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Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoim-
mune disease targeting the pancreatic beta-cells and 
rendering the person hypoinsulinemic and hyperglyce-
mic. Despite exogenous insulin therapy, individuals with 
T1DM will invariably develop long-term complications 
such as blindness, kidney failure and cardiovascular 
disease. Though often overlooked, skeletal muscle is 

also adversely affected in T1DM, with both physical 
and metabolic derangements reported. As the largest 
metabolic organ in the body, impairments to skeletal 
muscle health in T1DM would impact insulin sensitivity, 
glucose/lipid disposal and basal metabolic rate and 
thus affect the ability of persons with T1DM to manage 
their disease. In this review, we discuss the impact 
of T1DM on skeletal muscle health with a particular 
focus on the proposed mechanisms involved. We then 
identify and discuss established and potential adjuvant 
therapies which, in association with insulin therapy, 
would improve the health of skeletal muscle in those 
with T1DM and thereby improve disease management- 
ultimately delaying the onset and severity of other long-
term diabetic complications.
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Core tip: Skeletal muscle is adversely affected in type 
1 diabetes mellitus and strategies to maintain/improve 
muscle health will positively impact disease management 
and delay diabetic complications.
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a chronic disease 
characterized by the autoimmune destruction of the 
pancreatic beta cells. Without the insulin produced by 
these cells, the body is no longer able to manage blood 
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glucose, leading to hyperglycemia. Even in the case of 
tightly regulated insulin therapy, it is extremely difficult 
to maintain blood glucose levels within an acceptable 
range[1]. Complications, such as blindness (retinopathy), 
kidney failure (nephropathy), peripheral nerve damage 
(neuropathy), cardiovascular disease and impairments 
to muscle health (myopathy), invariably arise as a 
direct/indirect result of the inability to manage blood 
glucose. 

In healthy individuals, insulin is typically released 
postprandially and is responsible for promoting an influx 
of glucose into adipose, hepatic and skeletal muscle cells 
for storage or metabolism. Of these insulin-sensitive 
cells, skeletal muscle is the largest of these organs by 
mass in the body[2,3] and thus plays a prominent role in 
glucose homeostasis. Skeletal muscle is also capable 
of uptaking large amounts of glucose in a non-insulin 
mediated manner[4] such as is seen during muscle 
contraction. Not surprisingly then, if the health of skeletal 
muscle is sub-optimal, management of blood glucose 
will also be sub-optimal. Despite the vital role played 
by skeletal muscle in whole body metabolic control 
and blood glucose management, our understanding of 
changes to the health of this organ system in both acute 
and long-term T1DM is still in its infancy. Much of our 
current knowledge is derived from rodent models with 
uncontrolled hyperglycemia for a period of weeks or 
months. The resultant impairments to skeletal muscle 
health, referred to as “diabetic myopathy” manifests 
as impaired muscle growth and strength[5-8], altered 
metabolic capacity[5-7] and reduced regenerative and 
stem cell capacities[9-15]. Though human studies investi-
gating diabetic myopathy are sparse, the results to date 
suggest consistency in the observations with rodent 
models[6]. Specifically, reductions in muscle mass, fiber 
size, work capacity and maximal force production[6] are 
seen in persons with T1DM.

In this review, we will introduce some of the key 
factors impacting skeletal muscle health in those 
with T1DM and then discuss established and possible 
therapeutic strategies focused on improving skeletal 
muscle health as a means of improving skeletal muscle 
health with the ultimate goal of attenuating the develop-
ment of other diabetic complications.

METABOLIC STRESS
In a state such as T1DM, excessive accumulation of 
glucose in the blood incites excessive stress on the 
entire body. Specifically within the muscle, damaging 
metabolites, such as reactive oxygen species (ROS), 
wreak havoc within the tissue causing damage to 
cellular structures with resultant functional impairments. 
The oxidative capacity of T1DM skeletal muscle is 
altered when compared to healthy, non-diabetic muscle. 
In the Ins2Akita+/- model of T1DM, glycolytic fibers 
exhibit atrophy, as demonstrated through a decreased 
proportion of type ⅡB/X fibers, as well as a decrease 
in type ⅡA and ⅡB/X fiber area[5]. Studies in human 

T1DM populations also displayed alterations in fiber 
type variability through an increased proportion of fast 
glycolytic fibers, and an increased amount of glycolytic 
enzyme activity[16,17]. Correspondingly, changes in the 
normal fiber type distribution are accompanied by 
changes in fuel oxidation and metabolic capacity of the 
muscle. Due to the reduced ability of skeletal muscle 
to access carbohydrates in times of inadequate/low 
insulin, diabetic skeletal muscle must promote the use 
of other fuel sources. Skeletal muscle of individuals 
with T1DM is associated with the excessive deposition 
of intramyocellular lipids (IMCL)[5,18]. This high level of 
IMCLs is noted in the muscle following food consumption, 
and very low levels in the fasted state, as this fuel source 
is heavily relied upon. Muscle from the streptozotocin 
(STZ) T1DM mouse model also demonstrates increa-
sed acetyl CoA/CoA ratio, hypothesized to be due to 
increased fatty acid oxidation[19], as well as increased 
fat utilization and mobilization[20], as the muscle tries to 
deal with the increased fat content. Along with these 
changes in the skeletal muscle of both the Ins2Akita+/- 
and STZ models, there is an upregulation of CD36, a 
fatty acid transporter[5,21-23]. The alloxan-induced T1DM 
model similarly demonstrates an increase in free fatty 
acid levels in cardiac and skeletal muscle tissues[24]. It is 
believed that as the levels of IMCL deposition increase, 
lipotoxicity ensues[25], enhancing stress to the tissue. 
Despite a heavier reliance on triglycerides, diabetic 
myopathy is accompanied with decreased activity 
of lipid metabolism enzymes citrate synthase[5,26,27], 
β-hydroxybutyrate[5], and 3-hydroxybutyrate dehydro-
genase[26]. The trend of increased IMCL persists in 
human populations of T1DM, and is correlated with 
the degree of insulin resistance observed in these 
subjects[28]. Contrarily, the Ins2Akita+/- mouse model does 
not show the same increase in intramuscular triglyceride 
content[5,29] seen in the (disease duration-matched) 
STZ model, and does not demonstrate a decrease in 
citrate synthase or β-hydroxybutyrate activity[5]. It is 
worth noting, however, in the case of the STZ-induced 
diabetic model, that STZ itself has been implicated in the 
generation of oxidative stress within muscle cells, even 
in the absence of hyperglycemia[30]. Thus the STZ model 
could be held to represent a much more severe model of 
T1DM due to the elevated levels of oxidative stress than 
may be seen in diabetes alone. 

Studies have shown that hyperglycemia and T1DM 
specifically display elevated markers of oxidative 
stress in the skeletal muscle[31,32], resulting in insulin 
resistance[33]. Accumulation of damaging ROS in skeletal 
muscle has been linked with a loss of protein mass[34] 
and disrupted protein turnover[35]. This oxidative stress 
has an effect on transcription of glucose transporters 
which contributes to the development of insulin resis-
tance[32]. Specifically in STZ rats, oxidative stress was 
seen to upregulate atrogin-1 and MuRF-1, markers of 
muscle atrophy, and downregulate MyoD, Myogenin 
and JunD, genes required for normal muscle growth 
and repair[15]. Though there is clear evidence that accu-
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mulation of IMCL deposits causes dysfunctional fatty acid 
oxidation, generation of ROS, and stress on the muscle, 
future studies are needed in other diabetic models to 
more fully elucidate the contribution(s) of these stressors 
to diabetic myopathy development and progression.

VASCULAR DYSFUNCTION
An intricate network of vasculature supplying the skele-
tal muscle with adequate blood supply is required for 
optimal muscle performance. In T1DM, however, there 
is dysfunction of the capillary network and endothelial 
cells. Hyperglycemia has been found to alter the capillary 
bed, reducing capillary diffusing capacity and disrupting 
hemodynamic regulation to skeletal muscle[36,37]. T1DM 
mice demonstrate both a decrease in capillary-to-fiber 
ratio[5,38] and dysregulated angiogenesis[38]. Moreover, 
thickening of the basement membrane of skeletal 
muscle blood vessels in T1DM rats has been found to 
be positively related to their level of dysglycemia[39-41]. 
Thickening of the basement membrane in skeletal 
muscle capillaries is also greater in patients experienc-
ing worsening retinopathy, a serious complication of 
T1DM[42]. Furthermore, studies show that peripheral 
microvascular dysfunction could also be seen as an 
indicator of atherosclerotic damage in individuals with 
T1DM[43]. In the case of ApoE-/- STZ mice, a T1DM rodent 
model which mimics macrovascular complications, 
mice which were returned to normoglycemia exhibited 
expansion of the vasa vasorum microvascular network[44]. 
This expansion was directly correlated with attenuation 
of atherogenesis[44]. Overall, early attenuation of vascular 
dysfunction within the skeletal muscle would help prevent 
further long-term complications. 

INSULIN RESISTANCE
Brownlee[31], in his unifying theory of diabetic compli-
cations, has suggested that a large part of cardio-
vascular disease risk in those with diabetes is due to 
insulin resistance. Though insulin resistance is more 
commonly associated with the development of type 
2 diabetes, individuals with T1DM also demonstrate 
insulin resistance[29,45,46]. In fact, insulin resistance has 
been observed in T1DM youth[45] and long-duration type 
1 diabetics[47,48], and occurs independent of glycemic 
control[49]. Impairment of glucose transporters[50] and 
glucose transport following exercise[51] have been 
observed in insulin resistant T1DM, further enhancing 
the diabetic phenotype. Insulin resistance in T1DM has 
been linked directly with skeletal muscle pathology[52] 
through increased IMCL deposition and dysregulation of 
fatty acid oxidation[53].

Interestingly, exposure to a long-acting human 
insulin analogue, insulin detemir, has been shown to 
result in more significant insulin resistance, oxidative 
stress, skeletal muscle ectopic fat accumulation and 
mitochondrial impairments compared to hyperglycemia 
alone[54]. These results indicate that insulin resistance 

may in fact be a response to insulin treatment as 
opposed to hyperglycemia. Therapeutic strategies 
targeting an improvement in peripheral insulin sensitivity 
would reduce exogenous insulin needs, preventing 
insulin resistance and thus delaying the onset of diabetic 
complications[55]. 

In response to T1DM, skeletal muscle is negatively 
impacted, as is evident by increased metabolic stress, 
vascular impairments and insulin resistance (Figure 
1). With all of these decrements, muscle is not able to 
respond optimally to stressors or combat the elevated 
glycemic and lipid loads frequently experienced in T1DM. 
It is believed that maintaining or improving skeletal 
muscle health in T1DM can contribute significantly to 
delaying diabetic complications. For example, improv-
ing muscle metabolic health would reduce oxidative 
stress, and increasing insulin sensitivity would have 
the combined effect of improving glycemic control and 
reducing exogenous insulin needs. In the following 
section we propose a variety of skeletal muscle-centric 
therapeutic strategies as a means to both improve the 
overall health of those with diabetes mellitus and reduce 
the complications associated with this disease state. 

EXERCISE TRAINING
Exercise therapy is now being regarded as an important 
component in the management of T1DM due to its 
resultant improvements towards attenuation of micro-
vascular complications and improvements of insulin 
sensitivity[56]. In a variety of metabolic disorders (in-
dependent of T1DM) exercise is associated with improve-
ments in glucose and lipid metabolism[57-59], enhanced 
glucose transport[60], increased insulin sensitivity[61,62], 
reductions in daily insulin requirement, and a decreased 
risk of related co-morbidities[63,64]. Accordingly, it is 
predicted that improvements in skeletal muscle health, 
by way of exercise, would promote a greater state of 
well-being in individuals with T1DM. 

Due to the onset of myopathy with T1DM disease 
advancement[6], as well as the presence of disease onset 
during the critical growth period, it is not surprising that 
the physical fitness of T1DM children is often observed 
to be reduced when compared to their healthy age-
matched counterparts[6,65]. This disparity has been 
attributed, in part, to the inverse association between 
glycemic control and skeletal muscle function, resulting 
in reduced aerobic fitness. As mentioned, T1DM in-
dividuals commonly experience both functional and 
growth impairments[5-8]. A decrease in cardiorespiratory 
fitness has similarly been observed in T1DM adolescents 
and adults with poor glycemic control[66,67]. Based on 
these data, the implementation of an exercise training 
program would be considered an effective therapeutic 
strategy to improve muscle health and delay the onset 
and progression of diabetic complications. 

A primary clinical measure to define the risk for 
complications development in those with T1DM is gly-
cosylated haemoglobin (HbA1c). Changes to long term 
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changes to HbA1c remains largely controversial. Studies 
assessing the impact of either aerobic and/or strength 
training protocols in T1DM rodents and humans fail 
to establish a consensus on whether or not increasing 
physical activity improves glycemic control. For instance, 
a number of studies have reported a decrease in HbA1c 
levels following a period of aerobic training[72,73], while 
others report no difference in HbA1c following a period of 
comparable training volume[74-76]. Similarly, investigations 
incorporating strength training protocols have reported 
no effect on HbA1c levels[77,78], while others indicate 
beneficial effects incorporating both strength and 
aerobic exercise[79]. Nevertheless, longitudinal data 
suggests that improvements in glycemic control are 
still observed despite minimal improvements in HbA1c 
levels following aerobic training[80,81]. Discrepancies in 
HbA1c improvements amongst the studies reported 
are thought to be a result of variations in insulin dosage 
(reducing dosages as a means to prevent exercise-
induced hypoglycaemia) and carbohydrate uptake, which 
override any quantifiable changes in glucose disposal. 
Although increased fitness may not dramatically improve 
glycemic control, physical activity is still encouraged for 
all T1DM individuals due to the additional skeletal muscle 
health benefits incurred, including the attenuation in 
microvascular complications, improved insulin sensitivity, 
reductions in inflammation, and enhanced muscle growth 
and repair. For a thorough review on exercise and T1DM, 
see[56].

As noted previously, the progression of T1DM pro-
motes the onset of various microvascular complications. 
These complications not only promote a worsened dis-
ease state, but may also interfere with the individual’s
physical capacity[82]. It is critical to address the role of 
vascular complications in the skeletal muscle in T1DM, 
as maladaptive changes to the diabetic muscle often 
precede the advancement of other complications[6,69,83]. 
The effect of exercise therapy on skeletal muscle vascu-
lature is largely positive, with many studies reporting 
increases in angiogenesis-related genes[38], and enhanced 
vascular function[84,85]. In humans, an inverse correlation 
exists between physical activity and the development of 
macro-and micro-vascular complications in long-standing 
T1DM[86], however specific adaptions in skeletal muscle 
vasculature following exercise training remain largely 
unknown. 

Elevations in markers of inflammatory and oxidative 
stress have also been identified in T1DM patients[87-89]. 
Inflammation is known to negatively impact skeletal 
muscle health, as observed by the positive correlation 
between inflammatory factors and muscle wasting[90,91]. 
Skeletal muscle from T1DM mice show an increased 
expression of inflammatory-related factors[92,93]. Exercise
does elicit anti-inflammatory effects[94,95], which are depen-
dent on exercise type, duration, intensity, endurance 
capacity and muscle morphology[96-98]. Recently, diabetic 
rats demonstrated reductions in inflammatory cytokine 
levels [i.e., interleukin 1B (IL-1B), IL-4, etc.] following 
exercise intervention[99]. Furthermore, T1DM children 

glycemic control (measured by HbA1c) are a contributing 
factor to disease progression, and it has been shown 
that hyperglycemia is prone to induce an assortment 
of co-morbidities that further perpetuate the disease 
state[68] including muscle morphology and function[69-71]. 
Many studies investigating the therapeutic benefit of 
exercise on the overall health of those with T1DM have 
relied on HbA1c as a primary outcome measure. Indeed, 
while exercise has been shown to increase glucose 
uptake and improve insulin sensitivity, information on 
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Figure 1  Schematic figure representing skeletal muscle dysfunction in 
type 1 diabetes mellitus and possible therapeutic approaches targeting 
skeletal muscle. (1) In T1DM, due to dyslipidemia and/or the reduced ability 
for muscle to uptake carbohydrates, an increased amount of non-esterified fatty 
acids (NEFA) are shuttled into the skeletal muscle. The majority of this excess 
fat is deposited in the form of intramyocellular lipid droplets (IMCLs) as there 
is a reduced ability to efficiently oxidize lipids due to impairments to oxidative 
capacity. An increased amount of metabolic stress and reactive oxygen species 
(ROS) production within the mitochondria is observed in T1DM and appears 
to be a causative factor; (2) T1DM also induces dysfunction with regard to 
the vasculature network. There is a thickening of the basement membrane 
and downregulation of angiogenesis resulting in a decreased capillary-to-fiber 
ratio. Impairments to microvasculature have also been linked with generation 
of macrovascular complications (e.g., atherosclerosis), a serious long-term 
diabetic complication; and (3) Insulin resistance results in disruptions to the 
insulin signalling pathway. Improper insulin signalling prevents excess glucose 
in the blood from being taken up by the muscle via decreased translocation of 
the GLUT4 glucose transporter. Our proposed treatments of exercise, myostatin 
inhibition, leptin and adiponectin target the specific pathways mentioned above 
in skeletal muscle. We hypothesize that if diabetic myopathy is attenuated it will 
allow muscle to contribute a greater amount towards reducing hyperglycemia. 
Since muscle is an important large metabolic organ, if skeletal muscle 
health was improved there would be resultant decreases in oxidative stress, 
improvements to glycemic control and a reduction in the need for exogenous 
insulin. T1DM: Type 1 diabetes mellitus; GLUT4: Glucose transporter type 4.
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subjected to an acute bout of exercise demonstrated 
dysregulation in the expression of inflammatory and 
oxidative stress variables[100], thereby providing evidence 
for the importance of exercise training in the reduction of 
inflammation associated with T1DM disease progression. 
While exercise reduces pro-inflammatory cytokines, it 
has also been found to promote the expression of anti-
inflammatory cytokines that enhance muscle health. 
For instance, STZ rats subjected to a 5-wk resistance 
exercise training regimen displayed an increase in IL-15, 
an anabolic cytokine that is known to induce hypertrophy 
in skeletal muscle[101,102], while hindering apoptosis[103]. 
The cytokine IL-6, while primarily believed to be pro-
inflammatory in nature, is also known to exert beneficial 
effects on skeletal muscle following training. Specifically, 
increased IL-6 production promoted greater glucose 
uptake during exercise[104] and an up-regulation of 
additional anti-inflammatory cytokines[105]. These data, 
while not explicitly investigated within the context of 
T1DM, suggests a protective role of IL-6 release from 
skeletal muscle following exercise. While these studies 
implicate exercise in the support of muscle health via 
attenuation of the inflammatory state associated with 
T1DM development, future work using human data is 
needed to further delineate the role of exercise training in 
the regulation of chronic inflammation in T1DM. 

Overall physical capacity is negatively affected by 
the presence of T1DM, particularly in those with long-
standing disease, and thus it is predicted that any form 
of activity (endurance, resistance, etc.) will benefit the 
individual by maintaining and/or enhancing skeletal 
muscle health and the benefits therein. The literature 
to date makes a clear case that exercise training can 
positively affect the skeletal muscle of those with T1DM 
through its influence on skeletal muscle endothelial 
cell function, inflammation and insulin sensitivity. What 
remains to be clearly elucidated is the impact of exercise 
training on the modulation of long-term glycemic control; 
a measure hampered by subject variability in insulin 
dosage, intensity of exercise training, and degree of 
disease advancement between studies. 

MYOSTATIN
Myostatin (GDF-8), primarily synthesized by skeletal 
muscle and a negative regulator of muscle growth, 
was originally discovered in 1997 when a mutation in 
the myostatin gene was shown to be responsible for 
phenotypically hypermuscular cattle[106]. In the case of 
myostatin deficiency, muscle growth was observed to 
reach 2-3 times that of typical muscle size[106]. Instances 
of loss-of-function myostatin mutation have been 
observed in human populations to the same effect[107].

Myostatin levels have been measured in the STZ-
diabetic mouse, and consistently show elevated protein[108] 
and gene expression[109,110]. Human populations of T2DM 
also demonstrate increased levels of myostatin[111-113]. 
This increase of myostatin in T1DM is consistent with 
the decreased muscle mass and myopathic phenotype 

observed. In a study of food deprivation, a state similar 
to that as found in uncontrolled T1DM, increased ex-
pression of myostatin was found to contribute to the 
observed muscle atrophy[114].

Methods of inhibiting or knocking down elements 
of the myostatin pathway have been, and are curre-
ntly being investigated in a variety of disease states. 
Naturally, myostatin inhibition therapy via MYO-029[115], 
PF-06252616[116] and ACE-031[117], amongst others, 
was originally investigated in patient populations with 
genetic muscular diseases and muscle wasting disorders 
(e.g., cancer cachexia). More recently, blockade of the 
myostatin pathway has been linked to improvements of 
metabolic pathologies in animal studies. For instance, 
high-fat diet fed mice with myostatin reduction therapy 
did not gain weight as wildtype counterparts did[118-120]

and myostatin inhibition is seen to prevent diabetes 
development in a model of lipodystrophy[121]. Further-
more, in the case of T1DM specifically, STZ animals 
treated with follistatin, a known inhibitor of myostatin, 
demonstrate improvements in the regenerative capacity 
of skeletal muscle[14].

In the case of other metabolic diseases, increased 
myostatin expression has been implicated in the 
development of insulin resistance[122] and reduction or 
inhibition of myostatin has been seen to improve insulin 
sensitivity[119,123-126]. It is clear that myostatin plays a role 
in glycemic control of skeletal muscle. Models examining 
mutated myostatin or myostatin inhibition coincide 
with significantly elevated levels of GLUT4[127,128] and 
GLUT1[128], resulting in increased glucose uptake[127]. 
This evidence demonstrates how myostatin plays an 
important role in increasing glucose disposal both depen-
dent and independent of insulin. Reductions in circulating 
myostatin in T1DM may therefore aid in both reducing 
exogenous insulin needs and preventing the insulin 
resistance which may develop as a result.

Increased levels of myostatin may contribute to the 
elevated oxidative stress noted in diabetic myopathy. 
Myostatin is thought to operate both through[129] and 
independent[130] of the nuclear factor κB pathway to 
produce ROS, leading to muscle atrophy. In STZ-induced 
T1DM, myostatin was shown to contribute to oxidative 
stress leading to DNA damage[131]. Since myostatin 
contributes to oxidative stress, it is possible that in the 
case of myostatin inhibition, decreased oxidative stress 
(ROS production) could lead to functional problems as 
have been reported in rodents without myostatin[132]. 
It is important to remember however that in T1DM the 
fulcrum is already shifted towards increased ROS levels. 
Thus, reductions in myostatin could serve to restore 
balance resulting in healthier muscle and the associated 
benefits therein. 

Myostatin inhibition has more recently been linked 
to the “browning” of white adipose tissue[133-136]. One 
study has postulated this effect is mediated through 
the 5' AMP-activated protein kinase (AMPK)-PGC1α-
Fndc5 pathway originating in skeletal muscle[137]. While 
this is an indirect positive effect of myostatin inhibition 
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(i.e., not specifically related to skeletal muscle), it would 
also provide benefits in reducing the diabetic condition. 
Gunawardana et al[138] have shown that a transplant of 
brown adipose tissue into STZ-diabetic mice resulted in 
normalization of glucose and attenuation of the diabetic 
state. This effect is thought to occur through recovery 
of subcutaneous white adipose tissue, resulting in the 
normalization of adipokines leptin, adiponectin and 
insulin-like growth factor-1 (IGF-1).

Although downregulation of myostatin shows pro-
mise in the treatment of T1DM via decreasing oxidative 
stress, upregulating glucose transporters, preventing 
insulin resistance and browning white adipose tissue, 
there are still many areas left to be explored. Production 
of ROS is a delicate balance, and a drastic decrease 
in ROS levels can cause harm to an organism as well. 
Further, Wang et al[139] explored a soluble myostatin 
receptor to downregulate the effects of myostatin in 
conjunction with STZ diabetes, and saw worsened 
hyperglycemia. Authors of this study observed severely 
low insulin levels and significantly elevated glucocorticoid 
levels, common to the STZ rodent model[139]. The lack of 
effect of myostatin reduction therapy may be the result 
of the rise in glucocorticoids (resulting in elevated blood 
glucose) or the absence of circulating insulin. Since the 
inhibition of myostatin may have its greatest metabolic 
effects via increasing insulin sensitivity, the lack of insulin 
seen in the STZ model may have been detrimental 
to any potential blood glucose lowering capacity of 
myostatin inhibition[139]. Overall, there is certainly enough 
compelling evidence to further investigate myostatin 
inhibition strategies as an adjuvant therapeutic strategy 
for T1DM. 

LEPTIN
Leptin, a hormone predominantly produced by adipose 
tissue, has been heavily implicated in metabolism. First 
unwittingly examined in the 1950s, the leptin knoc-
kout mouse (ob/ob mouse) demonstrated excessive 
hyperphagia and in turn, excessive weight gain[140]. The 
discovery of leptin itself in 1994 led to the understanding 
of leptin as an important hormone with regard to 
appetite control[141], and has further been implicated in 
reproductive health[142], bone metabolism[143], the immune 
response[144], and importantly in regulating fat meta-
bolism, insulin resistance and overall metabolism. The 
identification of leptin brought about an understanding 
that adipose tissue was an endocrine organ. Currently, 
more than 19 different adipocyte-derived cell-signaling 
proteins, termed adipokines, have been identified[145]. 
Adipokines include inflammatory mediators, angiogenic 
proteins, and metabolic regulators. With the global rise in 
obesity, the relationship between adipose tissue and its 
systemic effects has attracted much interest. Adipokines 
are thought to influence multiple processes, including 
glucose and fatty acid metabolism, and insulin sensitivity.

It has been noted that children and adults with 
poorly controlled T1DM demonstrate low levels of 

leptin regardless of gender[23,146]. Leptin levels can be 
normalized via insulin treatment in T1DM children[146], 
but not in adults[23]. Furthermore, poorly managed 
diabetes has been associated with an increase in the 
soluble leptin receptor, leading to leptin resistance[147]. 
This same trend is seen in STZ diabetic rodents, in which 
the induction of T1DM caused a decrease in circulating 
leptin, which was reversed by insulin therapy[148,149]. 

Leptin therapy has been found to attenuate many 
of the effects of T1DM, most notably restoring euglyce-
mia[150-153]. Considering the restoration of euglycemia 
coupled with leptin’s ties to appetite control, leptin 
treated STZ diabetic rodents demonstrate diminished 
hyperphagia[154]. While Fujikawa et al[155] have hypoth-
esized that the improvements observed in T1DM via 
leptin treatment occur via CNS-dependent mechani-
sms, and Unger’s group has targeted leptins ability 
to decrease plasma glucagon levels[152,156-158], there is 
growing evidence that leptin therapy provides benefits 
through skeletal muscle as well. Leptin treatment has 
been found to increase insulin sensitivity and glucose 
uptake in skeletal muscle specifically[159-161]. Yu et al[162] 
demonstrate that hyperleptinemia leads to euglycemia 
independent of insulin. This causes an upregulation 
of IGF-1 and pIGF-1 receptor, which further leads to 
increases in skeletal muscle IRS-1, P13K and ERK 
phosphorylation[162]. Specifically in the soleus muscle, 
leptin was implicated to act in an insulin-like fashion, 
leading to increases in a variety of muscle metabolic 
factors including glucose uptake, glycogen synthesis, 
lactate formation and glucose oxidation[163].

Leptin has also been demonstrated to play a role 
in both regulating fatty acid oxidation and preventing 
insulin resistance in skeletal muscle. Skeletal muscle 
of STZ diabetic animals treated with leptin exhibit 
evidence of restored glucose uptake, but also enhanced 
skeletal muscle markers of fatty acid utilization and 
oxidation, notably independent of differences in food 
consumption[164]. Leptin has also been seen to direct 
lipids towards the muscle to be burned rather than 
stored[165], as well as increase fatty acid oxidation in 
the skeletal muscle[166]. These metabolic benefits are 
thought to occur through the activation of AMPK and 
the inhibition of acetyl-CoA carboxylase[167]. Insulin 
resistance in T1DM has also been found to be reversed 
through leptin therapy[168]. Interestingly, however, 
this was thought to occur in a method independent of 
skeletal muscle[168]. Kusakabe et al[169] found that leptin 
treated STZ mice fed high fat diet to induce insulin 
resistance demonstrated enhanced insulin sensitivity. 
This was again seen by Lin et al[170], although was 
attributed to neurological changes. Although leptin’s role 
in diminishing insulin resistance is clear, further work is 
necessary to elucidate the mechanism of its action in 
this role.

As leptin appears to mimic many of the effects 
of insulin, leptin may indeed be used as an adjuvant 
therapy to insulin[152,171]. When leptin and insulin were 
given in conjunction to STZ rodents, much smaller doses 
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of insulin were required to achieve normoglycemia than 
would be required with each treatment alone[172]. Metre-
leptin, a leptin analogue, is currently under clinical trials 
(NCT01268644) in conjunction with insulin therapy in 
order to investigate the effectiveness of this combination 
seen in the literature. Considering both the prevalent 
development of insulin resistance and the difficulty in 
maintaining normoglycemia in T1DM patients, even in 
the presence of insulin therapy, this adjuvant therapy 
warrants further investigation in the human T1DM 
population.

ADIPONECTIN
Adiponectin, first characterized in 1995[173], is an 
insulin-sensitizing adipokine; capable of increasing both 
insulin-mediated uptake of glucose and β-oxidation of 
lipids[174-177]. Individuals with T2DM exhibit significantly 
lower levels of circulating adiponectin than healthy, 
non-diabetic individuals[178]. With adiponectin behaving 
as an insulin sensitizing factor, it is not surprising that 
this deficiency in adiponectin closely correlates with an 
individuals’ degree of insulin resistance[179]. Systemic 
injection of adiponectin has been shown to decrease 
resting blood glucose levels and attenuate insulin re-
sistance[174,175,180]. Furthermore, stimulation of adipo-
nectin production in an animal model of T2DM improves 
skeletal muscle insulin sensitivity[181]. Paradoxically, when 
compared to healthy non-diabetic subjects, adiponectin 
is present in elevated levels in individuals with T1DM, 
regardless of their level of glycemic control[28,182,183] and 
these elevations are positively correlated with duration 
of T1DM[184,185]. 

The presence of metabolic syndrome in patients 
with T1DM has previously been associated with insulin 
resistance[186]. Interestingly, T1DM patients with meta-
bolic syndrome present with significantly lower levels 
of serum adiponectin than T1DM patients that do not 
present with metabolic syndrome[186]. Similar to the 
relationship between insulin sensitivity and adiponectin 
in non-diabetic individuals, levels of adiponectin are 
positively correlated with insulin sensitivity in T1DM[184]. 
Insulin sensitivity in T1DM individuals, however, is 
lower than in non-diabetic subjects at any given level 
of circulating adiponectin[184]. The preservation of the 
positive relationship between adiponectin and insulin 
sensitivity in T1DM coupled with the overall decrease 
in insulin sensitivity in T1DM individuals suggests a 
modification in the homeostatic regulation of adiponectin 
in the T1DM state[184]. 

Upon binding to adiponectin receptors in the pan-
creatic beta cells, adiponectin increases insulin gene 
expression and secretion[187]. The presence of insulin, 
on the other hand, has been shown to downregulate 
adiponectin gene expression[188]. In this light, it is 
possible that the overabundance of adiponectin in the 
T1DM state is a compensatory mechanism; an attempt 
at upregulating insulin production. As previously men-
tioned, however, despite higher levels of adiponectin 

being associated with insulin sensitivity, individuals with 
T1DM still have a lower insulin sensitivity than non-
diabetic individuals[184].

Adult T1DM human and rodent muscle has been 
observed to have higher levels of intramyocellular 
lipids (IMCL) than muscle of healthy, non-diabetic 
subjects[5,28,189]. This accretion of IMCLs has been asso-
ciated with insulin resistance in T1DM[189]. Interest-
ingly, previous reports indicate no differences in IMCL 
content between T1DM and non-diabetic children[190], 
potentially indicating that, similar to circulating levels of 
adiponectin, IMCL content is affected by, and positively 
associated with T1DM disease duration. Furthermore, 
Krause et al[191] found a positive correlation between 
intramyocellular adiponectin expression and IMCL 
density in non-diabetic mice; elevated levels of adipo-
nectin were detected in muscle fibers displaying a 
greater IMCL density, while adiponectin was virtually 
undetectable in muscle fibers with a low IMCL content. 
In the T1DM disease state, however, it is possible 
that this positive relationship may be a compensatory 
mechanism to remove lipid from circulation, and further 
investigation into this relationship in the diabetic state 
must be conducted. In 2007, Behre[192] proposed that 
adiponectin may in fact be a defense mechanism of the 
body in response to starvation (as can be compared to 
overt T1DM), resulting in increased fatty acid oxidation 
and glucose uptake via activation of AMPK and PPAR-α.

Overall, a great deal of research must still be 
conducted to elucidate the role of adiponectin in both 
overall health and skeletal muscle health in T1DM. 
While adiponectin levels are elevated in the T1DM 
state, adiponectin appears to act in a compensatory 
mechanism to improve insulin sensitivity in the absence 
of insulin. As insulin resistance develops in T1DM 
individuals that develop metabolic syndrome, adipo-
nectin levels demonstrate a decline. Evidence suggests 
that it may be beneficial to supplement adiponectin 
in the T1DM disease state in order to boost insulin 
production and increase insulin sensitivity in order to 
prevent this insulin resistance. 

CONCLUDING THOUGHTS
The presence of insulin resistance, altered lipid meta-
bolism, impaired vascularization and oxidative stresses 
are clear indicators of the presence of pathology in T1DM 
skeletal muscle. Exercise training, myostatin, leptin and 
adiponectin have been identified as potential therapeutic 
avenues to investigate with regard to improving skeletal 
muscle health (Figure 1). It is our hypothesis that, by 
improving skeletal muscle health in T1DM, the muscle 
will be better able to contribute to the reduction of 
diabetic symptoms. This would, in turn, lead to systemic 
benefits and delayed diabetic complications, increasing 
the quality and quantity of life of individuals with T1DM.
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