saudis. A number of research reports were available on the analysis of mutations and deletion in the α-globin genes from Saudi population. Commonly, α-globin genes are of 2 types (HBA2 and HBA1), while in Saudis it is of 3 types namely HBA2 (α_2), HBA1 (α_1), and HBA12 (α_{12}). The HBA12 is a new convert of the HBA2 gene, discovered in Saudis. The HBA2 has been replaced with HBA12 in 5.7% of Saudi population. The poly A mutation [AATAAA>AATAAG] (41%), and the $\alpha^{3.7}$ α+ heterozygous deletion are the most reported mutations and deletion in Saudi population. Co-inheritance of α-globin gene and β-globin gene mutations are prevalent in Saudis.

The α -globin gene conversion. A recent study by Borgio et al⁸ using direct sequencing of HBA1 and HBA2 in Saudis revealed a new gene, which was very closely related to the common α -globin genes (HBA1) and HBA2). They named the new gene as 2 They clearly described that the formation the *HBA12* was formed by the combination of HBA1 and HBA2 gene sequences through a process called gene conversion (Figure 1). Gene conversion is the process of the transfer of genetic material unidirectionally from a donor to an acceptor.²¹ Gene conversion between the 2 homologous α -globin genes is common.8 The HBA12 gene has the region starting -6bp until 581bp (3' promoter, exon1, IVSI, exon2, and 5'IVSII) from HBA1 gene, and 774bp (3'enhancer) onwards from HBA2 gene.8 The region in-between 581bp and 774bp (3' IVSII, exon 3', and 5' enhancer) were matching with HBA1 and HBA2, hence this region was considered as an indistinguishable region.8 The α -globin protein from *HBA12* gene is not available in the literature, detailed studies are needed to confirm the similarity of *HBA12* protein with the α-globin protein of *HBA2* and *HBA1* genes.

A total of 5.7% of the study population including sickle cell trait, hemophilia-A patient, SCD patients, and β -thal major patients were reported to have the new gene convert, α_{12} gene. The inheritance of the *HBA12* gene was proven on an elaborated family study, any one of the parent of individual with *HBA12* was a carrier for the *HBA12* gene. The *HBA12* gene was reported to be co-inherited with any one of the common α -globin gene defects like $\alpha^{3.7}$ deletion, $\alpha\alpha\alpha^{3.7}$ triplications, and $\alpha^{4.2}$ deletion, but not always. The reported *HBA12* gene from Saudis was distinguishably different from the α -globin patch works, such as α_{212} and α_{121} .8 Except the

nullizygous, all the other 3 types (hemizygous α_1 -/ $\alpha_1\alpha_{12}$, heterozygous $\alpha_1\alpha_2$ / $\alpha_1\alpha_{12}$, and homozygous $\alpha_1\alpha_{12}$ / $\alpha_1\alpha_{12}$) of zygosities were observed for the α_{12} gene from Saudi population. α -globin gene convert was highly prevalent in the Saudis due to the high percentage of consanguinity. Slight increase in mean corpuscular volume, elevated HbF ($\alpha_2\gamma_2$), and reduced HbA_2 ($\alpha_2\delta_2$) were noted on the subjects with α_{12} gene convert.⁸

Alpha₁₂ and HbA₂. Deep analysis by Borgio et al⁸ revealed the influence of the α_{12} gene on the level of hemoglobin A₂ (HbA₂). Subgrouping the population with the α_{12} gene into 6 groups (HbS^{carrier}; β-thal^{carrier}; β-thal^{carrier}; SCD^{+ve}, and α-thal^{carrier}; HbS^{carrier} α-thal^{carrier}; and Normal^{No α-thal&β-thal}) by the authors was able to identify the reduced level of HbA₂ in the first 5 groups with α_{12} gene.⁸ Thorough investigation on the large-scale micromapping of phenomics for this α_{12} gene is mandatory to uncover the hematologic effects of the new α_{12} gene.

Alpha-globin genotypes. The term " α -globin genotype" refers to the genetic makeup of an individual's complete set of α -genes. Two alleles (α/α) at each α-globin gene position is called diploid. In general, 2 pairs of alleles from 2 α -globin genes, α_1/α_1 (*HBA1*) and α_2/α_2 (HBA2) represents the genotype $(\alpha_1\alpha_2/\alpha_1\alpha_2)$ of an α-globin gene. In terms of Saudi population, the *HBA2* gene has been replaced with HBA12 gene convert, a pair of alleles α_{12}/α_{12} of an α -globin gene convert, *HBA12* specific to Saudis represents the genotype, $\alpha_1 \alpha_{12} / \alpha_1 \alpha_{12}$. Hence there are 3 genotypes, $\alpha_1 \alpha_2 / \alpha_1 \alpha_2$, $\alpha_1 \alpha_2 / \alpha_1 \alpha_1$, and $\alpha_1 \alpha_{12} / \alpha_1 \alpha_{12}$ are the possible normal genotypes in Saudi population (Table 1). There were 32 different genotypes reported from Saudi population (Table 1). The α -globin genotypes, $-\alpha^{3.7}/\alpha\alpha$, and $-\alpha^{3.7}/-\alpha^{3.7}$ are the most prevalent in Saudis.^{7,15} Alpha-globin genotype of each individual contributes to its α -thal phenotype. On the basis of genotypes, α -thal can be classified into 4 types, group one: deletion of 4 α-globin genes, termed Hb Bart's; group 2: deletion of 3 α - globin genes, called HbH disease; group 3: deletion of 2 α- globin genes, named α -thal trait; group 4: deletion of one α -globin gene, designated α-thal Silent (Table 1, Figure 2). Two particular identical alleles are described as homozygous (for example, $\alpha^{3.7}$ homozygous deletion $-\alpha^{3.7}/-\alpha^{3.7}$), and if the 2 alleles differ, it is termed as heterozygous (for example, $\alpha^{3.7}$ heterozygous deletion $-\alpha^{3.7}/\alpha\alpha$). Hemizygous (for example, $\alpha_1^{-4.2}/\alpha_1\alpha_{12}$) form of α-globin genotypes were also reported from Saudis.8 Severity of the α -thal disorder is indirectly proportional to the number of functional α -globin genes. The severities of α -thal tend to be more in group one results from the loss of all 4 α -globin genes, while signs and

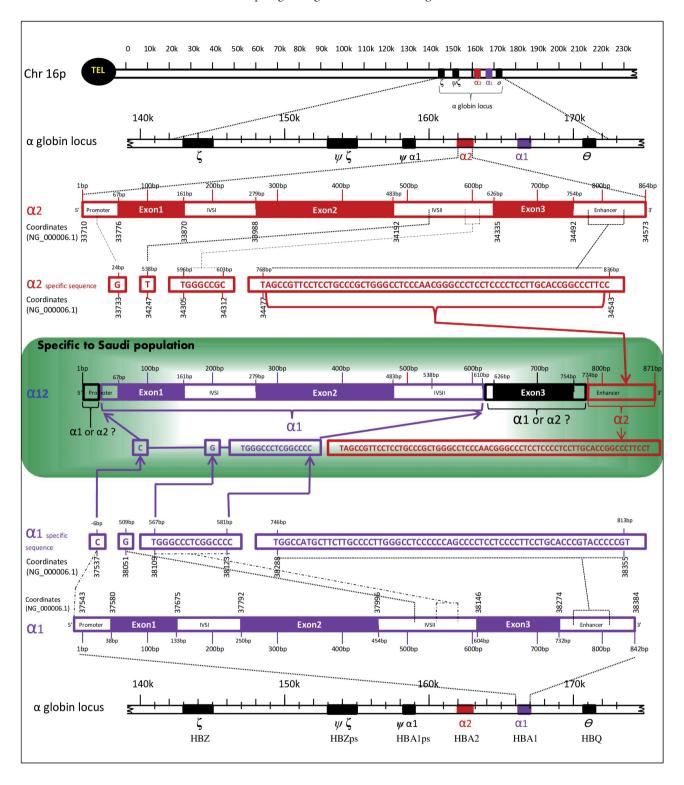


Figure 1 - An image showing 3 types of globin genes prevalent in the Saudi population: *HBA2* (α2), *HBA1* (α1), and *HBA12* (α12). The α2 gene is colored in nut brown and α1 gene is colored in violet. The undistinguished sequences (α1 or α2?) are colored in black. Reproduced and modified from: Borgio JF, AbdulAzeez S, Al-Nafie AN, Naserullah ZA, Al-Jarrash S, Al-Madan MS, et al. A novel *HBA2* gene conversion in cis or trans: "α12 allele" in a Saudi population. *Blood Cells Mol Dis* 2014; 53: 199-203.8 With permission from Elsevier.

symptoms are almost nil in group 4 (Figure 2). Techniques for the updated genotyping (the process of determining a genotype) of α -globin genes in Saudis for the proper diagnosis should be given to health professional.

Down regulation factors of the α-globin gene expression. In general, down regulation of the expression of the α-globin genes due to mutations in ATRX (α-thal x-linked mental retardation) gene, usually lead to α-thal like phenotype. ^{22,23} Very recently, there were 4 novel mutations ($IVSI-5(G\rightarrow C)$, $Cd39(C\rightarrow T)$, c.623delA, and

c.848T>C) on ATRX gene reported in Saudi population. The 2 exonic mutations (c.623delA and c.848T>C) were reported in patients co-inherited with α -globin genes mutations. The study is a clear alarm that the α -thal-like phenotype in Saudi population may be due to mutations in α -globin genes, or in ATRX gene. It seems reasonable to suggest that screening for the presence of mutations in the ATRX gene along with mutations in the HBA2, HBA1, and HBA12 genes are essential for proper identification of the disease burden in this population.

Table 1 - Alpha-globin genotypes prevalent in Saudi population according to various studies in Saudi Arabia.

Types of α-thalassemia	Alpha-globin genotype	Functional α-genes	Reference
Group 1: Hb Bart's	/	-	Pembrey et al ^{13*}
Group 2: HbH disease	^{FIL} /-α ^{3.7}	$\alpha_{_2}$	Akhtar et al ⁷
	FIL/ $lpha^{cd~14}lpha$	$\alpha_{_2}$	Akhtar et al ⁷
	FIL/ $\alpha^{ ext{Adana}} \alpha$	$\alpha_{_2}$	Akhtar et al ⁷
	FIL/ $\alpha\alpha^{polyA-1}$	$\alpha_{_1}^{^2}$	Akhtar et al ⁷
	- $\alpha^{3.7}$ / α^{cd} $^{14}\alpha$ $^{KD}\alpha^{anti-3.7}$	$\alpha_{_2}$	Akhtar et al ⁷
	$\alpha^{\text{Adana}} \alpha^{\text{cd 59}} / \alpha \alpha^{\text{KD}}$	$\alpha_{_1}$	Akhtar et al ⁷
	$-\alpha^{3.7}/\alpha^{\text{ cd }14}$	$lpha_{_2}$	Akhtar et al ⁷
Group 3: Trait	$-(\alpha)^{20.5}/\alpha\alpha$	$\alpha_{_1} \& \alpha_{_2}$	Akhtar et al ⁷
	$FIL/\alpha\alpha$	$\alpha_{_1} \& \alpha_{_2}$	Akhtar et al ⁷
	$-$ -MED/ $\alpha\alpha$	$\alpha_{_1} \& \alpha_{_2}$	Akhtar et al ⁷
	$-\alpha^{4.2}/-\alpha^{4.2}$	$\alpha_1 & \alpha_1$	El-Hazmi and Warsy ¹⁴
	$-\alpha^{3.7}/-\alpha^{3.7}$	$\alpha_2 \& \alpha_2$	El-Hazmi and Warsy, 14 El-Hazmi, 15 Akhtar et al, 7 Al-Nafie et al 13
	$lpha^{cd~14}lpha/lpha^{Adana}lpha$	$\alpha_2 \& \alpha_2$	Akhtar et al ⁷
	$-\alpha^{3.7}/\alpha\alpha^{\text{polyA-1}}$	$\alpha_1 & \alpha_1$	Hellani et al, ³¹ Akhtar et al, ⁷ Al-Nafie et al ¹³
	$lpha^{{ m cd}\; 14}lpha^{{ m init}}/lpha$	$\alpha_{_1} \& \alpha_{_2}$	Akhtar et al ⁷
	$lpha lpha^{ { m cd} 59} / lpha lpha^{ m KD}$	$\alpha_1 & \alpha_1$	Akhtar et al ⁷
	$\alpha^{\text{T-Saudi}}\alpha/\alpha^{\text{T-Saudi}}\alpha$	$\alpha_2 \& \alpha_2$	Qadri and Islam ¹⁶
	$lpha^{{ m cd}_{14}}lpha$ / $lphalpha$ polyA-1	$\alpha_1 & \alpha_2$	Akhtar et al ⁷
	$\alpha\alpha^{\text{polyA-1}}/\alpha\alpha^{\text{KD}}$	$\alpha_{_1} & \alpha_{_1}$	Akhtar et al ⁷
Group 4: Silent	$\alpha\alpha\alpha^{\text{anti-3.7}}/\alpha\alpha^{\text{KD}}$	$\alpha_1, \alpha_2, \& \alpha_2$	Akhtar et al ⁷
	$lphalpha^{ ext{KD}}/lphalpha$	$\alpha_1, \alpha_1, \& \alpha_2$	Akhtar et al ⁷
	$\alpha\alpha\alpha^{\text{anti-3.7}}/\alpha\alpha$	$\alpha_1, \alpha_2, \& \alpha_2$	El-Hazmi ¹⁵
	$-\alpha^{4.2}/\alpha\alpha$	$\alpha_1, \alpha_1, \& \alpha_2$	Akhtar et al ⁷
	$-\alpha^{3.7}/\alpha\alpha$	$\alpha_1, \alpha_2, \& \alpha_2$	Hellani et al, ³¹ Akhtar et al, ⁷ Borgio et al ¹²
	$\alpha^{{ m cd} 14} lpha/lpha lpha$	$\alpha_1, \alpha_2, \& \alpha_2$	Akhtar et al ⁷
	$\alpha\alpha^{Handsworth}/\alpha\alpha$	$\alpha_1, \alpha_1, \& \alpha_2$	Al-Awamy et al ¹⁷
	$\alpha \alpha^{\text{F-Dammam}}/\alpha \alpha$	$\alpha_1, \alpha_1, \& \alpha_2$	Al-Awamy et al ¹⁸
	$\alpha \alpha^{ ext{Riyadh}} / \alpha \alpha$	$\alpha_1, \alpha_1, \& \alpha_2$	El-Hazmi and Lehmann ¹⁹
	$\alpha\alpha^{\text{Setif}}/\alpha\alpha$	$\alpha_1, \alpha_1, \& \alpha_2$	Al-Awamy et al ²⁰
	$-\alpha_{12}^{3.7}/\alpha_{1}\alpha_{12}$	$\alpha_{1}, \alpha_{12}, \& \alpha_{12}$	Borgio et al ⁸
	$\alpha_1^{-4.2}/\alpha_1^{\alpha_1}$	$\alpha_1, \alpha_1, \& \alpha_{12}$	Borgio et al ⁸
Group 5: Normal	$\alpha_1^{}\alpha_2^{}/\alpha_1^{}\alpha_2^{}$	$\alpha_1, \alpha_1, \alpha_2, \& \alpha_2$	Akhtar et al, ⁷ Borgio et al ⁸
	$\alpha_{\scriptscriptstyle 1}\alpha_{\scriptscriptstyle 2}/\alpha_{\scriptscriptstyle 1}\alpha_{\scriptscriptstyle 12}$	$\alpha_1, \alpha_1, \alpha_2, \& \alpha_{12}$	Borgio et al ⁸
	$\alpha_{1}^{}\alpha_{12}^{}/\alpha_{1}^{}\alpha_{12}^{}$	$\alpha_1, \alpha_1, \alpha_{12}, \& \alpha_{12}$	Borgio et al ⁸

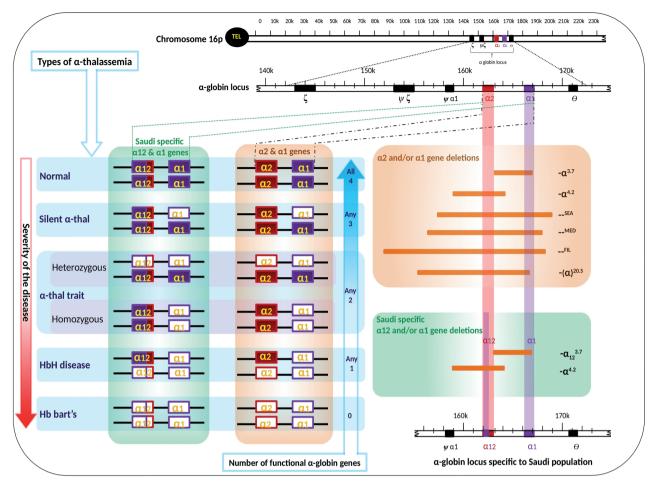


Figure 2 - Molecular types of thalassemia and types of globin gene deletions prevalent in the Saudi population. Filled boxes of genes $\alpha 1$, $\alpha 2$, and $\alpha 12$ indicates normal genes, while empty boxes of genes $\alpha 1$, $\alpha 2$, and $\alpha 12$ indicate the deleted genes.

The main limitation of this review is that, some of the articles dealing with α -thal within the Saudi population were not publicly accessible full text scholarly articles. Health sector professional should keep themselves updated with the genotyping techniques for α -globin and ATRX genes in Saudis. The very high frequency of α -thal, SCD, and β -thal in the Kingdom and their co-inheritance obliges the addition of sequence based testing system for HBA2, HBA1, HBA12, and ATRX genes along with the existing pre-marital testing program, to detect the risk for the offspring of affected individuals.

In conclusion, large-scale screening is mandatory to identify the influence of point mutations and deletion on the phenotype of Saudi population. In-depth, the studies on the prevalence of the sequence variations in α_{12} and their influence on the phenotypes are needed. Comparative studies on the protein structure

and molecular modeling of α_1 , α_2 , and α_{12} have to be initiated. Specific diagnostic kits for Saudi population should be developed to identify the sequence defects in α_1 , α_2 , and α_{12} genes. The clinical effects due to the changes in α -globin gene expression from the α_{12} gene should be studied at large-scale. Cellular studies are needed to understand the process of down regulation of α -globin gene expression due to ATRX gene mutation in Saudis.

Acknowledgment. The author thanks Dr. A. K. Al-Ali, Director, Center for Research and Medical Consultation, University of Dammam, Dammam, Kingdom of Saudi Arabia for his continuous support and encouragement. The author wishes to express his appreciation to Mrs. B. Jesvin Bency for her critical comments. The author also acknowledgs Dr. S. AbdulAzeez, Dr. S. Chathoth, Dr. S. A. Baikady, Dr. C. Cyrus, Dr. C. B. Vatte, Dr. K. Alkharsah, Dr. K. A. Ahmed, Dr. N. B. Almandil, and Dr. M. Farhat for their encouragement. The author would like to extend his appreciation to Mr. Mohammed H. Al-Shamlan for Arabic translation of the abstract.

References

- Jastaniah W. Epidemiology of sickle cell disease in Saudi Arabia. *Ann Saudi Med* 2011; 31: 289-293.
- Mehdi SR, Al Dahmash BA. A comparative study of hematological parameters of α and β thalassemias in a high prevalence zone: Saudi Arabia. *Indian J Hum Genet* 2011; 17: 207-211.
- Alsultan A, Alabdulaali MK, Griffin PJ, Alsuliman AM, Ghabbour HA, Sebastiani P, et al. Sickle cell disease in Saudi Arabia: the phenotype in adults with the Arab-Indian haplotype is not benign. *Br J Haematol* 2014; 164: 597-604.
- Al-Owain M, Al-Zaidan H, Al-Hassnan Z. Map of autosomal recessive genetic disorders in Saudi Arabia: concepts and future directions. Am J Med Genet A 2012; 158A: 2629-2640.
- Al-Shahrani M. Steps toward the prevention of hemoglobinopathies in the kingdom of Saudi Arabia. *Hemoglobin* 2009; 33 Suppl 1: S21-S24.
- Al-Sultan A, Phanasgaonkar S, Suliman A, Al-Baqushi M, Nasrullah Z, Al-Ali A. Spectrum of β-thalassemia mutations in the eastern province of Saudi Arabia. *Hemoglobin* 2011; 35: 125-134.
- 7. Akhtar MS, Qaw F, Borgio JF, Albuali W, Suliman A, Nasserullah A, et al. Spectrum of α-thalassemia mutations in transfusion-dependent β-thalassemia patients from the Eastern Province of Saudi Arabia. *Hemoglobin* 2013; 37: 65-73.
- Borgio JF, AbdulAzeez S, Al-Nafie AN, Naserullah ZA, Al-Jarrash S, Al-Madan MS, et al. A novel HBA2 gene conversion in cis or trans: "α12 allele" in a Saudi population. Blood Cells Mol Dis 2014; 53: 199-203.
- Al-Nafie AN, Borgio JF, AbdulAzeez S, Al-Suliman AM, Qaw FS, Naserullah ZA, et al. Co-inheritance of novel ATRX gene mutation and globin (α & β) gene mutations in transfusion dependent beta-thalassemia patients. *Blood Cells Mol Dis* 2015; 55: 27-29.
- 10. Harteveld CL, Higgs DR. Alpha-thalassaemia. *Orphanet J Rare Dis* 2010; 5: 13.

- 11. Hellani A, Fadel E, El-Sadadi S, El-Sweilam H, El-Dawood A, Abu-Amero KK. Molecular spectrum of alpha-thalassemia mutations in microcytic hypochromic anemia patients from Saudi Arabia. *Genet Test Mol Biomarkers* 2009; 13: 219-221.
- 12. Mettananda S, Gibbons RJ, Higgs DR. α -Globin as a molecular target in the treatment of β -thalassemia. *Blood* 2015; 125: 3694-3701.
- 13. Pembrey ME, Weatherall DJ, Clegg JB, Bunch C, Perrine RP. Haemoglobin Bart's in Saudi Arabia. *Br J Haematol* 1975; 29: 221-234.
- 14. El-Hazmi MA, Warsy AS. Double heterozygote leftward/ rightward deletion type alpha-thalassaemia in Saudi Arabs. *Hum Hered* 1986; 36: 222-226.
- 15. El-Hazmi MA. Alpha-thalassemia in Saudi Arabia: deletion pattern. *Hum Genet* 1987; 76: 196-198.
- 16. Qadri MI, Islam SA. Hemoglobin H disease in the eastern region of Saudi Arabia. *Saudi Med J* 2000; 21: 666-671.
- 17. Al-Awamy BH, Niazi GA, Naeem MA, Wilson JB, Huisman TH. Hemoglobin Handsworth or alpha2 18(A16)Gly----Arg beta2 in a Saudi newborn. *Hemoglobin* 1985; 9: 183-186.
- 18. Al-Awamy BH, Niazi GA, Al-Mouzan MI, Wilson JB, Chen SS, Webber BB, et al. Hb F-Dammam or alpha 2A gamma 2(79) (EF3) Asp----Asn. *Hemoglobin* 1985; 9: 171-173.
- 19. El-Hazmi MA, Lehmann H. Hemoglobin Riyadh-alpha2beta2 (120(GH3)Lys replaced by Asn). *A new variant found in association with alpha-thalassemia and iron deficiency. Hemoglobin* 1976-1977; 1: 59-74.
- 20. Al-Awamy B, Niazi GA, Wilson JB, Huisman TH. Hb Setif or alpha 2 94(G1)Asp----Tyr beta 2 observed in a Saudi Arabian family. *Hemoglobin* 1985; 9: 87-90.
- 21. Lachance J, Tishkoff SA. Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles. *Am J Hum Genet* 2014; 95: 408-420.
- 22. Viprakasit V. α-Thalassaemia: a genotype-phenotype correlation and management. *ISBT Science Series* 2015; 10: 295-304.
- Gibbons RJ. α-Thalassemia, mental retardation, and myelodysplastic syndrome. *Cold Spring Harb Perspect Med* 2012; 2: a011759.

Copyright

Whenever a manuscript contains material (tables, figures, etc.) which is protected by copyright (previously published), it is the obligation of the author to obtain written permission from the holder of the copyright (usually the publisher) to reproduce the material in Saudi Medical Journal. This also applies if the material is the authors own work. Please submit copies of the material from the source in which it was first published.